The Synergistic Production Effect of Water and Nitrogen on Winter Wheat in Southern Xinjiang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Experimental Design
2.3. Data Collection
2.3.1. Meteorological Data
2.3.2. Photosynthetic Data
2.3.3. Soil Moisture
2.3.4. Water-Use Efficiency
2.3.5. Nitrogen-Use Efficiency
2.3.6. Harvest Index
2.3.7. Plant Height, Dry Matter, and Yield
2.3.8. Economic Benefits
2.4. Statistical Analysis
3. Results
3.1. Effects of Water–Nitrogen Coupling on Growth Indicators
3.1.1. Plant Height
3.1.2. Accumulation and Allocation of Dry Matter
Dry Matter Accumulation Changes
Dry Matter Distribution at Maturity
3.2. Effects of Water–Nitrogen Coupling on Physiological Indices
3.2.1. Diurnal Variation in Net Photosynthetic Rate
3.2.2. Transpiration Rate (Tr)
3.2.3. Leaf Water-Use Efficiency (LWUE)
3.2.4. SPAD
3.3. Effects of Water–Nitrogen Coupling on Yield and Water- and Nitrogen-Use Efficiency
3.3.1. Water-Use Efficiency
3.3.2. Nitrogen-Use Efficiency and Harvest Index
3.3.3. Yield and Composition
3.4. Effects of Water–Nitrogen Coupling on Economic Efficiency
3.5. Correlation Analysis between All Indicators
4. Discussion
4.1. Response of Winter Wheat Growth and Development to Water–Nitrogen Interaction
4.2. Physiological Characteristics of Winter Wheat in Arid Regions
4.3. Optimizing Yield and Production Efficiency through Water and Nitrogen Application
5. Conclusions
- (1)
- An irrigation range of 2829–3231 m3/ha and a nitrogen application rate of 207 kg/ha resulted in a maximum H of 82.16 cm, which was 4.75% higher than that of CK. The DM distribution was as follows: panicle > stem > leaf. Under a combination of 2829 m3/ha irrigation and 207 kg/ha nitrogen application, the proportion of DM in the spikes reached more than 60%, and the transport of photosynthates to grains was enhanced, leading to a notable increase in winter wheat yield.
- (2)
- An irrigation range of 2829–3231 m3/ha and a nitrogen application rate of 207–276 kg/ha were conducive to accumulating photosynthetic products. No nitrogen application seriously inhibited winter wheat’s photosynthetic parameters, showing a delayed single peak in Pn and Tr. At the heading stage, SPAD values reached their peak value, with optimal levels observed with an irrigation level of 2829 m3/ha and a nitrogen application level of 207 kg/ha, peaking at 58.44. Meanwhile, LWUE was observed to perform better with an irrigation level of 3231 m3/ha and 276 kg/ha of nitrogen fertilizer application.
- (3)
- Considering yield, water and nitrogen use efficiency, and economic benefits, the combination of an irrigation level of 2829 m3/ha and a nitrogen application level of 207 kg/ha represented the optimal water and nitrogen combination for the studied site in Southern Xinjiang, China, and a maximum yield of 12.447 t/ha was obtained under the conditions of this study.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yermiyahu, U.; Ben-Gal, A.; Keren, R.; Reid, R.J. Combined Effect of Salinity and Excess Boron on Plant Growth and Yield. Plant Soil 2008, 304, 73–87. [Google Scholar] [CrossRef]
