A Knockout of the Photoreceptor PtAureo1a Results in Altered Diel Expression of Diatom Clock Components
Abstract
:1. Introduction
2. Results
2.1. Growth Characteristics of WT, KO8 and Co.48
2.2. Diel Regulation of Diatom Genes by PtAureo1a
2.3. Correlation Analysis of Diel Expression in P. tricornutum
3. Discussion
4. Materials and Methods
4.1. Experimental Set-Up and Growth Conditions
4.2. Determination of Growth Rates
- ln Nt = Natural Logarithm of cell no. at day 5;
- ln N0 = Natural logarithm of cell no. at day 3.
4.3. Chlorophyll Fluorescence Measurements
4.4. RNA Isolation and cDNA Synthesis
4.5. Quantitative Real-Time PCR (qPCR)
4.6. Analysis of Circadian Rhythm and Its Parameters
4.7. Correlation Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falkowski, P.G.; Katz, M.E.; Knoll, A.H.; Quigg, A.; Raven, J.A.; Schofield, O.; Taylor, F.J. The evolution of modern eukaryotic phytoplankton. Science 2004, 305, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Karlusich JJ, P.; Ibarbalz, F.M.; Bowler, C. Phytoplankton in the Tara Ocean. Annu. Rev. Mar. Sci. 2020, 12, 233–265. [Google Scholar] [CrossRef]
- Archibald, J.M. Endosymbiosis and Eukaryotic Cell Evolution. Curr. Biol. 2015, 25, R911–R921. [Google Scholar] [CrossRef] [PubMed]
- Burki, F.; Roger, A.J.; Brown, M.W.; Simpson, A.G.B. The New Tree of Eukaryotes. Trends Ecol. Evol. 2020, 35, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, A.; Beszteri, B.; Maier, U.G.; Bowler, C.; Valentin, K.; Bhattacharya, D. Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms. Science 2009, 324, 1724–1726. [Google Scholar] [CrossRef] [PubMed]
- Bowler, C.; Allen, A.E.; Badger, J.H.; Grimwood, J.; Jabbari, K.; Kuo, A.; Maheswari, U.; Martens, C.; Maumus, F.; Otillar, R.P.; et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Flori, S.; Jouneau, P.-H.; Bailleul, B.; Gallet, B.; Estrozi, L.F.; Moriscot, C.; Bastien, O.; Eicke, S.; Schober, A.; Bártulos, C.R.; et al. Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat. Commun. 2017, 8, 15885. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.E.; Dupont, C.L.; Obornik, M.; Horak, A.; Nunes-Nesi, A.; McCrow, J.P.; Zheng, H.; Johnson, D.A.; Hu, H.; Fernie, A.R.; et al. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 2011, 473, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Depauw, F.A.; Rogato, A.; Riberad, A.M.; Falciatore, A. Exploring the molecular basis of responses to light in marine diatoms. J. Exp. Bot. 2012, 63, 1575–1591. [Google Scholar] [CrossRef]
- Bailleul, B.; Berne, N.; Murik, O.; Petroutsos, D.; Prihoda, J.; Tanaka, A.; Villanova, V.; Bligny, R.; Flori, S.; Falconet, D.; et al. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 2015, 524, 366–369. [Google Scholar] [CrossRef]
- Duanmu, D.; Rockwell, N.C.; Clark Lagarias, J. Algal light sensing and photoacclimation in aquatic environments. Plant Cell Environ. 2017, 40, 2558–2570. [Google Scholar] [CrossRef]
- Oakenfull, R.J.; Davis, S.J. Shining a light on the Arabidopsis circadian clock. Plant Cell Environ. 2017, 40, 2571–2585. [Google Scholar] [CrossRef] [PubMed]
- Kianianmomeni, A.; Hallmann, A. Algal photoreceptors: In vivo functions and potential applications. Planta 2014, 239, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Litchman, E. Growth rates of phytoplankton under fluctuating light. Freshw. Biol. 2000, 44, 223–235. [Google Scholar] [CrossRef]
