Impacts of Climate Change on the Habitat Suitability and Natural Product Accumulation of the Medicinal Plant Sophora alopecuroides L. Based on the MaxEnt Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Processing
2.2. Acquisition of the Environmental Data
2.3. Model Settings and Assessment
2.4. Analysis of the Pharmacologically Active Component Content
2.5. Redundancy Analysis (RDA) and Cluster Analysis
3. Results
3.1. Model Accuracy Evaluation and Environmental Variable Analysis
3.2. Prediction of the Distribution under the Current Climate Scenario (1970–2000)
3.3. Prediction Distribution under Future Climate Scenarios
3.4. Analysis of Alkaloid and Flavonoid Content in S. alopecuroides in Different Habitats
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rana, S.K.; Rana, H.K.; Ranjitkar, S.; Ghimire, S.K.; Gurmachhan, C.M.; O’Neill, A.R.; Sun, H. Climate-change threats to distribution, habitats, sustainability, and conservation of highly traded medicinal and aromatic plants in Nepal. Ecol. Indic. 2020, 115, 106435. [Google Scholar] [CrossRef]
- Shen, T.; Yu, H.; Wang, Y.Z. Assessing the impacts of climate change and habitat suitability on the distribution and quality of medicinal plant using multiple information integration: Take Gentiana rigescens as an example. Ecol. Indic. 2021, 123, 107376. [Google Scholar] [CrossRef]
- Zhan, P.; Wang, F.; Xia, P.; Zhao, G.; Wei, M.; Wei, F.; Han, R. Assessment of suitable cultivation region for Panax notoginseng under different climatic conditions using MaxEnt model and high-performance liquid chromatography in China. Ind. Crop. Prod. 2022, 176, 114416. [Google Scholar] [CrossRef]
- Adebayo, S.A.; Amoo, S.O.; Mokgehle, S.N.; Aremu, A.O. Ethnomedicinal uses, biological activities, phytochemistry and conservation of African ginger (Siphonochilus aethiopicus): A commercially important and endangered medicinal plant. J. Ethnopharmacol. 2021, 266, 113459. [Google Scholar] [CrossRef] [PubMed]
- Rather, R.A.; Bano, H.; Padder, S.A.; Perveen, K.; Al Masoudi, L.M.; Alam, S.S.; Hong, S.H. Anthropogenic impacts on phytosociological features and soil microbial health of Colchicum luteum L. an endangered medicinal plant of North Western Himalaya. Saudi J. Biol. Sci. 2022, 29, 2856–2866. [Google Scholar] [CrossRef] [PubMed]
- Rawat, N.; Purohit, S.; Painuly, V.; Negi, G.S.; Bisht, M.P.S. Habitat distribution modeling of endangered medicinal plant Picrorhiza kurroa (Royle ex Benth) under climate change scenarios in Uttarakhand Himalaya, India. Ecol. Inform. 2022, 68, 101550. [Google Scholar] [CrossRef]
- Wang, X.; Liang, S.; Ma, D.; Xu, C.; Liu, H.; Han, Z.; Wei, W.; Guo, Q. Distribution survey, phytochemical and transcriptome analysis to identify candidate genes involved in biosynthesis of functional components in Zanthoxylum nitidum. Ind. Crop. Prod. 2020, 150, 112345. [Google Scholar] [CrossRef]
- Li, Y.Q.; Kong, D.X.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Pant, P.; Pandey, S.; Dall’Acqua, S. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chem. Biodivers. 2021, 18, e2100345. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Fan, G.; He, Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci. Total Environ. 2020, 698, 134141. [Google Scholar] [CrossRef]
- Guo, Y.L.; Zhao, Z.F.; Li, X. Moderate warming will expand the suitable habitat of Ophiocordyceps sinensis and expand the area of O. sinensis with high adenosine content. Sci. Total Environ. 2021, 787, 147605. [Google Scholar] [CrossRef]
- Guo, L.; Wang, S.; Zhang, J.; Yang, G.; Zhao, M.; Ma, W.; Zhang, X.; Li, X.; Han, B.; Chen, N.; et al. Effects of ecological factors on secondary metabolites and inorganic elements of Scutellaria baicalensis and analysis of geoherblism. Sci. China Life Sci. 2013, 56, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Applequist, W.L.; Brinckmann, J.A.; Cunningham, A.B.; Hart, R.E.; Heinrich, M.; Katerere, D.R.; Van Andel, T. Scientists’ warning on climate change and medicinal plants. Planta Med. 2020, 86, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Editorial Committee of Flora of China of Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 2007. [Google Scholar]
- Wang, R.; Deng, X.; Gao, Q.; Wu, X.; Han, L.; Gao, X.; Zhao, S.; Chen, W.; Zhou, R.; Li, Z.; et al. Sophora alopecuroides L.: An ethnopharmacological, phytochemical, and pharmacological review. J. Ethnopharmacol. 2020, 248, 112172. [Google Scholar] [CrossRef]
- China Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (I); China Medical Science and Technology Press: Beijing, China, 2020.