- Mupambwa, H.A.; Hausiku, M.K.; Nciizah, A.D.; Dube, E. The Unique Namib Desert-Coastal Region and Its Opportunities for Climate Smart Agriculture: A Review. Cogent Food Agric. 2019, 5, 1645258. [Google Scholar] [CrossRef]
- Ning, S.; Zhou, B.; Shi, J.; Wang, Q. Soil Water/Salt Balance and Water Productivity of Typical Irrigation Schedules for Cotton under Film Mulched Drip Irrigation in Northern Xinjiang. Agric. Water Manag. 2021, 245, 106651. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, X.; Lei, Q.; Liu, F. Effects of Drip Irrigation Nitrogen Coupling on Dry Matter Accumulation and Yield of Summer Maize in Arid Areas of China. Field Crops Res. 2021, 274, 108321. [Google Scholar] [CrossRef]
- Che, Z.; Wang, J.; Li, J. Effects of Water Quality, Irrigation Amount and Nitrogen Applied on Soil Salinity and Cotton Production under Mulched Drip Irrigation in Arid Northwest China. Agric. Water Manag. 2021, 247, 106738. [Google Scholar] [CrossRef]
- Qinglin, N.; Haikuan, F.; Xinguo, Z.; Jianqiang, Z.; Beibei, Y.; Huizhen, L. Combining UAV Visible Light and Multispectral Vegetation Indices for Estimating SPAD Value of Winter Wheat. Trans. Chin. Soc. Agric. Mach. 2021, 52, 183–194. [Google Scholar]
- Enguwa, K.B.P.; Horn, L.N.; Awala, S.K. Comparative Effect of Different Irrigation Levels and Soil Amendments on Cabbage Productivity in Semi-arid Central Namibia. Irrig. Drain. 2024, 73, 538–556. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; French, A.N.; Waller, P.M.; Bautista, E.; Thorp, K.R.; Bronson, K.F.; Andrade-Sanchez, P. Comparison of Traditional and ET-Based Irrigation Scheduling of Surface-Irrigated Cotton in the Arid Southwestern USA. Agric. Water Manag. 2015, 159, 209–224. [Google Scholar] [CrossRef]
- Zain, M.; Si, Z.; Li, S.; Gao, Y.; Mehmood, F.; Rahman, S.-U.; Mounkaila Hamani, A.K.; Duan, A. The Coupled Effects of Irrigation Scheduling and Nitrogen Fertilization Mode on Growth, Yield and Water Use Efficiency in Drip-Irrigated Winter Wheat. Sustainability 2021, 13, 2742. [Google Scholar] [CrossRef]
- Yang, P.; Hu, H.; Tian, F.; Zhang, Z.; Dai, C. Crop Coefficient for Cotton under Plastic Mulch and Drip Irrigation Based on Eddy Covariance Observation in an Arid Area of Northwestern China. Agric. Water Manag. 2016, 171, 21–30. [Google Scholar] [CrossRef]
- Wang, F.; Xie, R.; Ming, B.; Wang, K.; Hou, P.; Chen, J.; Liu, G.; Zhang, G.; Xue, J.; Li, S. Dry Matter Accumulation After Silking Kernel Weight. Are Key Factors Increasing Maize Yield Water Use Efficiency. Agric. Water Manag. 2021, 254, 106938. [Google Scholar] [CrossRef]
- Chenxiao, Y.; Ming, H.; Jiahao, Q.; Junjie, F.; Haijun, L.; Yun, W. Effects of Biochar on Hydraulic Characteristics of Aeolian Sandy Soil in Hetian. Agric. Res. Arid. Areas 2021, 39, 21–28. [Google Scholar]