- Wagner, H.; Jakob, T.; Wilhelm, C. Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol. 2006, 169, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Lepetit, B.; Gélin, G.; Lepetit, M.; Sturm, S.; Vugrinec, S.; Rogato, A.; Kroth, P.G.; Falciatore, A.; Lavaud, J. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. New Phytol. 2017, 214, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Orefice, I.; Chandrasekaran, R.; Smerilli, A.; Corato, F.; Caruso, T.; Casillo, A.; Corsaro, M.M.; Piaz, F.D.; Ruban, A.V.; Brunet, C. Light-induced changes in the photosynthetic physiology and biochemistry in the diatom Skeletonema marinoi. Algal Res. 2016, 17, 1–13. [Google Scholar] [CrossRef]
- Huisman, J.; Jonker, R.R.; Zonneveld, C.; Weissing, F.J. Competition for light between phtoplankton species: Experimental tests of mechanistic theory. Ecology 1999, 80, 211–222. [Google Scholar] [CrossRef]
- Litchman, E.; Klausmeier, C.A. Competition of phytoplankton under fluctuating light. Am. Nat. 2001, 157, 170–187. [Google Scholar] [CrossRef]
- Litchman, E.; Klausmeier, C.A.; Bossard, P. Phytoplankton nutrient competition under dynamic light regimes. Limnol. Oceanogr. 2004, 49, 1457–1462. [Google Scholar] [CrossRef]
- Villareal, T.A.; Pilskaln, C.; Brzezinski, M.; Lipschultz, F.; Dennett, M.; Gardner, G.B. Upward transport of oceanic nitrate by migrating diatom mats. Nature 1999, 397, 423–425. [Google Scholar] [CrossRef]
- McLachlan, D.H.; Brownlee, C.; Taylor, A.R.; Geider, R.J.; Underwood, G.J.C. Light-induced motile responses of the estuarine benthic diatoms Navicula perminuta and Cylindrotheca closterium (Bacillariophyceae). J. Phycol. 2009, 45, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Shihira-Ishikawa, I.; Nakamura, T.; Higashi, S.; Watanabe, M. Distinct responses of chloroplasts to blue and green laser microbeam irradiations in the centric diatom Pleurosira laevis. Photochem. Photobiol. 2007, 83, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Fankhauser, C.; Staiger, D. Photoreceptors in Arabidopsis thaliana: Light perception, signal transduction and entrainment of the endogenous clock. Planta 2002, 216, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Schmalen, I.; Reischl, S.; Wallach, T.; Klemz, R.; Grudziecki, A.; Prabu, J.R.; Benda, C.; Kramer, A.; Wolf, E. Interaction of Circadian Clock Proteins CRY1 and PER2 Is Modulated by Zinc Binding and Disulfide Bond Formation. Cell 2014, 157, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Kottke, T.; Oldemeyer, S.; Wenzel, S.; Zou, Y.; Mittag, M. Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions. J. Plant Physiol. 2017, 217, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Noordally, Z.B.; Millar, A.J. Clocks in Algae. Biochemistry 2015, 54, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chory, J. Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol. 2011, 21, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Jaubert, M.; Duchêne, C.; Kroth, P.G.; Rogato, A.; Bouly, J.-P.; Falciatore, A. Sensing and Signalling in Diatom Responses to Abiotic Cues. In The Molecular Life of Diatoms; Falciatore, A., Mock, T., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 607–639. [Google Scholar]
- Takahashi, F.; Yamagata, D.; Ishikawa, M.; Fukamatsu, Y.; Ogura, Y.; Kasahara, M.; Kiyosue, T.; Kikuyama, M.; Wada, M.; Kataoka, H. Aureochrome, a photoreceptor required for photomorphogenesis in stramenopiles. Proc. Natl. Acad. Sci. USA 2007, 104, 19625–19630. [Google Scholar] [CrossRef]
- Kroth, P.G.; Wilhelm, C.; Kottke, T. An update on aureochromes: Phylogeny–mechanism–function. J. Plant Physiol. 2017, 217, 20–26. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, J.A.; Reinke, A.W.; Bhimsaria, D.; Keating, A.E.; Ansari, A.Z. Combinatorial bZIP dimers display complex DNA-binding specificity landscapes. eLife 2017, 6, e19272. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Takahashi, F.; Nozaki, H.; Nagasato, C.; Motomura, T.; Kataoka, H. Distribution and phylogeny of the blue light receptors aureochromes in eukaryotes. Planta 2009, 230, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Schellenberger Costa, B.; Sachse, M.; Jungandreas, A.; Río Bártulos, C.; Gruber, A.; Jakob, T.; Kroth, P.G.; Wilhelm, C. Aureochrome 1a is involved in the photoacclimation of the diatom Phaeodactylum tricornutum. PLoS ONE 2013, 8, e74451. [Google Scholar] [CrossRef] [PubMed]