- Li, J.C.; Dai, W.F.; Zhou, X.Q.; Rao, K.R.; Zhang, Z.J.; Liu, D.; Chen, X.Q.; Li, R.T.; Li, H.M. Matrine-Type alkaloids from the seeds of Sophora alopecuroides and their potential anti-inflammatory activities. Chem. Biodivers. 2021, 18, e2001066. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Li, Z.Y.; Feng, Z.M.; Jiang, J.S.; Yang, Y.N.; Zhang, P.C. Alopecuroidines A-C, three matrine-derived alkaloids from the seeds of Sophora alopecuroides. Chin. Chem. Lett. 2021, 32, 4058–4062. [Google Scholar] [CrossRef]
- Ma, T.L.; Li, W.J.; Hong, Y.S.; Zhou, Y.M.; Tian, L.; Zhang, X.G.; Liu, F.L.; Liu, P. TMT based proteomic profiling of Sophora alopecuroides leaves reveal flavonoid biosynthesis processes in response to salt stress. J. Proteomics. 2022, 253, 104457. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Lin, Q.; Tan, J.L.; Zhao, H.Y.; Feng, X.; Chen, N.H.; Wu, Z.N.; Fan, C.L.; Li, Y.L.; Ding, W.L.; et al. Water-soluble matrine-type alkaloids with potential anti-neuroinflammatory activities from the seeds of Sophora alopecuroides. Bioorg. Chem. 2021, 116, 105337. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Zou, J.W.; Wang, J.H.; Tian, H.; Xie, H.Y.; Zhu, T.X.; Zhu, H.H.; Deng, L.M.; Fan, C.L.; Wang, H.; et al. Undescribed matrine-type alkaloids from Sophora alopecuroides with anti-inflammatory activity. Phytochemistry 2024, 218, 113954. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Wu, Z.N.; Zhang, J.H.; Lin, Q.; Chen, N.H.; Chen, S.; Tang, Q.; Zhan, Z.C.; Fan, C.L.; Li, Y.L.; et al. Sophaloseedlines A-G: Diverse matrine-based alkaloids from Sophora alopecuroides with potential anti-Hepatitis B virus activities. Chin. J. Chem. 2021, 39, 2555–2562. [Google Scholar] [CrossRef]
- Shoukat, R.F.; Shakeel, M.; Rizvi, S.A.H.; Zafar, J.; Zhang, Y.; Freed, S.; Xu, X.; Jin, F. Larvicidal, ovicidal, synergistic, and repellent activities of Sophora alopecuroides and its dominant constituents against Aedes albopictus. Insects 2020, 11, 246. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Gao, Q.; Mao, L.; Liu, W.; Sun, L.; Zhang, P.; Liu, F.; Jiang, X.; Xu, J. Molecular mechanism of saline-alkali stress tolerance in the green manure crop Sophora alopecuroides. Environ. Exp. Bot. 2023, 210, 105321. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, D.; Yang, Y.; Liu, H.; Yang, H.; Zhao, Y. Ecological stoichiometric characteristics and influencing factors of carbon, nitrogen, and phosphorus in the leaves of Sophora alopecuroides L. in the Yili River Valley, Xinjiang. PeerJ 2021, 14, e11701. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, M.; Pei, Y.; Yang, Q.; Zheng, L.; Wang, G.; Sun, Y.; Yang, W.; Liu, L. The total alkaloids of Sophora alopecuroides L. improve depression-like behavior in mice via BDNF-mediated AKT/mTOR signaling pathway. J. Ethnopharmacol. 2023, 316, 116723. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhou, L.G.; Wang, J.G.; Li, X.L.; Tang, J.; Xie, M. Inhibitory effects of Sophora alopecuroides extract to pathogens on cucumber and tomato. Acta. Bot. Boreal.-Occid. Sin. 2006, 26, 558–563. [Google Scholar]