- Li, J.; Wang, Z.; Song, Y.; Li, J.; Zhang, Y. Effects of Reducing Nitrogen Application Rate under Different Irrigation Methods on Grain Yield, Water and Nitrogen Utilization in Winter Wheat. Agronomy 2022, 12, 1835. [Google Scholar] [CrossRef]
- Liu, P.; Tu, M.; Song, H.; Chen, D.; Sun, S.; Li, J.; Xu, Z.; Liu, C.; Lin, L.; Jiang, G. Effects of Rain-Shelter Cultivation on Physiological and Biochemical Indexes of Kiwifruit Leaves and Fruit Quality. Southwest China J. Agric. Sci. 2021, 34, 2613–2620. [Google Scholar]
- Sun, W.; Hamani, A.K.M.; Si, Z.; Abubakar, S.A.; Liang, Y.; Liu, K.; Gao, Y. Effects of Timing in Irrigation and Fertilization on Soil NO3−-N Distribution, Grain Yield and Water–Nitrogen Use Efficiency of Drip-Fertigated Winter Wheat in the North China Plain. Water 2022, 14, 1780. [Google Scholar] [CrossRef]
- Xu, J.; Lv, Y.; Liu, X.; Wei, Q.; Qi, Z.; Yang, S.; Liao, L. A General Non-Rectangular Hyperbola Equation for Photosynthetic Light Response Curve of Rice at Various Leaf Ages. Sci. Rep. 2019, 9, 9909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Sun, D.; Niu, Z.; Yan, J.; Zhou, X.; Kang, X. Effects of Combined Organic/Inorganic Fertilizer Application on Growth, Photosynthetic Characteristics, Yield and Fruit Quality of Actinidia Chinesis Cv ‘Hongyang’. Glob. Ecol. Conserv. 2020, 22, e00997. [Google Scholar] [CrossRef]
- Ren, B.; Yu, W.; Liu, P.; Zhao, B.; Zhang, J. Responses of Photosynthetic Characteristics and Leaf Senescence in Summer Maize to Simultaneous Stresses of Waterlogging and Shading. Crop J. 2023, 11, 269–277. [Google Scholar] [CrossRef]
- Goosheh, M.; Pazira, E.; Gholami, A.; Andarzian, B.; Panahpour, E. Improving Irrigation Scheduling of Wheat to Increase Water Productivity in Shallow Groundwater Conditions Using Aquacrop. Irrig. Drain. 2018, 67, 738–754. [Google Scholar] [CrossRef]
- Kubar, M.S.; Alshallash, K.S.; Asghar, M.A.; Feng, M.; Raza, A.; Wang, C.; Saleem, K.; Ullah, A.; Yang, W.; Kubar, K.A.; et al. Improving Winter Wheat Photosynthesis, Nitrogen Use Efficiency, and Yield by Optimizing Nitrogen Fertilization. Life 2022, 12, 1478. [Google Scholar] [CrossRef]
- Liu, K.; Shi, Y.; Yu, Z.; Zhang, Z.; Zhang, Y. Improving Photosynthesis and Grain Yield in Wheat through Ridge–Furrow Ratio Optimization. Agronomy 2023, 13, 2413. [Google Scholar] [CrossRef]
- Tavakoli, A.R.; Sepaskhah, A.R.; Hokmabadi, H. Introducing a Stratified Vertical Gravel Tube Subsurface Drip System under Different Irrigation Regimes for Pistachio: Growth, Yield and Water Productivity. Irrig. Drain. 2023, 73, 426–443. [Google Scholar] [CrossRef]
- She, Y.; Li, P.; Du, Z.; Qi, X.; Zhao, S.; Li, T.; Guo, W. Nitrogen Fertilization Effects on Soil Nitrate, Water Use, Growth Attributes and Yield of Winter Wheat under Shallow Groundwater Table Condition. Agronomy 2022, 12, 3048. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Wu, P.; Zhao, X.; Chen, X.; Gao, X. Yield, Yield Attributes and Photosynthetic Physiological Characteristics of Dryland Wheat (Triticum aestivum L.)/Maize (Zea mays L.) Strip Intercropping. Field Crops Res. 2020, 248, 107656. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, X.; Gu, L.; Liu, P.; Zhao, B.; Zhang, J.; Ren, B. The Effects of High Temperature, Drought, and Their Combined Stresses on the Photosynthesis and Senescence of Summer Maize. Agric. Water Manag. 2023, 289, 108525. [Google Scholar] [CrossRef]