- Grattepanche, J.-D.; Walker, L.M.; Ott, B.M.; Paim Pinto, D.L.; Delwiche, C.F.; Lane, C.E.; Katz, L.A. Microbial Diversity in the Eukaryotic SAR Clade: Illuminating the Darkness Between Morphology and Molecular Data. BioEssays 2018, 40, 1700198. [Google Scholar] [CrossRef] [PubMed]
- Schellenberger, C.B.; Jungandreas, A.; Jakob, T.; Weisheit, W.; Mittag, M.; Wilhelm, C. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J. Exp. Bot. 2012, 64, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Serif, M.; Lepetit, B.; Weißert, K.; Kroth, P.G.; Río Bártulos, C. A fast and reliable strategy to generate TALEN-mediated gene knockouts in the diatom Phaeodactylum tricornutum. Algal Res. 2017, 23, 186–195. [Google Scholar] [CrossRef]
- Madhuri, S.; Río Bártulos, C.; Serif, M.; Lepetit, B.; Kroth, P.G. A strategy to complement PtAUREO1a in TALEN knockout strains of Phaeodactylum tricornutum. Algal Res. 2019, 39, 101469. [Google Scholar] [CrossRef]
- Banerjee, A.; Herman, E.; Serif, M.; Maestre-Reyna, M.; Hepp, S.; Pokorny, R.; Kroth, P.G.; Essen, L.-O.; Kottke, T. Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes. Nucleic Acids Res. 2016, 44, 5957–5970. [Google Scholar] [CrossRef] [PubMed]
- Goett-Zink, L.; Klocke, J.L.; Bögeholz LA, K.; Kottke, T. In-cell infrared difference spectroscopy of LOV photoreceptors reveals structural responses to light altered in living cells. J. Biol. Chem. 2020, 295, 11729–11741. [Google Scholar] [CrossRef]
- Herman, E.; Kottke, T. Allosterically Regulated Unfolding of the A′α Helix Exposes the Dimerization Site of the Blue-Light-Sensing Aureochrome-LOV Domain. Biochemistry 2015, 54, 1484–1492. [Google Scholar] [CrossRef]
- Tian, H.; Trozzi, F.; Zoltowski, B.D.; Tao, P. Deciphering the Allosteric Process of the Phaeodactylum tricornutum Aureochrome 1a LOV Domain. J. Phys. Chem. B 2020, 41, 8960–8972. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.; Serif, M.; Wrobel, T.; Eisenhut, M.; Madhuri, S.; Flachbart, S.; Weber AP, M.; Lepetit, B.; Wilhelm, C.; Kroth, P.G. The Aureochrome Photoreceptor PtAUREO1a Is a Highly Effective Blue Light Switch in Diatoms. iScience 2020, 23, 101730. [Google Scholar] [CrossRef] [PubMed]
- Huysman, M.J.; Fortunato, A.E.; Matthijs, M.; Costa, B.S.; Vanderhaeghen, R.; Van den Daele, H.; Sachse, M.; Inze, D.; Bowler, C.; Kroth, P.G.; et al. AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum). Plant Cell 2013, 25, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Im, S.H.; Lepetit, B.; Mosesso, N.; Shrestha, S.; Weiss, L.; Nymark, M.; Roellig, R.; Wilhelm, C.; Isono, E.; Kroth, P.G. Identification of promoter targets by Aureochrome 1a in the diatom Phaeodactylum tricornutum. J. Exp. Bot. 2023, 75, 1834–1851. [Google Scholar] [CrossRef] [PubMed]
- Farré, E.M. The brown clock: Circadian rhythms in stramenopiles. Physiol. Plant. 2020, 169, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Moulager, M.; Monnier, A.; Jesson, B.; Bouvet, R.; Mosser, J.; Schwartz, C.; Garnier, L.; Corellou, F.; Bouget, F.O.-Y. Light-Dependent Regulation of Cell Division in Ostreococcus: Evidence for a Major Transcriptional Input. Plant Physiol. 2007, 144, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
- Ragni, M.; d’Alcala, M.R. Circadian variability in the photobiology of Phaeodactylum tricornutum: Pigment content. J. Plankt Res. 2007, 29, 141–156. [Google Scholar] [CrossRef]