- Rizvi, S.A.H.; Ling, S.Q.; Tian, F.J.; Liu, J.L.; Zeng, X.N. Interference mechanism of Sophora alopecuroides L. alkaloids extract on host finding and selection of the Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Environ. Sci. Pollut. Res. Int. 2019, 26, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.Q.; Yang, S.Q.; Xia, Z.F.; Zeng, H. Application of Sophora alopecuroides organic fertilizer changes the rhizosphere microbial community structure of melon plants and increases the fruit sugar content. J. Sci. Food Agric. 2023, 103, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.N. Phylogeography of Sophora alopecuroides (Fabaceae) in Inner Mongolia Plateau And Its Adjacent Areas; Qinghai Normal University: Qinghai, China, 2023. [Google Scholar]
- Yao, Z.Y.; Han, Q.F.; Lin, B. Prediction of the distribution area of major noxious weeds in Xinjiang based on maximum entropy model. J. Ecol. 2023, 43, 5096–5109. [Google Scholar] [CrossRef]
- Huang, X.; Chu, G.; Wang, J.; Luo, H.; Yang, Z.; Sun, L.; Rong, W.; Wang, M. Integrated metabolomic and transcriptomic analysis of specialized metabolites and isoflavonoid biosynthesis in Sophora alopecuroides L. under different degrees of drought stress. Ind. Crop. Prod. 2023, 197, 116595. [Google Scholar] [CrossRef]
- Liu, D.; Wang, X.; Yang, Y.; Duan, Q.R.; Li, Y.B.; Liu, J.; Liu, P. Influence of PEG stress on cotyledons physiology and oxymatrine content in germinating seeds of Sophora alopecuroides. Agric. Res. Arid Areas 2016, 34, 165–168. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. S. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Bellard, C.; Jeschke, J.M.; Leroy, B.; Mace, G.M. Insights from modeling studies on how climate change affects invasive alien species geography. Ecol. Evol. 2018, 8, 5688–5700. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Li, X.L.; Zheng, J.H. Feature tuning improves MAXENT predictions of the potential distribution of Pedicularis longiflora Rudolph and its variant. PeerJ 2022, 10, e13337. [Google Scholar] [CrossRef] [PubMed]
- Ancillotto, L.; Mori, E.; Bosso, L.; Agnelli, P.; Russo, D. The Balkan long-eared bat (Plecotus kolombatovici) occurs in Italy-first confirmed record and potential distribution. Mamm. Biol. 2019, 96, 61–67. [Google Scholar] [CrossRef]
- Ab Lah, N.Z.; Yusop, Z.; Hashim, M.; Mohd Salim, J.; Numata, S. Predicting the habitat suitability of Melaleuca cajuputi based on the MaxEnt species distribution model. Forests 2021, 12, 1449. [Google Scholar] [CrossRef]
- Garcia, N.; Alírio, J.; Silva, D.; Campos, J.C.; Duarte, L.; Arenas-Castro, S.; Pôças, I.; Sillero, N.; Teodoro, A.C. MontObEO, Montesinho biodiversity observatory: An Earth observation tool for biodiversity conservation. Proc. SPIE 2023, 12734. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Zhou, C.; Meng, J.; Sun, J.; Zhou, T.; Tao, J. Impact of climate factors on future distributions of Paeonia ostii across China estimated by MaxEnt. Ecol. Inform. 2019, 50, 62–67. [Google Scholar] [CrossRef]
- Ji, W.; Gao, G.; Wei, J.F. Potential global distribution of Daktulosphaira vitifoliae under climate change based on MaxEnt. Insects 2021, 12, 347. [Google Scholar] [CrossRef]
- Zhao, G.; Cui, X.; Sun, J.; Li, T.; Wang, Q.I.; Ye, X.; Fan, B. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol. Inf. 2021, 132, 108256. [Google Scholar] [CrossRef]
- Lemke, D.; Hulme, P.E.; Brown, J.A.; Tadesse, W. Distribution modelling of Japanese honeysuckle (Lonicera japonica) invasion in the Cumberland Plateau and Mountain Region, USA. For. Ecol. Manag. 2011, 262, 139–149. [Google Scholar] [CrossRef]
