Comprehensive Assessment of the Effect of Multi-Cropping on Agroecosystems
Abstract
:1. Introduction
2. Results and Discussion
2.1. Level 1: Total Dried Crop Biomass
2.2. Level 2: CO2 Emission from the Soil
2.3. Level 3: Total Number of Weeds at the End of the Vegetative Season
2.4. Level 4: Total Weed Dried Biomass at the End of the Vegetative Season
2.5. Comprehensive Overall Assessment of All Four Levels
3. Materials and Methods
3.1. Site Description
3.2. Experimental Design and Agricultural Practice
3.3. Methods and Analysis
3.3.1. Soil Agrochemical Properties
3.3.2. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scheper, J.; Badenhausser, I.; Kentelhardt, J.; Kleijn, D. Biodiversity and pollination benefits trade off against in an intensive farming system. Proc. Natl. Acad. Sci. USA 2023, 120, e2212124120. [Google Scholar] [CrossRef] [PubMed]
- Brooker, R.W.; Bennett, A.E.; Cong, W.-F.; Daniell, T.J.; George, T.S.; Hallett, C.H.; Iannetta, P.; Jones, H.; Karley, A.; Li, L.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Gliessman, S.R.; Rosemeyer, M. The Conversion to sustainable Agriculture: Principles, Processes and Practices; University of California: Oakland, CA, USA, 2010; p. 352. [Google Scholar]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping–A low input agricultural strategy for food and environmental security. Agron. J. 2021, 11, 343. [Google Scholar] [CrossRef]
- Kumawat, G.; Shahi, J.P.; Kumar, M. Assessment of genetic diversity of maize (Zea mays L.) hybrids under water logging condition. Electron. J. Plant Breed. 2020, 11, 252–258. [Google Scholar]
- García-Lara, S.; Serna-Saldivar, S.O. Chapter 1—Corn History and Culture. In Corn: Chemistry and Technology, 3rd ed.; Serna-Saldivar, S.O., Ed.; AACC International Press: St. Paul, MN, USA, 2019; pp. 1–18. [Google Scholar]
- Galasso, I.; Russo, R.; Mapalli, S.; Ponzoni, E.; Brambilla, I.M.; Battelli, G.; Reggiani, R. Variability in seed traits in a collection of Cannabis sativa L. genotypes. Front. Plant Sci. 2016, 7, 688. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 174167. [Google Scholar] [CrossRef]
- Côté, D.M.; Achouri, A.; Karboune, S.; L’hocine1, L. Faba Bean: An Untapped Source of Quality Plant Proteins and Bioactives. Nutrients 2022, 14, 1541. [Google Scholar] [CrossRef]
- Duc, G.S.; Bao, M.; Baum, B.; Redden, M.; Sadiki, M.J.; Suso, M.; Zong, X. Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Res. 2010, 115, 270–278. [Google Scholar] [CrossRef]
- Wang, J.; Lu, X.; Zhang, J.; Wei, H.; Li, M.; Lan, N.; Luo, H. Intercropping perennial aquatic plants with rice improved paddy field soil microbial biomass, biomass carbon and biomass nitrogen to facilitate soil sustainability. Soil Tillage Res. 2021, 208, 104–108. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Eskandari, H. A General Overview on Intercropping and Its Advantages in Sustainable Agriculture. J. Appl. Environ. Biol. Sci. 2011, 1, 482–486. [Google Scholar]
- Liu, K.; Harisson, M.T.; Yan, H.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.; Jaegermeyr, J.; et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef] [PubMed]
- Mu-Chun, Y.; Ting-Ting, X.; Peng-Hui, S.; Jian-Jun, D. Effects of Different Cropping Patterns of Soybean and Maize Seedlings on Soil Enzyme Activities and MBC and MBN. J. Northeast Agric. Univ. 2012, 19, 42–47. [Google Scholar] [CrossRef]
- Kumar, R.; Pandey, S.; Pandey, A. Plant roots and carbon sequestration. Curr. Sci. 2006, 91, 885–890. [Google Scholar]
- Hauggaard-Nielsen, H.; Jensen, E.S. Facilitative root interactions in intercrops. Plant Soil. 2005, 274, 237–250. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Song, C.; Yang, F.; Su, B.; Cui, L.; Bu, W.; Yang, W. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize–soybean strip intercropping. Field Crops Res. 2018, 224, 91–101. [Google Scholar] [CrossRef]