- Poliner, E.; Cummings, C.; Newton, L.; Farré, E.M. Identification of circadian rhythms in Nannochloropsis species using bioluminescence reporter lines. Plant J. 2019, 99, 112–127. [Google Scholar] [CrossRef]
- Coesel, S.N.; Durham, B.P.; Groussman, R.D.; Hu, S.K.; Caron, D.A.; Morales, R.L.; Ribalet, F.; Armbrust, E.V. Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proc. Natl. Acad. Sci. USA 2021, 118, e2011038118. [Google Scholar] [CrossRef]
- Ashworth, J.; Coesel, S.; Lee, A.; Armbrust, E.V.; Orellana, M.V.; Baliga, N.S. Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana. Proc. Natl. Acad. Sci. USA 2013, 110, 7518–7523. [Google Scholar] [CrossRef]
- Chauton, M.S.; Winge, P.; Brembu, T.; Vadstein, O.; Bones, A.M. Gene regulation of carbon fixation, storage and utilization in the diatom Phaeodactylum tricornutum acclimated to light/dark cycles. Plant Physiol. 2012, 161, 1034–1048. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, R.; Ritter, A.; Fortunato, A.E.; Manzotti, A.; Cheminant-Navarro, S.; Agier, N.; Huysman MJ, J.; Winge, P.; Bones, A.M.; Bouget, F.-Y.; et al. bHLH-PAS protein RITMO1 regulates diel biological rhythms in the marine diatom Phaeodactylum tricornutum. Proc. Natl. Acad. Sci. USA 2019, 116, 13137–13142. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.; Lee, K.; Onouchi, H.; Samach, A.; Richardson, K.; Morris, B.; Coupland, G.; Putterill, J. GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 1999, 18, 4679–4688. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-G.; Kim, S.-Y.; Park, C.-M. A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 2007, 226, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Sawa, M.; Nusinow, D.A.; Kay, S.A.; Imaizumi, T. FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis. Science 2007, 318, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Coesel, S.; Mangogna, M.; Ishikawa, T.; Heijde, M.; Rogato, A.; Finazzi, G.; Todo, T.; Bowler, C.; Falciatore, A. Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity. EMBO Rep. 2009, 10, 655–661. [Google Scholar] [CrossRef]
- Matthijs, M.; Fabris, M.; Broos, S.; Vyverman, W.; Goossens, A. Profiling of the early nitrogen stress response in the diatom Phaeodactylum tricornutum reveals a novel family of RING-domain transcription factors. Plant Physiol. 2016, 170, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Im, S.H.; Madhuri, S.; Lepetit, B.; Kroth, P.G. Functional demonstration of Aureochrome 1a proteasomal degradation after blue light incubation in the diatom Phaeodactylum tricornutum. J. Plant Physiol. 2024, 292, 154148. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, P.; Fortunato, A.E.; Petrone, L.; Ishikawa-Fujiwara, T.; Kobayashi, Y.; Todo, T.; Antonova, O.; Arboleda, E.; Zantke, J.; Tessmar-Raible, K.; et al. The Cryptochrome/Photolyase family in aquatic organisms. Mar. Genom. 2014, 14, 23–37. [Google Scholar] [CrossRef]
- Buck, J.M.; Sherman, J.; Río Bártulos, C.; Serif, M.; Halder, M.; Henkel, J.; Falciatore, A.; Lavaud, J.; Gorbunov, M.Y.; Kroth, P.G.; et al. Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum. Nat. Commun. 2019, 10, 4167. [Google Scholar] [CrossRef]
- Lepetit, B.; Sturm, S.; Rogato, A.; Gruber, A.; Sachse, M.; Falciatore, A.; Kroth, P.G.; Lavaud, J. High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Plant Physiol. 2013, 161, 853–865. [Google Scholar] [CrossRef] [PubMed]
- Straume, M.; Frasier-Cadoret, S.G.; Johnson, M.L. Least-Squares Analysis of Fluorescence Data. In Topics in Fluorescence Spectroscopy: Principles; Lakowicz, J.R., Ed.; Springer: Boston, MA, USA, 2002; pp. 177–240. [Google Scholar]