- Zhu, G.P.; Liu, Q.; Gao, Y.B. Improving ecological niche model transferability to predict the potential distribution of invasive exotic species. Biodivers. Sci. 2014, 22, 223–230. [Google Scholar]
- Sayit, H.; Nurbay, A.; Xu, Z.L.; Arman, J.; Shao, H.; Vinira, Y. Simulation of potential distribution patterns of the invasive plant species Xanthium spinosum L. (Bathurst burr) in Xinjiang under climate change. Acta Ecol. Sin. 2019, 39, 1551–1559. [Google Scholar] [CrossRef]
- Yu, H.Y.; Sun, C.K.; Huo, X.; Hu, J.L.; Qi, X.; Xu, K. Predicting the transmission risk of H7N9 using ecological niche modeling. Mod. Prev. Med. 2019, 46, 206–210. [Google Scholar]
- Coro, G. A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate. Ecol. Model. 2020, 431, 109187. [Google Scholar] [CrossRef] [PubMed]
- Raffini, F.; Bertorelle, G.; Biello, R.; D’Urso, G.; Russo, D.; Bosso, L. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 2020, 12, 4508. [Google Scholar] [CrossRef]
- Chandora, R.; Paul, S.; Kanishka, R.C.; Kumar, P.; Singh, B.; Kumar, P.; Sharma, A.; Kumar, A.; Singh, D.; Negi, N.; et al. Ecological survey, population assessment and habitat distribution modelling for conserving Fritillaria roylei—A critically endangered Himalayan medicinal herb. S. Afr. J. Bot. 2023, 160, 75–87. [Google Scholar] [CrossRef]
- Yang, Y.; He, J.; Liu, Y.; Zeng, J.; Zeng, L.; He, R.; Guiang, M.M.; Li, Y.; Wu, H. Assessment of Chinese suitable habitats of Zanthoxylum nitidum in different climatic conditions by Maxent model, HPLC, and chemometric methods. Ind. Crop. Prod. 2023, 196, 116515. [Google Scholar] [CrossRef]
- Zhao, L.F.; Deng, Z.S.; Yang, W.Q.; Cao, Y.; Wang, E.T.; Wei, G.H. Diverse rhizobia associated with Sophora alopecuroides grown in different regions of loess plateau in China. Syst. Appl. Microbiol. 2010, 33, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Kumar, S.; Stohlgren, T.J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. Environ. 2009, 1, 94–98. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Wang, R.L.; Li, Q.; He, S.S.; Liu, Y. Potential distribution of Actinidia chinensis in China and its predicted responses to climate change. Chin. J. Eco-Agric. 2018, 26, 27–37. [Google Scholar] [CrossRef]
- Zhu, G.P.; Fan, J.Y.; Wang, M.L.; Chen, M.; Qiao, H.J. The importance of the shape of receiver operating characteristic (ROC) curve in ecological niche model evaluation-case study of Hlyphantria cunea. J. Biosaf. 2017, 26, 184–190. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Ovaskainen, O.; De Knegt, H.J.; Delgado, M.D.M. Quantitative Ecology and Evolutionary Biology: Integrating Models with Data; Oxford University Press: Oxford, UK, 2016. [Google Scholar] [CrossRef]
- Buchgraber, M.; Ulberth, F.; Anklam, E. Cluster analysis for the systematic grouping of genuine cocoa butter and cocoa butter equivalent samples based on triglyceride patterns. J. Agric. Food Chem. 2004, 52, 3855–3860. [Google Scholar] [CrossRef] [PubMed]
- Gebrewahid, Y.; Abrehe, S.; Meresa, E.; Eyasu, G.; Abay, K.; Gebreab, G.; Kidanemariam, K.; Adissu, G.; Abreha, G.; Darcha, G. Current and future predicting potential areas of Oxytenanthera abyssinica (A.Richard) using MaxEnt model under climate change in Northern Ethiopia. Ecol. Process. 2020, 9, 1–15. [Google Scholar] [CrossRef]