- Velička, R.; Mockevičienė, R.; Marcinkevičienė, A.; Pupalienė, R.; Butkevičienė, L.M.; Kriaučiūnienė, Z.; Kosteckas, R.; Čekanauskas, S. Necheminių piktžolių kontrolės būdų effective palyginimas vasarinių rapsų pasėlyje ekologinės žemdirbystės sąlygomis. Žemės Ūkio Mokslai 2015, 22, 189–197. (In Lithuanian) [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of Conservation Agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Chimonyo, V.G.P.; Modi, A.T.; Mabhaudhi, T. Perspective on crop modelling in the management of intercropping systems. Arch. Agron. Soil Sci. 2015, 61, 1511–1529. [Google Scholar] [CrossRef]
- Kimbirauskienė, R.; Sinkevičienė, A.; Švereikaitė, A.; Romaneckas, K. The Complex Effect of Different Tillage Systems on the Faba Bean Agroecosystem. Plants 2024, 13, 513. [Google Scholar] [CrossRef]
- Balandaitė, J. Crop Biodiversity Influence on Multi-Crops Sustainability, Productivity and Energy Efficiency. Doctoral Thesis, Vytautas Magnus University, Akademija, Lithuania, 2023. [Google Scholar]
- Tahir, M.; Li, C.; Zeng, T.; Xin, Y.; Chen, C.; Javed, H.; Yang, W.; Yan, Y. Mixture composition influenced the biomass yield and nutritional quality of legume-grass pastures. Agron. 2022, 12, 1449. [Google Scholar] [CrossRef]
- Cai, G.; Su, X.; Li, Y.; Wang, X. Comparisons between diversified multicropping systems in terms of crop productivity, economic benefits and carbon footprint in the Pearl River Delta region of South China. Farm. Syst. 2023, 1, 1–8. [Google Scholar] [CrossRef]
- Arina, N.; Martini, Y.; Surdiana, S.; Fauzi, M.; Zulkefly, S. Radiation dynamics on crop productivity in different cropping systems. Int. J. Agron. 2021, 2021, 4570616. [Google Scholar]
- Litvinova, S.; Boop, L.; Galeev, R.; Smirnov, E.; Petrov, D. Formation of stable agrocenoses of corn hybrids in a sharply continental climate. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; p. 981. [Google Scholar] [CrossRef]
- Birthal, P.; Hazrana, J. Crop diversification and resilience of agriculture to climatic shocks: Evidence from India. Agric. Syst. 2019, 173, 345–354. [Google Scholar] [CrossRef]
- Kotroczo, Z.; Fekete, I. Significance of soil respiration from biological activity in the degradation processes of different types of organic matter. J. Environ. Agric. Ener. 2020, 1, 171–179. [Google Scholar]
- Sun, Y.; Wang, C.; Yang, J.; Liao, J.; Chen, H.; Ruan, H. Elevated CO2 shifts soil microbial communities from K- to r-strategists. Glob. Ecol. Biogeogr. 2021, 30, 961–972. [Google Scholar] [CrossRef]
- Hu, F.; Feng, F.; Zhao, C.; Chai, Q.; Yu, A.; Yin, W.; Gan, Y. Integration of weed-maize intercropping with conservation practices reduces CO2 emissions and enhances water use in dry areas. Soil Tillage Res. 2017, 169, 44–53. [Google Scholar] [CrossRef]
- Lupwayi, N.; Kennedy, A. Grain legumes in Northern Great Plains: Impact on selected biological soil processes. J. Agron. 2007, 99, 1700–1709. [Google Scholar] [CrossRef]
- Rudinskienė, A. Caraway (Carum carvi L.) in Multifunctional Crops Cultivations and Their Impact on the Agroecosystem. Doctoral Thesis, Vytautas Magnus University, Akademija, Lithuania, 2022. [Google Scholar]
- Rudinskienė, A.; Marcinkevičienė, A.; Velička, R.; Steponavičienė, V.; Kosteckas, R. The effects of incorporating caraway into a multi-cropping farming system on the crops and the overall agroecosystem. Eur. J. Agron. 2023; preprint. Available online: https://www.researchgate.net/publication/373375445(accessed on 25 January 2024).