- Zielinski, T.; Moore, A.M.; Troup, E.; Halliday, K.J.; Millar, A.J. Strengths and Limitations of Period Estimation Methods for Circadian Data. PLoS ONE 2014, 9, e96462. [Google Scholar] [CrossRef]
- Kolody, B.C.; McCrow, J.P.; Allen, L.Z.; Aylward, F.O.; Fontanez, K.M.; Moustafa, A.; Moniruzzaman, M.; Chavez, F.P.; Scholin, C.A.; Allen, E.E.; et al. Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection. ISME J. 2019, 13, 2817–2833. [Google Scholar] [CrossRef]
- Saini, R.; Jaskolski, M.; Davis, S.J. Circadian oscillator proteins across the kingdoms of life: Structural aspects. BMC Biol. 2019, 17, 13. [Google Scholar] [CrossRef]
- Creux, N.; Harmer, S. Circadian Rhythms in Plants. Cold Spring Harb. Perspect. Biol. 2019, 11, a034611. [Google Scholar] [CrossRef]
- Forbes-Stovall, J.; Howton, J.; Young, M.; Davis, G.; Chandler, T.; Kessler, B.; Rinehart, C.A.; Jacobshagen, S. Chlamydomonas reinhardtii strain CC-124 is highly sensitive to blue light in addition to green and red light in resetting its circadian clock, with the blue-light photoreceptor plant cryptochrome likely acting as negative modulator. Plant Physiol. Biochem. 2014, 75, 14–23. [Google Scholar] [CrossRef]
- Brunner, M.; Káldi, K. Interlocked feedback loops of the circadian clock of Neurospora crassa. Mol. Microbiol. 2008, 68, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Song, H.-R.; Lutz, K.; Kerstetter, R.A.; Michael, T.P.; McClung, C.R. Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2010, 107, 21211–21216. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.X.; Knowles, S.M.; Webb, C.J.; Celaya, R.B.; Cha, C.; Siu, J.P.; Tobin, E.M. The Jumonji C Domain-Containing Protein JMJ30 Regulates Period Length in the Arabidopsis Circadian Clock. Plant Physiol. 2010, 155, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Ode, K.L.; Ueda, H.R. Design Principles of Phosphorylation-Dependent Timekeeping in Eukaryotic Circadian Clocks. Cold Spring Harb. Perspect. Biol. 2018, 10, a028357. [Google Scholar] [CrossRef]
- Chisholm, S.W.; Azam, F.; Eppley, R.W. Silicic acid incorporation in marine diatoms on light: Dark cycles: Use as an assay for phased cell division. Limnol. Oceanogr. 1978, 23, 518–529. [Google Scholar] [CrossRef]
- Crane, B.R.; Young, M.W. Interactive Features of Proteins Composing Eukaryotic Circadian Clocks. Annu. Rev. Biochem. 2014, 83, 191–219. [Google Scholar] [CrossRef] [PubMed]
- König, S.; Eisenhut, M.; Bräutigam, A.; Kurz, S.; Weber, A.P.M.; Büchel, C. The Influence of a Cryptochrome on the Gene Expression Profile in the Diatom Phaeodactylum tricornutum under Blue Light and in Darkness. Plant Cell Physiol. 2017, 58, 1914–1923. [Google Scholar] [CrossRef] [PubMed]
- Giovagnetti, V.; Jaubert, M.; Shukla, M.K.; Ungerer, P.; Bouly, J.-P.; Falciatore, A.; Ruban, A.V. Biochemical and molecular properties of LHCX1, the essential regulator of dynamic photoprotection in diatoms. Plant Physiol. 2021, 188, 509–525. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Fernald, R.D. Comprehensive Algorithm for Quantitative Real-Time Polymerase Chain Reaction. J. Comput. Biol. 2005, 12, 1047–1064. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Hutchison, A.L.; Maienschein-Cline, M.; Chiang, A.H.; Tabei SM, A.; Gudjonson, H.; Bahroos, N.; Allada, R.; Dinner, A.R. Improved Statistical Methods Enable Greater Sensitivity in Rhythm Detection for Genome-Wide Data. PLoS Comput. Biol. 2015, 11, e1004094. [Google Scholar] [CrossRef]
- Madhuri, S. Elucidation of Functional Roles of Blue Light Receptors: Aureochromes in Phaeodactylum tricornutum. Ph.D. Thesis, Universität Konstanz, Konstanz, Germany, 2020. Available online: https://kops.uni-konstanz.de/entities/publication/ab5f4f58-333c-4f39-bdca-74fcac0b090c (accessed on 26 October 2020).