- Zhou, B.; Liang, C.; Chen, X.; Ye, S.; Peng, Y.; Yang, L.; Duan, M.; Wang, X. Magnetically-Treated Brackish Water Affects Soil Water-Salt Distribution and the Growth of Cotton with Film Mulch Drip Irrigation in Xinjiang, China. Agric. Water Manag. 2022, 263, 107487. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Chen, J. Monitoring Terrestrial Water Storage Changes with the Tongji-Grace2018 Model in the Nine Major River Basins of the Chinese Mainland. Remote Sens. 2021, 13, 1851. [Google Scholar] [CrossRef]
- Lee, C.-C.; He, Z.-W.; Luo, H.-P. Spatio-Temporal Characteristics of Land Ecological Security and Analysis of Influencing Factors in Cities of Major Grain-Producing Regions of China. Environ. Impact Assess. Rev. 2024, 104, 107344. [Google Scholar] [CrossRef]
- Wang, R.; Wang, H.; Jiang, G.; Liu, J.; Yin, H.; Xie, B.; Che, Z.; Jiang, F.; Zhang, T. Effect of Nitrogen Application on Root and Yield Traits of Chinese Spring Wheat (Triticum aestivum L.) under Drip Irrigation. Agronomy 2022, 12, 2618. [Google Scholar] [CrossRef]
- Qiu, S.; Ju, X.; Lu, X.; Li, L.; Ingwersen, J.; Streck, T.; Christie, P.; Zhang, F. Improved Nitrogen Management for an Intensive Winter Wheat/Summer Maize Double-cropping System. Soil Sci. Soc Am. J. 2012, 76, 286–297. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, H.; Wang, S.; Zheng, Y.; Mai, B.; Zhang, X. Assessment of Photosynthesis and Yield Loss of Winter Wheat under Ground-Level Ozone Exposure. Environ. Technol. Innov. 2023, 29, 103013. [Google Scholar] [CrossRef]
- Ma, M.; Liu, Y.; Zhang, Y.; Qin, W.; Wang, Z.; Zhang, Y.; Lu, C.; Lu, Q. In Situ Measurements of Winter Wheat Diurnal Changes in Photosynthesis and Environmental Factors Reveal New Insight into Photosynthesis Improvement by Super-High-Yield Cultivation. J. Integr. Agric. 2021, 20, 527–539. [Google Scholar] [CrossRef]
- Yang, X.; Yang, R.; Ye, Y.; Yuan, Z.; Wang, D.; Hua, K. Winter Wheat SPAD Estimation from UAV Hyperspectral Data Using Cluster-Regression Methods. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102618. [Google Scholar] [CrossRef]
- Cao, J.-L.; Wang, L.; Zeng, Q.; Liang, J.; Tang, H.-Y.; Xie, Z.-B.; Liu, G.; Zhu, J.-G.; Kobayashi, K. Characteristics of Photosynthesis in Wheat Cultivars with Different Sensitivities to Ozone Under O3-Free Air Concentration Enrichment Conditions. Acta Agron. Sin. 2009, 35, 1500–1507. [Google Scholar] [CrossRef]
- Li, Y.; Gu, X.; Li, Y.; Fang, H.; Chen, P. Ridge-Furrow Mulching Combined with Appropriate Nitrogen Rate for Enhancing Photosynthetic Efficiency, Yield and Water Use Efficiency of Summer Maize in a Semi-Arid Region of China. Agric. Water Manag. 2023, 287, 108450. [Google Scholar] [CrossRef]