- Li, G.; Yu, C.; Shen, P.; Hou, Y.; Ren, Z.; Li, N.; Liao, Y.; Li, T.; Wen, X. Crop diversification promotes soil aggregation and carbon accumulation in global agroecosystems: A meta-analysis. J. Environ. Manag. 2023, 350, 119661. [Google Scholar] [CrossRef]
- Robačer, M.; Canali, S.; Lakenborg, K.H.; Baver, F.; Grobelnik, M.S.; Jakopa, M.; Bavec, M. Cover crops in organic field vegetable production. Sci. Hortic. 2016, 208, 104–110. [Google Scholar] [CrossRef]
- Ogazie, C.H.; Ochekwu, E.B.; Agbagwa, I.O.; Ugiomoh, I. Multi-cropping practice: Means to sustainable agriculture in the high humid rainforest agroecology of Southern Nigeria. Int. J. Sci. Technol. Res. Arch. 2022, 3, 66–90. [Google Scholar] [CrossRef]
- Livingstone, H.; Ang, T.N.; Yuan, X.; Swanepoel, W.; Kerckhoffs, H. Analysis of inter-nodal properties of two industrial hemp cultivars (Fasamo and Ferimon 12) and their relationships with plant density and row spacing. Ind. Crops Prod. 2022, 182, 114880. [Google Scholar] [CrossRef]
- Schafer, T.; Honermeier, B. Effect of sowing date and plant density on the cell morphology of hemp (Cannabis sativa L.). Ind. Crops Prod. 2006, 23, 88–98. [Google Scholar] [CrossRef]
- Vanino, S.; Di-Bene, C.; Piccini, C.; Fila, G.; Pennelli, B.; Zornoza, R.; Navarro, V.; Fuentes, J.; Huppi, R.; Six, J.; et al. A comprehensive assessment of diversified cropping systems on agro-environmental sustainability in three Mediterranean long-term field experiments. Eur. J. Agron. 2022, 140, 126598. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources, 3rd ed.; World Soil Resources Reports No.106; FAO: Rome, Italy, 2014; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 9 January 2024).
- Romaneckas, K.; Balandaitė, J.; Sinkevičienė, A.; Kimbirauskienė, R.; Jasinskas, A.; Ginelevičius, U.; Romaneckas, A.; Petlickaitė, R. Short-term impact of multi-cropping of some soil physical properties and respiration. Agronomy 2022, 12, 141. [Google Scholar] [CrossRef]
- Romaneckas, K.; Švereikaitė, A.; Kimbirauskienė, R.; Sinkevičienė, A.; Balandaitė, J. The energy and environmental evaluation of maize, hemp and faba bean multi-crops. Agronomy 2023, 13, 2316. [Google Scholar] [CrossRef]
- Stancevičius, A. Piktžolių Apskaita ir Laukų Piktžolėtumo Kartografavimas/Weed Accounting and Field Weediness Mapping; Mokslas: Vilnius, Lithuania, 1979; 37p. (In Lithuanian) [Google Scholar]
- SPSS Instant 10. Statistics I.; IBM: Armonk, NY, USA, 2000; p. 663. [Google Scholar]
- Lohmann, G. Entwicklung eines Bewertungsverfahrens für Anbausysteme mit Differenzierten Aufwandmengen Ertragssteigernder und Ertragssichernder Betriebsmittel. Doctoral Thesis, Institut für Pflanzenbau der Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, 1994. (In German). [Google Scholar]
- Heyland, K.U. Zur methodik einer integrierten darstellung und bewertung der produktionsverfahren im pflanzenbau. Pflanzenbauwissenschaften 1998, 2, 145–159. (In German) [Google Scholar]
Month/Year | 2020 | 2021 | 2022 | Long-Term Average |
---|---|---|---|---|
Air temperature (°C) | ||||
March | 3.3 | 1.6 | 1.5 | 2.1 |