- Yang, C.; Yang, F.; Ma, H.W.; Liu, P. Distribution and morphological variation of germplasm resource of Sophora alopecuroides. China J. Chin. Mater. Med. 2010, 7, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, T.; Li, D.; Zhang, X.; Yu, W.; Cai, J.; Wang, G.; Guo, Q.; Yang, X.; Cao, F. The genetic diversity and population structure of Sophora alopecuroides (Faboideae) as determined by microsatellite markers developed from transcriptome. PLoS ONE 2019, 14, e0226100. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.D.; Hu, W.; Li, D.Q.; Cheng, D.M.; Zhong, A.W. Prediction of suitable distribution areas of the endangered plant wild Nelumbo nucifera Gaertn. in China. Plant Sci. J. 2019, 37, 731–740. [Google Scholar] [CrossRef]
- Zeng, J.; Li, C.; Liu, J.; Li, Y.; Hu, Z.; He, M.; Zhang, H.; Yan, H. Ecological assessment of current and future Pogostemon cablin Benth. potential planting regions in China based on MaxEnt and ArcGIS models. J. Appl. Res. Med. Aroma. 2021, 24, 2214–7861. [Google Scholar] [CrossRef]
- Liu, L.; Guan, L.; Zhao, H.; Huang, Y.; Mou, Q.; Liu, K.; Chen, T.; Wang, X.; Zhang, Y.; Wei, B.; et al. Modeling habitat suitability of Houttuynia cordata Thunb (Ceercao) using MaxEnt under climate change in China. Ecol. Inform. 2021, 63, 101324. [Google Scholar] [CrossRef]
- Shi, X.; Wang, J.; Zhang, L.; Chen, S.; Zhao, A.; Ning, X.; Fan, G.; Wu, N.; Zhang, L.; Wang, Z. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecol. Indic. 2023, 148, 110093. [Google Scholar] [CrossRef]
- Damian, N.; Mitrică, B.; Mocanu, I.; Grigorescu, I.; Dumitraşcu, M. An index-based approach to assess the vulnerability of socio-ecological systems to aridity and drought in the Danube Delta, Romania. Environ. Dev. 2023, 45, 100799. [Google Scholar] [CrossRef]
- Yang, J.T.; Huang, Y.; Jiang, X.; Chen, H.; Liu, M.; Wang, R.L. Potential geographical distribution of the edangred plant Isoetes under human activities using MaxEnt and GARP. Glob. Ecol. Conserv. 2022, 38, e02186. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Duo, L.H.; Zhao, D.X.; Zeng, Y.; Guo, X.F. The response of ecosystem vulnerability to climate change and human activities in the Poyang lake city group, China. Environ. Res. 2023, 233, 116473. [Google Scholar] [CrossRef] [PubMed]
- Sayit, H.; Nurbay, A.; Arman, J.; Shao, H.; Vinra, Y. Impact of human activities on potential distribution of Solanum rostratum Dunal in Xinjiang. Acta Ecol. Sin. 2019, 39, 629–636. [Google Scholar] [CrossRef]
- Ma, B.X.; Jing, J.L.; Liu, B.; Wang, Y.F.; He, H.C. Assessing the contribution of human activities and climate change to the dynamics of NPP in ecologically fragile regions. Glob. Ecol. Conserv. 2023, 42, e02393. [Google Scholar] [CrossRef]
- Xu, W.B.; Svenning, J.C.; Chen, G.K.; Zhang, M.G.; Huang, J.H.; Chen, B.; Ordonez, A.; Ma, K.P. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. Proc. Natl. Acad. Sci. USA 2019, 116, 26674–26681. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Gao, Q.-B.; Guo, W.-J.; Zhang, Y.; Wang, Z.-H.; Ma, X.-L.; Zhang, F.-Q.; Chen, S.-L. Impacts of human activities and environmental factors on potential distribution of Swertia przewalskii Pissjauk., an endemic plant in Qing-Tibetan Plateau, using MaxEnt. Plant Sci. J. 2021, 39, 22–31. [Google Scholar] [CrossRef]
