Improving the Traits of Perilla frutescens (L.) Britt Using Gene Editing Technology
Abstract
:1. Introduction
2. Taxonomy of Perilla
3. Species Classification
3.1. Leafy Perilla
3.2. Seed Perilla
3.3. Shiso
Three Varieties of Shiso
- (a)
- Red Shiso
- (b)
- Green Shiso
- (c)
- Bicolor shiso
4. Improving Perilla Traits
4.1. Productivity
4.2. Change in Oil Content
4.3. Increase in Functional Compounds
4.4. Leaf Vegetable of Perilla
4.5. Resistance to Pathogens
4.6. Seed Abscission and Ovary Dehiscence
5. Progress of Genome Editing Technology in Perilla frutescens
6. Conclusions and Challenges for the Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qaim, M. Role of New Plant Breeding Technologies for Food Security and Sustainable Agricultural Development. Appl. Econ. Perspect. Policy 2020, 42, 129–150. [Google Scholar] [CrossRef]
- Abdallah, N.A.; Prakash, C.S.; McHughen, A.G. Genome editing for crop improvement: Challenges and opportunities. GM Crops Food 2015, 6, 183–205. [Google Scholar] [CrossRef]
- Ricroch, A.; Eriksson, D.; Miladinović, D.; Sweet, J.; Van Laere, K.; Woźniak-Gientka, E. A Roadmap for Plant Genome Editing; Springer Nature: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Nitta, M.; Lee, J.K.; Kang, C.W.; Katsuta, M.; Yasumoto, S.; Liu, D.; Nagamine, T.; Ohnishi, O. The Distribution of Perilla Species. Genet. Resour. Crop Evol. 2005, 52, 797–804. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, X.; Hu, T.; Chen, S.; Wang, Y.; Shi, X.; Yin, M.; Li, R.; Wang, J.; Jia, X. Genome-Wide Analysis of Glycerol-3-Phosphate Acyltransferase (GPAT) Family in Perilla frutescens and Functional Characterization of PfGPAT9 Crucial for Biosynthesis of Storage Oils Rich in High-Value Lipids. Int. J. Mol. Sci. 2023, 24, 15106. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.J.; Lee, K. Morphological Variation of Two Cultivated Types of Perilla Crop from Different Areas of China. Hortic. Sci. Technol. 2017, 35, 510–522. [Google Scholar] [CrossRef]
- Wu, X.; Dong, S.; Chen, H.; Guo, M.; Sun, Z.; Luo, H. Perilla frutescens: A traditional medicine and food homologous plant. Chin. Herb. Med. 2023, 15, 369–375. [Google Scholar] [CrossRef]
- Hashimoto, M.; Tanabe, Y.; Hossain, S.; Matsuzaki, K.; Ohno, M.; Kato, S.; Katakura, M.; Shido, O. Intake of Alpha-Linolenic Acid-Rich Perilla frutescens Leaf Powder Decreases Home Blood Pressure and Serum Oxidized Low-Density Lipoprotein in Japanese Adults. Molecules 2020, 25, 2099. [Google Scholar] [CrossRef]
- Kim, H.U.; Lee, K.R.; Jeon, I.; Jung, H.E.; Heo, J.B.; Kim, T.Y.; Chen, G.Q. Fatty acid composition and oil content of seeds from perilla (Perilla frutescens (L.) var. frutescens) germplasm of Republic of Korea. Genet. Resour. Crop. Evol. 2019, 66, 1615–1624. [Google Scholar] [CrossRef]
- Asif, M. Health effects of omega-3, 6, 9 fatty acids: Perilla frutescens is a good example of plant oils. Orient. Pharm. Exp. Med. 2011, 11, 51–59. [Google Scholar] [CrossRef]
- Ahmed, H. Ethnomedicinal, Phytochemical and Pharmacological Investigations of Perilla frutescens (L.). Britt. Mol. 2018, 24, 102. [Google Scholar] [CrossRef]
- Nitta, M.; Kobayashi, H.; Ohnishi-Kameyama, M.; Nagamine, T.; Yoshida, M. Essential oil variation of cultivated and wild Perilla analyzed by GC/MS. Biochem. Syst. Ecol. 2006, 34, 25–37. [Google Scholar] [CrossRef]
- Ito, M.; Toyoda, M.; Kamakura, S.; Honda, G. A New Type of Essential Oil from Perilla frutescens from Thailand. J. Essent. Oil Res. 2002, 14, 416–419. [Google Scholar] [CrossRef]