Proteins and Role | Gene Name | Kendall Rank Correlation Coefficient (τ) | ||
---|---|---|---|---|
L/D | ||||
WT | KO8 | Co.48 | ||
Aureochrome Isoforms | PtAureo1a | 0.64 * | 0.66 * | |
PtAureo1b | 0.59 | 0.36 | 0.71 ** | |
PtAureo1c | 0.73 ** | 0.52 | 0.78 ** | |
PtAureo 2 | 0.54 | 0.4 | 0.64 ** | |
Cryptochrome/photolyase family protein1 | PtCPF1 | 0.81 **** | 0.4 | 0.74 ** |
Cry-DASH-like protein family | PtCPF2 | 0.46 | 0.59 | 0.72 ** |
PtCPF4 | 0.64 * | 0.56 | 0.83 **** | |
Circadian clock-related | PtbHLH1a (Ritmo1) | 0.88 **** | 0.42 | 0.92 ***** |
PtbHLH1b | 0.88 **** | 0.46 | 0.89 **** | |
Photoprotection | PtLhcx1 | 0.87 **** | 0.38 | 0.9 **** |
Period | Phase | Amplitude | |||||
---|---|---|---|---|---|---|---|
FFT-NLLS | MESA | FFT-NLLS | MESA | FFT-NLLS | MESA | ||
CPF1 | WT | 26.3 | 26.1 | 5.4 | 5.7 | 1.5 | 1.5 |
KO8 | 31.4 | 34.2 | 10.6 | 8.7 | 0.6 | 0.7 | |
Co.48 | 24.3 | 25.1 | 7.6 | 6.7 | 1.1 | 1.1 | |
bHLH1a | WT | 25 | 24.8 | 16.6 | 16.8 | 2.3 | 2.2 |
KO8 | no fit | 26.7 | no fit | 18.3 | no fit | 0.6 | |
Co.48 | 23.4 | 23.8 | 19.9 | 19.3 | 2.4 | 2.3 | |
bHLH1b | WT | 24.4 | 24.9 | 15.4 | 14.8 | 2.2 | 2.1 |
KO8 | 31.5 | 25.6 | 5.2 | 11.2 | 0.5 | 0.4 | |
Co.48 | 25.3 | 25.3 | 15.1 | 15 | 2.4 | 2.3 | |
Lhcx1 | WT | no fit | 29.2 | no fit | 4.9 | no fit | 1.3 |
KO8 | no fit | 27.7 | no fit | 10.6 | no fit | 0.5 | |
Co.48 | no fit | 29.5 | no fit | 6.4 | no fit | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madhuri, S.; Lepetit, B.; Fürst, A.H.; Kroth, P.G. A Knockout of the Photoreceptor PtAureo1a Results in Altered Diel Expression of Diatom Clock Components. Plants 2024, 13, 1465. https://doi.org/10.3390/plants13111465
Madhuri S, Lepetit B, Fürst AH, Kroth PG. A Knockout of the Photoreceptor PtAureo1a Results in Altered Diel Expression of Diatom Clock Components. Plants. 2024; 13(11):1465. https://doi.org/10.3390/plants13111465
Chicago/Turabian StyleMadhuri, Shvaita, Bernard Lepetit, Alexander Helmut Fürst, and Peter G. Kroth. 2024. "A Knockout of the Photoreceptor PtAureo1a Results in Altered Diel Expression of Diatom Clock Components" Plants 13, no. 11: 1465. https://doi.org/10.3390/plants13111465
APA StyleMadhuri, S., Lepetit, B., Fürst, A. H., & Kroth, P. G. (2024). A Knockout of the Photoreceptor PtAureo1a Results in Altered Diel Expression of Diatom Clock Components. Plants, 13(11), 1465. https://doi.org/10.3390/plants13111465