- Song, K.; Lu, Y.; Dao, G.; Chen, Z.; Wu, Y.; Wang, S.; Liu, J.; Hu, H.-Y. Reclaimed Water for Landscape Water Replenishment: Threshold Nitrogen and Phosphorus Concentrations Values for Bloom Control. Algal Res. 2022, 62, 102608. [Google Scholar] [CrossRef]
- Zhang, S.; Gong, J.; Xiao, C.; Yang, X.; Li, X.; Zhang, Z.; Song, L.; Zhang, W.; Dong, X.; Hu, Y. Bupleurum Chinense and Medicago Sativa Sustain Their Growth in Agrophotovoltaic Systems by Regulating Photosynthetic Mechanisms. Renew. Sustain. Energy Rev. 2024, 189, 114024. [Google Scholar] [CrossRef]
- Liu, J.; Si, Z.; Li, S.; Wu, L.; Zhang, Y.; Wu, X.; Cao, H.; Gao, Y.; Duan, A. Effects of Water and Nitrogen Rate on Grain-Filling Characteristics under High-Low Seedbed Cultivation in Winter Wheat. J. Integr. Agric. 2023, S2095311923004495. [Google Scholar] [CrossRef]
- Han, M.; Zhang, J.; Zhang, L.; Wang, Z. Effect of Biochar Addition on Crop Yield, Water and Nitrogen Use Efficiency: A Meta-Analysis. J. Clean. Prod. 2023, 420, 138425. [Google Scholar] [CrossRef]
- Hamani, A.K.M.; Abubakar, S.A.; Si, Z.; Kama, R.; Gao, Y.; Duan, A. Responses of Grain Yield and Water-Nitrogen Dynamic of Drip-Irrigated Winter Wheat (Triticum aestivum L.) to Different Nitrogen Fertigation and Water Regimes in the North China Plain. Agric. Water Manag. 2023, 288, 108494. [Google Scholar] [CrossRef]
- Azizah, F.N.; Purwanto, B.H.; Tawaraya, K.; Rachmawati, D. Characterization of Yield and Cumulative Nitrous Oxide Emission of Maize Varieties in Responses to Different Nitrogen Application Rates. Heliyon 2023, 9, e17290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, X.; Li, Y.; Zhao, J.; Yang, Y.; Zang, H.; Zeng, Z. Peanut Residue Incorporation Benefits Crop Yield, Nitrogen Yield, and Water Use Efficiency of Summer Peanut—Winter Wheat Systems. Field Crops Res. 2022, 279, 108463. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Shi, J.; Tian, X.; Wu, J. Economic, Energy and Environmental Performance Assessment on Wheat Production under Water-Saving Cultivation Strategies. Energy 2022, 261, 125330. [Google Scholar] [CrossRef]
- Attipoe, S.G.; Cao, J.; Opoku-Kwanowaa, Y.; Ohene-Sefa, F. Assessing the Impact of Non-Governmental Organization’s Extension Programs on Sustainable Cocoa Production and Household Income in Ghana. J. Integr. Agric. 2021, 20, 2820–2836. [Google Scholar] [CrossRef]
- Feng, Y.; Zhu, A.; Liu, P.; Liu, Z. Coupling and Coordinated Relationship of Water Utilization, Industrial Development and Ecological Welfare in the Yellow River Basin, China. J. Clean. Prod. 2022, 379, 134824. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, X.; Yin, B.; Yan, X. Delaying Tillering Nitrogen Topdressing until the Midtillering Phase Improves Nitrogen Use Efficiency and Reduces Ammonia Emission via Rice Canopy Recapture. Eur. J. Agron. 2023, 142, 126657. [Google Scholar] [CrossRef]