- Žekonis, G.; Žekonis, J.; Šadzevičienė, R.; Šimonienė, G.; Kėvelaitis, E. Effect of Perilla frutescens aqueous extract on free radical production by human neutrophil leukocytes. Medicina 2008, 44, 699. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.H.; Zoclanclounon, Y.A.B.; Kumar, T.S.; Oh, J.H.; Lee, J.; Kim, T.H.; Park, K.Y. Advances in Understanding the Genetic Basis of Fatty Acids Biosynthesis in Perilla: An Update. Plants 2022, 11, 1207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Hussain, A.; Manghwar, H.; Xie, K.; Xie, S.; Zhao, S.; Larkin, R.M.; Qing, P.; Jin, S.; Ding, F. Genome editing with the CRISPR-Cas system: An art, ethics and global regulatory perspective. Plant Biotechnol. J. 2020, 18, 1651–1669. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.; Khan, F.; Zaki, H.E.M.; Khan, M.M.; Radwan, K.S.A.; Jiang, Y.; Qian, J.; Ahmed, T.; Shahid, M.S.; Luo, J.; et al. Recent Trends and Advancements in CRISPR-Based Tools for Enhancing Resistance against Plant Pathogens. Plants 2023, 12, 1911. [Google Scholar] [CrossRef]
- Cardi, T.; Murovec, J.; Bakhsh, A.; Boniecka, J.; Bruegmann, T.; Bull, S.E.; Eeckhaut, T.; Fladung, M.; Galovic, V.; Linkiewicz, A.; et al. CRISPR/Cas-mediated plant genome editing: Outstanding challenges a decade after implementation. Trends Plant Sci. 2023, 28, 1144–1165. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.M. Perilla: Botany, Uses and Genetic Resources; Wiley: New York, NY, USA, 1993; pp. 322–328. [Google Scholar]
- Hu, Y.; Sun, L.W.; Mokgolodi, N.C.; Zhang, Y.X.; Wen, C.X.; Xie, X.L.; Liu, Y.J. Primary identifications and palynological observations of Perilla in China. J. Syst. Evol. 2010, 48, 133–145. [Google Scholar] [CrossRef]
- Pandey, A.; Bhatt, K.C. Diversity distribution and collection of genetic resources of cultivated and weedy type in Perilla frutescens (L.) Britton var. frutescens and their uses in Indian Himalaya. Genet. Resour. Crop Evol. 2007, 55, 883–892. [Google Scholar] [CrossRef]
- Meng, L.; Lozano, Y.; Bombarda, I.; Gaydou, E.M.; Li, B. Polyphenol extraction from eight Perilla frutescens cultivars. Comptes Rendus Chim. 2008, 12, 602–611. [Google Scholar] [CrossRef]
- Mungofa, N.; Sibanyoni, J.J.; Mashau, M.E.; Beswa, D. Prospective Role of Indigenous Leafy Vegetables as Functional Food Ingredients. Molecules 2022, 27, 7995. [Google Scholar] [CrossRef] [PubMed]
- Seo, W.H.; Baek, H.H. Characteristic Aroma-Active Compounds of Korean Perilla (Perilla frutescens Britton) Leaf. J. Agric. Food Chem. 2009, 57, 11537–11542. [Google Scholar] [CrossRef] [PubMed]
- Larkcom, J. Oriental Vegetables (Preview); Frances Lincoln: London, UK, 2007; ISBN 978-0-7112-2612-8. [Google Scholar]
- Shimbo, H. The Japanese Kitchen: 250 Recipes in a Traditional Spirit (Preview); Harvard Common Press: Boston, MA, USA, 2001; ISBN 978-1-55832-177-9. [Google Scholar]
- Andoh, E.; Beisch, L. Washoku: Recipes from the Japanese Home Kitchen; Random House Digital, Inc.: New York, NY, USA, 2005; ISBN 978-1-58008-519-9. [Google Scholar]
- Mouritsen, O.G. Sushi: Food for the Eye, the Body and the Soul; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-1-4419-0617-5. [Google Scholar]
- Yu, H.C.; Kosuna, K.; Haga, M. Perilla: The Genus Perilla, Medicinal and Aromatic Plants-Industrial Profiles; CRC Press: Boca Raton, FL, USA, 1997; ISBN 978-90-5702-171-8. [Google Scholar]
- King, R.W.; Zeevaart, J.A.D. Floral Stimulus Movement in Perilla and Flower Inhibition Caused by Non induced Leaves. Plant. Physiol. 1973, 51, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.R.; Chen, C.; Kim, J.H.; Kim, H.E.; Karthik, S.; Kim, H.J.; Chung, Y.S.; Baek, H.S.; Sung, S.; Kim, H.U.; et al. Genome-edited HEADING DATE 3a knockout enhances leaf production in Perilla frutescens. Front. Plant Sci. 2023, 14, 1133518. [Google Scholar] [CrossRef] [PubMed]