- Mora-Vásquez, S.; Wells-Abascal, G.G.; Espinosa-Leal, C.; Cardineau, G.A.; García-Lara, S. Application of metabolic engineering to enhance the content of alkaloids in medicinal plants. Metab. Eng. Commun. 2022, 14, e00194. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Yadav, D.K. Chromatography and hyphenated techniques in quality-based standardization of medicinal plants: Current scenario and future perspectives. S. Afr. J. Bot. 2023, 157, 467–483. [Google Scholar] [CrossRef]
- Murali, K.P.; Rao, K.; Sandhya, S.; David, B. A review on phytochemical, ethnomedical and pharmacological studies on genus Sophora, Fabaceae. Rev. Bras. Defarmacognosia 2012, 22, 1145–1154. [Google Scholar] [CrossRef]
- Li, S.Y.; Miao, L.J.; Jiang, Z.H.; Wang, G.J.; Gnyawali, K.R.; Zhang, J.; Zhang, H.; Fang, K.; He, Y.; Li, C. Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099. Adv. Clim. Chang. Res. 2020, 11, 210–217. [Google Scholar] [CrossRef]
- Wang, H.; Song, W.; Tao, W.; Zhang, J.; Zhang, X.; Zhao, J.; Yong, J.; Gao, X.; Guo, L. Identification wild and cultivated licorice by multidimensional analysis. Food Chem. 2021, 339, 128111. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Jin, S.; Li, H.; Ai, M.; Han, F.; Dai, Y.; Tao, W.; Zhu, Y.; Zhao, Y.; Qin, M. Chemical constituents and antioxidative, anti-inflammatory and anti-proliferative activities of wild and cultivated Corydalis saxicola. Ind. Crop. Prod. 2021, 169, 113647. [Google Scholar] [CrossRef]
- Li, J.S.; Li, S.; Liu, C.; Guo, D.G.; Zhang, Q.S. Response of Chinese pine regeneration density to forest gap and slope aspect in northern China: A meta-analysis. Sci. Total Environ. 2023, 873, 162428. [Google Scholar] [CrossRef] [PubMed]
Sample No | Location | Longitude | Latitude | Altitude (m) | Nature |
---|---|---|---|---|---|
K1 | Shihezi, Xinjiang, China | 86.27° E | 44.77° N | 366 | Wild |
K2 | Yili, Xinjiang, China | 81.69° E | 43.74° N | 712 | Wild |
K3 | Bole, Xinjiang, China | 82.34° E | 44.81° N | 305 | Wild |
K4 | Qitai, Xinjiang, China | 90.01° E | 43.61° N | 1914 | Wild |
K5 | Tacheng, Xinjiang, China | 82.01° E | 46.19° N | 667 | Wild |
K6 | Aksu, Xinjiang, China | 80.26° E | 41.17° N | 1116 | Wild |
K7 | Hami, Xinjiang, China | 92.86° E | 43.06° N | 816 | Wild |
K8 | Korle, Xinjiang, China | 86.57° E | 42.05° N | 1052 | Wild |
K9 | Aletai, Xinjiang, China | 87.82° E | 47.35° N | 513 | Wild |
K10 | Turpan, Xinjiang, China | 89.07° E | 42.82° N | 14 | Wild |
K11 | Hotan, Xinjiang, China | 81.69° E | 36.81° N | 1451 | Wild |
K12 | Kashger, Xinjiang, China | 76.05° E | 39.40° N | 1249 | Wild |
K13 | Bayanzhuoer, Inner Mongolia, China | 107.36° E | 40.75° N | 1060 | Wild |
K14 | Ejin Banner, Inner Mongolia, China | 101.04° E | 41.96° N | 931 | Wild |
K15 | Ordos, Inner Mongolia, China | 108.92° E | 40.49° N | 1102 | Wild |
K16 | Alashan League, Inner Mongolia, China | 105.72°E | 38.86° N | 1608 | Wild |
K17 | Jiuquan, Gansu, China | 94.12° E | 39.89° N | 1312 | Wild |
K18 | Zhangye, Gansu, China | 101.11° E | 38.79° N | 1826 | Wild |
K19 | Wuwei, Gansu, China | 103.15° E | 38.61° N | 1346 | Wild |
K20 | Shizuishan, Ningxia, China | 106.54° E | 38.72° N | 1113 | Wild |
K21 | Wuzhong, Ningxia, China | 106.08° E | 37.37° N | 1359 | Wild |
