Improving Tree Seedling Quality Using Humates Combined with Bacteria to Address Decarbonization Challenges through Forest Restoration
Abstract
:1. Introduction
2. Results
2.1. Shoot Elongation and Accumulation of Seedling Biomass
2.2. Chlorophyll Content and Nitrogen Balance Index
2.3. Content of Carbon and Nitrogen
2.4. Morphology of Roots of Pine Seedlings
3. Discussion
4. Materials and Methods
4.1. Extraction of Humic Substances
4.2. Bacterial Strains and Media for Their Cultivation
4.3. Studied Species of Tree and Shrub Plants
4.4. Plant Growing Conditions
4.5. Analysis of Pigment Content
4.6. Determination of C and N
4.7. Preparation and Staining of Root Sections
4.8. Statistics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef] [PubMed]
- Nardi, S.; Ertani, A.; Francioso, O. Soil-root cross-talking: The role of humic substances. J. Plant Nutr. Soil Sci. 2016, 180, 5–13. [Google Scholar] [CrossRef]
- Hriciková, S.; Kožárová, I.; Hudáková, N.; Reitznerová, A.; Nagy, J.; Marcinčák, S. Humic substances as a versatile intermediary. Life 2023, 13, 858. [Google Scholar] [CrossRef] [PubMed]
- Lind, E.; Prade, T.; Sjoman Deak, J.; Levinsson, A.; Sjöman, H. How green is an urban tree? The impact of species selection in reducing the carbon footprint of park trees in Swedish cities. Front. Sustain. Cities 2023, 5, 1182408. [Google Scholar] [CrossRef]
- Park, H.-M.; Jo, H.-K.; Kim, J.-Y. Carbon footprint of landscape tree production in Korea. Sustainability 2021, 13, 5915. [Google Scholar] [CrossRef]
- Waring, B.; Neumann, M.; Prentice, I.C.; Adams, M.; Smith, P.; Siegert, M. Forests and decarbonization—Roles of natural and planted. Front. For. Glob. Change 2020, 3, 58. [Google Scholar] [CrossRef]
- Fargione, J.; Haase, D.L.; Burney, O.T.; Kildisheva, O.A.; Edge, G.; Cook-Patton, S.C.; Chapman, T.; Rempel, A.; Hurteau, M.D.; Davis, K.T.; et al. Challenges to the reforestation pipeline in the United States. Front. For. Glob. Change 2021, 4, 629198. [Google Scholar] [CrossRef]
- Pinto, J.R.; Sloan, J.L.; Ervan, G.; Burney, O.T. Physiological and morphological responses of Pinus ponderosa seedlings to moisture limitations in the nursery and their implications for restoration. Front. Plant Sci. 2023, 14, 1127656. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, A.; Chetverikov, S.; Chetverikova, D.; Tuktarova, I.; Ivanov, R.; Urazgildin, R.; Garankov, I.; Kudoyarova, G. Microbial preparations combined with humic substances improve the quality of tree planting material needed for reforestation to increase carbon sequestration. Sustainability 2023, 15, 7709. [Google Scholar] [CrossRef]
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq Boyce, A. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 2016, 21, 573. [Google Scholar] [CrossRef]
- Abdel Latef, A.A.H.; Omer, A.M.; Badawy, A.A.; Osman, M.S.; Ragaey, M.M. Strategy of salt tolerance and interactive impact of Azotobacter chroococcum and/or Alcaligenes faecalis inoculation on canola (Brassica napus L.) plants grown saline soil. Plants 2021, 10, 110. [Google Scholar] [CrossRef]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Smith, D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef] [PubMed]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Olaetxea, M.; de Hita, D.; Garcia, C.A.; Fuentes, M.; Baigorri, R.; Mora, V.; Garnica, M.; Urrutia, O.; Erro, J.; Zamarreño, A.M.; et al. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root and shoot-growth. Appl. Soil Ecol. 2018, 123, 521–537. [Google Scholar] [CrossRef]
- Nazarov, A.M.; Garankov, I.N.; Tuktarova, I.O.; Salmanova, E.R.; Arkhipova, T.N.; Ivanov, I.I.; Feoktistova, A.V.; Prostyakova, Z.G.; Kudoyarova, G.R. Hormone balance and shoot growth in wheat (Triticum durum Desf.) plants as influenced by sodium humates of the granulated organic fertilizer. Sel’skokhozyaistvennaya Biol. 2020, 55, 945–955. [Google Scholar] [CrossRef]