Soil Layer (cm) | Organic Matter (g/kg) | Bulk Density (g/cm3) | Available Nitrogen (mg/kg) | Available Phosphorus (mg/kg) | Quick-Acting Potassium (mg/kg) | Salt (mg/g) | pH | Field Capacity (%) | Soil Texture |
---|---|---|---|---|---|---|---|---|---|
0–20 | 8.97 a + 0.29 | 1.50 a + 0.01 | 36.64 a + 0.05 | 13.98 a + 0.43 | 115.62 a + 0.28 | 0.505 a + 0.01 | 8.57 a + 0.02 | 22.90 b + 0.15 | Silty loam |
21–40 | 6.28 b + 0.21 | 1.50 a + 0.02 | 29.61 b + 0.05 | 6.62 b + 0.27 | 105.74 a + 0.10 | 0.505 a + 0.03 | 8.62 b + 0.01 | 20.78 c + 0.21 | Silty loam |
41–60 | 4.71 c + 0.46 | 1.45 b + 0.01 | 21.45 c + 0.09 | 5.72 b + 0.08 | 101.81 b + 0.53 | 0.545 b + 0.03 | 8.69 b + 0.01 | 24.99 a + 0.19 | Loamy sand |
Treatment | Irrigation Level | Total Irrigation | Nitrogen Application (kg/ha) | |||
---|---|---|---|---|---|---|
m3/ha | Bottom Fertilizer | Regreening | Jointing | Heading | ||
W3N3 | 120% ETC | 3231 | 138.0 | 55.2 | 55.2 | 27.6 |
W3N2 | 120% ETC | 3231 | 138.0 | 41.4 | 41.4 | 20.7 |
W3N1 | 120% ETC | 3231 | 138.0 | 0 | 0 | 0 |
W2N3 | 100% ETC | 2829 | 103.5 | 55.2 | 55.2 | 27.6 |
W2N2 | 100% ETC | 2829 | 103.5 | 41.4 | 41.4 | 20.7 |
W2N1 | 100% ETC | 2829 | 103.5 | 0 | 0 | 0 |
W1N2 | 80% ETC | 2449.5 | 0 | 41.4 | 41.4 | 20.7 |
W1N1 | 80% ETC | 2449.5 | 0 | 0 | 0 | 0 |
CK | - | 4125 | 103.5 | 34.5 | 34.5 | 34.5 |
Growth | Regreening | Jointing | Heading | Filling | Mature |
---|---|---|---|---|---|
Kc | 0.85 | 1.02 | 1.16 | 0.74 | 0.9425 |
Treatment | Stem | Leaf | Spike | Total DM | ||||
---|---|---|---|---|---|---|---|---|
DM | Ratio/% | DM | Ratio/% | DM | Ratio/% | DM | ||
(t/ha) | (t/ha) | (t/ha) | (t/ha) | |||||
W3N3 | 8.15 a | 30.37% | 2.78 a | 10.36% | 15.91 a | 59.27% | 26.84 a | |
W3N2 | 4.91 b | 30.67% | 1.78 bc | 11.13% | 9.31 cd | 58.20% | 16.00 d | |
W3N1 | 5.68 b | 33.84% | 2.07 abc | 12.34% | 9.04 cd | 53.82% | 16.79 d | |
W2N3 | 5.67 b | 30.50% | 2.08 abc | 11.19% | 10.83 bc | 58.31% | 18.57 c | |
W2N2 | 5.89 b | 26.52% | 2.26 ab | 10.20% | 14.04 ab | 63.28% | 22.19 b | |
W2N1 | 4.55 b | 30.15% | 1.25 c | 8.31% | 9.28 cd | 61.54% | 15.07 d | |
W1N2 | 4.92 b | 30.17% | 1.69 bc | 10.35% | 9.69 cd | 59.47% | 16.29 d | |
W1N1 | 4.02 b | 34.61% | 1.38 bc | 11.88% | 6.22 d | 53.51% | 11.62 e | |
CK | 5.45 b | 33.49% | 2.26 ab | 13.90% | 8.55 cd | 52.61% | 16.26 d | |
MANOVA | W | ** | ** | ** | ** | |||
N | None | * | * | ** | ||||
W*N | ** | ** | ** | ** |
Treatment | Growth Stage | |||||
---|---|---|---|---|---|---|
Jointing | Booting | Heading | Filling | Mature | ||
W3N3 | 51.37 a | 53.57 a | 58.44 a | 52.30 a | 12.40 a | |
W3N2 | 51.67 a | 53.93 a | 56.33 b | 45.53 b | 8.53 bc | |
W3N1 | 39.20 d | 43.17 d | 47.80 e | 26.60 d | 3.40 e | |
W2N3 | 43.60 c | 49.97 b | 53.90 c | 25.40 d | 7.43 cd | |
W2N2 | 50.83 a | 52.37 a | 57.90 a | 54.93 a | 10.17 a | |
W2N1 | 43.53 c | 45.93 c | 46.70 f | 35.50 c | 8.51 bc | |
W1N2 | 48.95 b | 51.25 a | 51.00 d | 28.95 d | 7.00 cd | |
W1N1 | 44.35 c | 46.55 c | 45.95 g | 25.55 d | 4.90 de | |
CK | 48.35 b | 51.75 a | 53.60 c | 53.00 a | 7.95 bc | |