K22 | Guyuan, Ningxia, China | 106.25° E | 36.02° N | 1738 | Wild |
K23 | Yulin, Shaanxi, China | 107.80° E | 37.51° N | 1408 | Wild |
K24-1 | Hotan, Xinjiang, China | 81.47° E | 36.61° N | 1552 | Cultivated |
K24-2 | Hotan, Xinjiang, China | 81.60° E | 37.01° N | 1365 | Cultivated |
K24-3 | Yili, Xinjiang, China | 81.49° E | 43.89° N | 639 | Cultivated |
K24-4 | Qitai, Xinjiang, China | 90.31° E | 43.51° N | 1907 | Cultivated |
K24-5 | Jimsar, Xinjiang, China | 88.65° E | 44.21° N | 1983 | Cultivated |
K25-1 | Minqin, Gansu, China | 103.74° E | 38.9° N | 1275 | Cultivated |
K25-2 | Lanzhou, Gansu, China | 103.25° E | 36.34° N | 1742 | Cultivated |
K25-3 | Wuwei, Gansu, China | 114.63° E | 38.83° N | 1225 | Cultivated |
K26-1 | Ordos, Inner Mongolia, China | 107.92° E | 39.49° N | 1282 | Cultivated |
K26-2 | Ordos, Inner Mongolia, China | 108.92° E | 40.49° N | 1306 | Cultivated |
K26-3 | Alashan League, Inner Mongolia, China | 106.72° E | 38.56° N | 1628 | Cultivated |
K27-1 | Yanchi, Ningxia, China | 107.02° E | 38.11° N | 1390 | Cultivated |
K27-2 | Yanchi, Ningxia, China | 106.98° E | 38.37° N | 1344 | Cultivated |
K27-3 | Taole, Ningxia, China | 106.56° E | 38.82° N | 1133 | Cultivated |
K27-4 | Zhongwei, Ningxia, China | 104.53° E | 37.46° N | 1659 | Cultivated |
Data Type | Variable | Description | Unit |
---|---|---|---|
Climate variables | Bio1 | Annual Mean Temperature | °C |
Bio4 | Temperature Seasonality | °C | |
Bio6 | Min Temperature of Coldest Month | °C | |
Bio11 | Mean Temperature of Coldest Quarter | °C | |
Bio12 | Annual Precipitation | mm | |
Bio15 | Precipitation Seasonality | mm | |
Bio18 | Precipitation of Warmest Quarter | mm | |
Soil variables | SI | Powder Grains | wt.% |
GRAV | Gravel | wt.% | |
pH | Acidity and Basicity | — | |
SOM | Organic Matter Content | % | |
POR | Porosity | % | |
LC | Land Use Type | — | |
Terrain variables | Elevation | Elevation | m |
Aspect | Aspect | ° | |
Slope | Slope | ° | |
Human activities | HF | Human Footprint | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, W.; Huang, X.; Hu, S.; Zhang, X.; Jiang, P.; Niu, P.; Su, J.; Wang, M.; Chu, G. Impacts of Climate Change on the Habitat Suitability and Natural Product Accumulation of the Medicinal Plant Sophora alopecuroides L. Based on the MaxEnt Model. Plants 2024, 13, 1424. https://doi.org/10.3390/plants13111424
Rong W, Huang X, Hu S, Zhang X, Jiang P, Niu P, Su J, Wang M, Chu G. Impacts of Climate Change on the Habitat Suitability and Natural Product Accumulation of the Medicinal Plant Sophora alopecuroides L. Based on the MaxEnt Model. Plants. 2024; 13(11):1424. https://doi.org/10.3390/plants13111424
Chicago/Turabian StyleRong, Wenwen, Xiang Huang, Shanchao Hu, Xingxin Zhang, Ping Jiang, Panxin Niu, Jinjuan Su, Mei Wang, and Guangming Chu. 2024. "Impacts of Climate Change on the Habitat Suitability and Natural Product Accumulation of the Medicinal Plant Sophora alopecuroides L. Based on the MaxEnt Model" Plants 13, no. 11: 1424. https://doi.org/10.3390/plants13111424
APA StyleRong, W., Huang, X., Hu, S., Zhang, X., Jiang, P., Niu, P., Su, J., Wang, M., & Chu, G. (2024). Impacts of Climate Change on the Habitat Suitability and Natural Product Accumulation of the Medicinal Plant Sophora alopecuroides L. Based on the MaxEnt Model. Plants, 13(11), 1424. https://doi.org/10.3390/plants13111424