- Alva, A.K.; Obreza, T.A. By-product iron-humate increases tree growth and fruit production of orange and grapefruit. HortScience 1998, 33, 71–74. [Google Scholar] [CrossRef]
- Cahyo, A.N.; Ardika, R.; Saputra, J.; Wijaya, T. Acceleration on the growth of rubber planting materials by using foliar application of humic acid. J. Agric. Sci. 2014, 36, 112–119. [Google Scholar] [CrossRef]
- Chaiya, L.; Gavinlertvatana, P.; Teaumroong, N.; Pathom-aree, W.; Chaiyasen, A.; Sungthong, R.; Lumyong, S. Enhancing Teak (Tectona grandis) seedling growth by rhizosphere microbes: A sustainable way to optimize agroforestry. Microorganisms 2021, 9, 1990. [Google Scholar] [CrossRef]
- Shinde, S.; Cumming, J.R.; Collart, F.R.; Noirot, P.H.; Larsen, P.E. Pseudomonas fluorescens transportome is linked to strain-specific plant growth promotion in aspen seedlings under nutrient stress. Front. Plant Sci. 2017, 8, 348. [Google Scholar] [CrossRef]
- Ivetić, V.; Devetaković, J.; Nonić, M.; Stanković, D.; Šijačić-Nikolić, M. Genetic diversity and forest reproductive material—From seed source selection to planting. iForest 2016, 9, 801–812. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Ren, H.; Islam, M.S.; Wang, H.; Guo, H.; Wang, Z.; Qi, X.; Zhang, S.; Guo, J.; Wang, Q.; Li, B. Effect of humic acid on soil physical and chemical properties, microbial community structure, and metabolites of decline diseased bayberry. Int. J. Mol. Sci. 2022, 23, 14707. [Google Scholar] [CrossRef]
- Kudoyarova, G.; Arkhipova, T.; Veselov, D. Water relations in plants treated with growth promoting rhizosphere bacteria. Plant Soil 2023, 494, 51–72. [Google Scholar] [CrossRef]
- Lotfi, N.; Soleimani, A.; Çakmakçı, R.; Mohammadi, P. Characterization of plant growth-promoting rhizobacteria (PGPR) in Persian walnut associated with drought stress tolerance. Sci. Rep. 2022, 12, 12725. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Yin, M.; Zhao, L.; Yang, L. Research on the measurement of carbon storage in plantation tree trunks based on the carbon storage dynamic analysis method. Int. J. For. Res. 2012, 2012, 626149. [Google Scholar] [CrossRef]
- Woodward, A.W.; Bartel, B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707–735. [Google Scholar] [CrossRef] [PubMed]
- Feoktistova, A.; Timergalin, M.; Chetverikov, S.; Nazarov, A.; Kudoyarova, G. Effects on Pseudomonas plecoglossicida 2,4-D and humic substances on the growth, pigment indices and concentration of hormones in wheat seedlings grown under water deficit. Microorganisms 2023, 11, 549. [Google Scholar] [CrossRef] [PubMed]
- Lumactud, R.A.; Gorim, L.Y.; Thilakarathna, M.S. Impacts of humic-based products on the microbial community structure and functions toward sustainable agriculture. Front. Sustain. Food Syst. 2022, 6, 977121. [Google Scholar] [CrossRef]
- Chetverikov, S.P.; Chetverikova, D.V.; Bakaeva, M.D.; Kenjieva, A.A.; Starikov, S.N.; Sultangazin, Z.R. A promising herbicide-resistant bacterial strain of pseudomonas protegens for stimulation of the growth of agricultural cereal grains. Appl. Biochem. Microbiol. 2021, 57, 110–116. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, X.; Ma, Y.; Zhang, R.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. A comparative assessment of measures of leaf nitrogen in rice using two leaf-clip meters. Sensors 2019, 20, 175. [Google Scholar] [CrossRef]
- Galimullin, R.R.; Sigaeva, N.N.; Glukhov, E.A.; Spirikhin, L.V.; Kolesov, S.V. Radical-initiated (co)polymerization of methacrylates in the presence of organometallic iron complexes. Russ. J. Appl. Chem. 2019, 92, 1223–1231. [Google Scholar] [CrossRef]
- Zaqout, S.; Becker, L.L.; Kaindl, A.M. Immunofluorescence staining of paraffin sections step by step. Front. Neuroanat. 2020, 14, 582218. [Google Scholar] [CrossRef]