MANOVA | W | ** | ** | ** | ** | ** |
N | ** | ** | ** | ** | ** | |
W*N | ** | ** | ** | ** | ** |
Treatment | Effective Panicles (EP) | Kernels per Spike (KPS) | Thousand Kernel Weight (TKW) | Yield | HI | WUE | PFPN | |
---|---|---|---|---|---|---|---|---|
(grain) | (Induvial) | (g) | (t/ha) | kg/(ha·mm) | ||||
W3N3 | 46.77 b | 654 a | 52.38 a | 13.599 a | 0.51 e | 39.58 b | 49.27 c | |
W3N2 | 46.63 b | 630 b | 46.64 c | 11.644 c | 0.73 a | 33.98 c | 56.25 b | |
W3N1 | 42.05 cd | 448 g | 45.34 cd | 7.304 f | 0.44 g | 20.11 f | - | |
W2N3 | 47.05 b | 524 e | 45.99 c | 9.614 d | 0.52 d | 31.25 d | 34.83 f | |
W2N2 | 49.95 a | 592 c | 49.52 b | 12.447 b | 0.56 b | 39.42 ab | 60.13 a | |
W2N1 | 42.53 c | 435 h | 43.74 d | 6.911 fg | 0.46 f | 21.77 f | - | |
W1N2 | 45.75 b | 478 f | 46.62 c | 8.679 e | 0.53 c | 30.28 d | 41.93 de | |
W1N1 | 39.7 d | 483 f | 40.28 e | 6.571 g | 0.57 b | 21.20 e | - | |
CK | 42.08 cd | 554 d | 46.62 c | 9.203 d | 0.57 b | 21.17 f | 44.46 d | |
MANOVA | W | ** | ** | * | ** | ** | ** | ** |
N | ** | ** | ** | ** | ** | ** | ** | |
W*N | None | ** | ** | ** | ** | ** | ** |
Treatment | Economic Value | Production Costs (CNY/ha) | Economic Benefit | |||
---|---|---|---|---|---|---|
(CNY/ha) | Labor Cost | Mechanical Cost | Production Materials Cost | (CNY/ha) | ||
W3N3 | 32,637.6 a | 2250 a | 1500 a | 7067.7 b | 21,819.9 a | |
W3N2 | 27,945.6 ab | 2250 a | 1500 a | 6317.7 d | 17,877.9 c | |
W3N1 | 17,529.6 c | 2250 a | 1500 a | 4067.7 g | 9711.9 g | |
W2N3 | 23,073.6 abc | 2250 a | 1500 a | 6987.3 c | 12,336.3 d | |
W2N2 | 29,872.8 ab | 2250 a | 1500 a | 6237.3 e | 19,885.5 b | |
W2N1 | 16,586.4 c | 2250 a | 1500 a | 3987.3 h | 8849.1 h | |
W1N2 | 20,829.6 bc | 2250 a | 1500 a | 6161.4 f | 10,918.2 f | |
W1N1 | 15,770.4 c | 2250 a | 1500 a | 3911.4 i | 8109.0 i | |
CK | 22,087.2 bc | 2250 a | 1500 a | 7246.5 a | 11,090.7 e | |
MANOVA | W | ** | ** | ** | ||
N | ** | ** | ** | |||
W*N | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Q.; Tao, W.; Lin, S.; Su, L.; Deng, M.; Wang, Q.; Yang, F.; Zhu, T.; Ma, L. The Synergistic Production Effect of Water and Nitrogen on Winter Wheat in Southern Xinjiang. Plants 2024, 13, 1391. https://doi.org/10.3390/plants13101391
Lei Q, Tao W, Lin S, Su L, Deng M, Wang Q, Yang F, Zhu T, Ma L. The Synergistic Production Effect of Water and Nitrogen on Winter Wheat in Southern Xinjiang. Plants. 2024; 13(10):1391. https://doi.org/10.3390/plants13101391
Chicago/Turabian StyleLei, Qingyuan, Wanghai Tao, Shudong Lin, Lijun Su, Mingjiang Deng, Quanjiu Wang, Fan Yang, Tao Zhu, and Liang Ma. 2024. "The Synergistic Production Effect of Water and Nitrogen on Winter Wheat in Southern Xinjiang" Plants 13, no. 10: 1391. https://doi.org/10.3390/plants13101391
APA StyleLei, Q., Tao, W., Lin, S., Su, L., Deng, M., Wang, Q., Yang, F., Zhu, T., & Ma, L. (2024). The Synergistic Production Effect of Water and Nitrogen on Winter Wheat in Southern Xinjiang. Plants, 13(10), 1391. https://doi.org/10.3390/plants13101391