- Andrés, F.; Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef]
- Kojima, S.; Takahashi, Y.; Kobayashi, Y.; Monna, L.; Sasaki, T.; Araki, T.; Yano, M. Hd3a, a Rice Ortholog of the Arabidopsis FT Gene, Promotes Transition to Flowering Downstream of Hd1 under Short-Day Conditions. Plant Cell Physiol. 2002, 43, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Varkonyi-Gasic, E.; Moss, S.M.A.; Voogd, C.; Wang, T.; Putterill, J.; Hellens, R.P. Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytol. 2013, 198, 732–746. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.J.; Lee, B.M.; Nam, M.; Oh, K.W.; Lee, M.H.; Kim, T.H.; Jo, S.H.; Lee, J.H. Identification of quantitative trait loci associated with flowering time in perilla using genotyping-by-sequencing. Mol. Biol. Rep. 2019, 46, 4397–4407. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Shi-Mei, Y.; Zhi-Wei, S.; Jing, X.; De-Gang, Z.; Hong-Bin, W.; Qi, S. Genome-Wide Analysis of the Fatty Acid Desaturase Gene Family Reveals the Key Role of PfFAD3 in α-Linolenic Acid Biosynthesis in Perilla Seeds. Front. Genet. 2021, 12, 735862. [Google Scholar] [CrossRef]
- Zhuang, X.Y.; Zhang, Y.H.; Xiao, A.F.; Zhang, A.H.; Fang, B.S. Key Enzymes in Fatty Acid Synthesis Pathway for Bioactive Lipids Biosynthesis. Front. Nutr. 2022, 9, 851402. [Google Scholar] [CrossRef]
- Shi, J.; Ni, X.; Huang, J.; Fu, Y.; Wang, T.; Yu, H.; Zhang, Y. CRISPR/Cas9-Mediated Gene Editing of BnFAD2 and BnFAE1 Modifies Fatty Acid Profiles in Brassica napus. Genes 2022, 13, 1681. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, M.; Miyazaki, Y. A Review on Bioactivities of Perilla: Progress in Research on the Functions of Perilla as Medicine and Food. Evid. Based Complement. Alternat. Med. 2013, 925342. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Sakamoto, M.; Tanizawa, Y.; Mochizuki, T.; Matsushita, S.; Kato, Y.; Ishikawa, T.; Okuhara, K.; Nakamura, Y.; Bono, H. A highly contiguous genome assembly of red perilla (Perilla frutescens) domesticated in Japan. DNA Res. 2022, 30, dsac044. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.M.; Chia, L.S.; Goh, N.K.; Chia, T.F.; Brouillard, R. Analysis and biological activities of anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Liga, S.; Paul, C.; Péter, F. Flavonoids: Overview of Biosynthesis, Biological Activity, and Current Extraction Techniques. Plants 2023, 12, 2732. [Google Scholar] [CrossRef] [PubMed]
- Van der Krol, A.R.; Mur, L.A.; Beld, M.; Mol, J.N.M.; Stuitje, A.R. Flavonoid Genes in Petunia: Addition of a Limited Number of Gene Copies May Lead to a Suppression of Gene Expression. Plant Cell 1990, 2, 291. [Google Scholar] [PubMed]
- Rosati, C.; Simoneau, P. Metabolie Engineering of Flower Color in Ornamental Plants. J. Crop Improv. 2006, 18, 301–324. [Google Scholar] [CrossRef]
- Laitinen, R.A.E.; Ainasoja, M.; Broholm, S.K.; Teeri, T.H.; Elomaa, P. Identification of target genes for a MYB-type anthocyanin regulator in Gerbera hybrida. J. Exp. Bot. 2008, 59, 3691–3703. [Google Scholar] [CrossRef]
- He, G.; Zhang, R.; Jiang, S.; Wang, H.; Ming, F. The MYB transcription factor RcMYB1 plays a central role in rose anthocyanin biosynthesis. Hortic. Res. 2023, 10, uhad080. [Google Scholar] [CrossRef]