- Junghans, U.; Langenfeld-Heyser, R.; Polle, A.; Teichmann, T. Effect of auxin transport inhibitors and ethylene on the wood anatomy of poplar. Pl. Biol. 2004, 6, 22–29. [Google Scholar] [CrossRef]
- Alharbi, K.; Rashwan, E.; Hafez, E.; Omara, A.E.-D.; Mohamed, H.H.; Alshaal, T. Potassium humate and plant growth-promoting microbes jointly mitigate water deficit stress in soybean cultivated in salt-affected soil. Plants 2022, 11, 3016. [Google Scholar] [CrossRef]
Plant Species | Treatments | Shoot Elongation, cm |
---|---|---|
Poplar (Populus italica pyralis × P. nigra) | Control | 13 ± 2 |
Pseudomonas sp. 4CH | 12 ± 1 | |
Pseudomonas sp. 4CH+ humates | 12 ± 1 | |
Humates | 11 ± 3 | |
Pseudomonas protegens DA1.2+humates | 12 ± 1 | |
Pseudomonas protegens DA1.2 | 11 ± 2 | |
Rowan (Sorbus aucuparia) | Control | 27 ± 5 |
Pseudomonas sp. 4CH | 26 ± 4 | |
Pseudomonas sp. 4CH+ humates | 25 ± 4 | |
Humates | 23 ± 4 | |
Pseudomonas protegens DA1.2+humates | 24 ± 3 | |
Pseudomonas protegens DA1.2 | 23 ± 2 | |
Red oak (Quercus rubra) | Control | 9.8 ± 1.7 |
Pseudomonas sp. 4CH | 9.2 ± 1.4 | |
Pseudomonas sp. 4CH+ humates | 7.5 ± 2 | |
Humates | 7.4 ± 2.2 | |
Pseudomonas protegens DA1.2+humates | 8.5 ± 1.7 | |
Pseudomonas protegens DA1.2 | 7.9 ± 1.2 |
Plant Species | Treatments | Chlorophyll Content, µg cm−2, Dualex | Nitrogen Balance Index, Dualex Units |
---|---|---|---|
Poplar (Populus italica pyralis × P. nigra) | Control | 21.5 ± 0.9 | 10.9 ± 0.6 |
Pseudomonas sp. 4CH | 21.0 ± 1.1 | 10.4 ± 0.6 | |
Pseudomonas sp. 4CH+ humates | 24.7 ± 2.2 | 12.9 ± 1.1 | |
Humates | 21.0 ± 1.4 | 10.3 ± 0.7 | |
Pseudomonas protegens DA1.2+humates | 23.2 ± 1.2 | 11.5 ± 0.6 | |
Pseudomonas protegens DA1.2 | 19.7 ± 1.8 | 10.3 ± 1.0 | |
Rowan (Sorbus aucuparia) | Control | 13.4 ± 0.6 | 6.5 ± 0.2 |
Pseudomonas sp. 4CH | 13.8 ± 0.8 | 7.4 ± 0.6 | |
Pseudomonas sp. 4CH+ humates | 14.8 ± 0.5 | 8.8 ± 1.2 | |
Humates | 13.5 ± 0.7 | 8.0 ± 0.8 | |
Pseudomonas protegens DA1.2+humates | 15.1 ± 0.9 | 7.7 ± 0.8 | |
Pseudomonas protegens DA1.2 | 15.0 ± 0.9 | 7.0 ± 0.6 | |
Red oak (Quercus rubra) | Control | 14.6 ± 0.9 | 10.5 ± 0.7 |
Pseudomonas sp. 4CH | 16.3 ± 0.8 | 13.1 ± 1.4 | |
Pseudomonas sp. 4CH+ humates | 14.8 ± 0.7 | 11.2 ± 0.8 | |
Humates | 15.0 ± 1.0 | 13.0 ± 1.2 | |
Pseudomonas protegens DA1.2+humates | 15.1 ± 1.1 | 12.9 ± 1.4 | |
Pseudomonas protegens DA1.2 | 15.1 ± 0.7 | 11.4 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazarov, A.; Chetverikov, S.; Timergalin, M.; Ivanov, R.; Ryazanova, N.; Shigapov, Z.; Tuktarova, I.; Urazgildin, R.; Kudoyarova, G. Improving Tree Seedling Quality Using Humates Combined with Bacteria to Address Decarbonization Challenges through Forest Restoration. Plants 2024, 13, 1452. https://doi.org/10.3390/plants13111452
Nazarov A, Chetverikov S, Timergalin M, Ivanov R, Ryazanova N, Shigapov Z, Tuktarova I, Urazgildin R, Kudoyarova G. Improving Tree Seedling Quality Using Humates Combined with Bacteria to Address Decarbonization Challenges through Forest Restoration. Plants. 2024; 13(11):1452. https://doi.org/10.3390/plants13111452
Chicago/Turabian StyleNazarov, Aleksey, Sergey Chetverikov, Maxim Timergalin, Ruslan Ivanov, Nadezhda Ryazanova, Zinnur Shigapov, Iren Tuktarova, Ruslan Urazgildin, and Guzel Kudoyarova. 2024. "Improving Tree Seedling Quality Using Humates Combined with Bacteria to Address Decarbonization Challenges through Forest Restoration" Plants 13, no. 11: 1452. https://doi.org/10.3390/plants13111452
APA StyleNazarov, A., Chetverikov, S., Timergalin, M., Ivanov, R., Ryazanova, N., Shigapov, Z., Tuktarova, I., Urazgildin, R., & Kudoyarova, G. (2024). Improving Tree Seedling Quality Using Humates Combined with Bacteria to Address Decarbonization Challenges through Forest Restoration. Plants, 13(11), 1452. https://doi.org/10.3390/plants13111452