April | 6.9 | 6.2 | 6.2 | 6.4 |
May | 10.5 | 11.4 | 11.0 | 11.0 |
June | 19.0 | 19.5 | 17.7 | 18.7 |
July | 17.4 | 22.6 | 17.9 | 19.3 |
August | 18.7 | 16.5 | 20.9 | 18.7 |
September | 14.8 | 11.4 | 10.6 | 12.3 |
Precipitation rate (mm) | ||||
March | 21.0 | 1.9 | 49.3 | 24.1 |
April | 4.0 | 33.7 | 38.4 | 25.4 |
May | 94.4 | 121.6 | 84.0 | 100.0 |
June | 99.3 | 40.3 | 77.6 | 72.4 |
July | 60.5 | 48.4 | 100.5 | 69.8 |
August | 92.8 | 122.2 | 38.7 | 84.6 |
September | 30.0 | 48.0 | 44.0 | 40.7 |
Biodiversity Level | Crops | Abbreviation and Number of Treatments |
---|---|---|
Single crop | Maize, hemp, faba bean (single crops) | M (1), H (2), FB (3) |
Binary crop | Maize + hemp | M + H (4) |
Maize + faba bean | M + FB (5) | |
Hemp + faba bean | H + FB (6) | |
Ternary crop | Maize + hemp + faba bean | M + H + FB (7) |
Index | Variation | Unit | Index | Variation | Unit |
---|---|---|---|---|---|
Total dried crop biomass (end of vegetative season) | 88.7–4401.6 | g m−2 | CO2 e-flux rate (middle of vegetative season) | 2.4–4.68 | µmol m−2 s−1 |
PAR at soil surface | 2.3–27.1 | % | Change in total nitrogen | −0.033–0.022 | mg kg−1 |
Total crop density (end of vegetative season) | 19–95 | units m−2 | Change in mobile phosphorus | −29.0–35.0 | mg kg−1 |
Average crop height (end of vegetative season) | 63.4–239.5 | cm | Change in mobile potassium | −27.0–17.5 | mg kg−1 |
Average leaf chlorophyll index (second half of crop vegetative season) | 7.4–75.7 | - | Change in mobile magnesium | −32.0–545 | mg kg−1 |
Average leaf assimilative area (middle of vegetative season) | 66.15–427.1 | cm−2 | Dried biomass of total weeds (end of vegetative season) | 7.5–224.4 | g m−2 |
Soil megastructure content (beginning of vegetative season) | 31.9–52.6 | % | Total number of weeds (end of vegetative season) | 111.1–472.2 | units m−2 |
Soil macrostructure content (beginning of vegetative season) | 46.7–65.3 | % | Average daily air temperature | 1.5–22.6 | °C |
Soil microstructure content (beginning of vegetative season) | 0.7–3.1 | % | Precipitation rate | 1.9–122.2 | mm |
Soil aggregate stability (beginning of vegetative season) | 30.2–45.4 | % | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balandaitė, J.; Romaneckas, K.; Kimbirauskienė, R.; Sinkevičienė, A. Comprehensive Assessment of the Effect of Multi-Cropping on Agroecosystems. Plants 2024, 13, 1372. https://doi.org/10.3390/plants13101372
Balandaitė J, Romaneckas K, Kimbirauskienė R, Sinkevičienė A. Comprehensive Assessment of the Effect of Multi-Cropping on Agroecosystems. Plants. 2024; 13(10):1372. https://doi.org/10.3390/plants13101372
Chicago/Turabian StyleBalandaitė, Jovita, Kęstutis Romaneckas, Rasa Kimbirauskienė, and Aušra Sinkevičienė. 2024. "Comprehensive Assessment of the Effect of Multi-Cropping on Agroecosystems" Plants 13, no. 10: 1372. https://doi.org/10.3390/plants13101372
APA StyleBalandaitė, J., Romaneckas, K., Kimbirauskienė, R., & Sinkevičienė, A. (2024). Comprehensive Assessment of the Effect of Multi-Cropping on Agroecosystems. Plants, 13(10), 1372. https://doi.org/10.3390/plants13101372