- Qi, X.; Liu, C.; Song, L.; Dong, Y.; Chen, L.; Li, M. A Sweet Cherry Glutathione S-Transferase Gene, PavGST1, Plays a Central Role in Fruit Skin Coloration. Cells 2022, 11, 1170. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, N.; Upadhyay, A.; Fawole, O.A.; Mahawar, M.K.; Jalgaonkar, K.; Chandran, D.; Rajalingam, S.; Zengin, G.; Kumar, M.; et al. Recent Advances in Novel Packaging Technologies for Shelf-Life Extension of Guava Fruits for Retaining Health Benefits for Longer Duration. Plants 2022, 11, 547. [Google Scholar] [CrossRef] [PubMed]
- Mekapogu, M.; Song, H.Y.; Lim, S.H.; Jung, J.A. Genetic Engineering and Genome Editing Advances to Enhance Floral Attributes in Ornamental Plants: An Update. Plants 2023, 12, 3983. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Jones, M.L.; Banowetz, G.M.; Clark, D.G. Overproduction of Cytokinins in Petunia Flowers Transformed with PSAG12-IPT Delays Corolla Senescence and Decreases Sensitivity to Ethylene. Plant Physiol. 2003, 132, 2174–2183. [Google Scholar] [CrossRef]
- Xu, J.; Kang, B.; Naing, A.H.; Bae, S.; Kim, J.; Kim, H.; Kim, C.K. CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity. Plant Biotechnol. J. 2019, 18, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Jones, M.L. CRISPR/Cas9-Mediated Editing of Autophagy Gene 6 in Petunia Decreases Flower Longevity, Seed Yield, and Phosphorus Remobilization by Accelerating Ethylene Production and Senescence-Related Gene Expression. Front. Plant Sci. 2022, 13, 840218. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Y.; Wang, N.; Yu, Q.; Li, Y.; Gao, J.; Zhou, X.; Ma, N. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida). J. Integr. Plant Biol. 2022, 65, 895–899. [Google Scholar] [CrossRef]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and its eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- He, D.C.; He, M.H.; Amalin, D.M.; Liu, W.; Alvindia, D.G.; Zhan, J. Biological Control of Plant Diseases: An Evolutionary and Eco-Economic Consideration. Pathogens 2021, 10, 1311. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; Chehelgerdi, M.; Khorramian-Ghahfarokhi, M.; Shafieizadeh, M.; Mahmoudi, E.; Eskandari, F.; Rashidi, M.; Arshi, A.; Mokhtari-Farsani, A. Comprehensive review of CRISPR-based gene editing: Mechanisms, challenges, and applications in cancer therapy. Mol. Cancer 2024, 23, 9. [Google Scholar] [CrossRef]
- Zeilmaker, T.; Ludwig, N.R.; Elberse, J.; Seidl, M.F.; Berke, L.; Van Doorn, A.; Schuurink, R.C.; Snel, B.; Van den Ackerveken, G. DOWNY MILDEW RESISTANT 6 and DMR6-LIKE OXYGENASE 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. Plant J. 2014, 81, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Schipper, D.; Jacobsen, E.; Visser, R.G.F.; Govers, F.; Bouwmeester, K.; Bai, Y. Silencing susceptibility genes in potato hinders primary infection with Phytophthora infestans at different stages. Hortic. Res. 2022, 9, uhab058. [Google Scholar] [CrossRef] [PubMed]
- Thomazella, D.P.D.T.; Seong, K.; Mackelprang, R.; Dahlbeck, D.; Geng, Y.; Gill, U.S.; Qi, T.; Pham, J.; Giuseppe, P.; Lee, C.Y.; et al. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc. Natl. Acad. Sci. USA 2021, 118, e2026152118. [Google Scholar] [CrossRef] [PubMed]
- Bari, V.K.; Nassar, J.A.; Aly, R. CRISPR/Cas9 mediated mutagenesis of MORE AXILLARY GROWTH 1 in tomato confers resistance to root parasitic weed Phelipanche aegyptiaca. Sci. Rep. 2021, 11, 3905. [Google Scholar] [CrossRef] [PubMed]
- Bellis, E.S.; Kelly, E.A.; Lorts, C.M.; Gao, H.; DeLeo, V.L.; Rouhan, G.; Budden, A.; Bhaskara, G.B.; Hu, Z.; Muscarella, R.; et al. Genomics of sorghum local adaptation to a parasitic plant. Proc. Natl. Acad. Sci. USA 2020, 117, 4243–4251. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wang, C.; Xiao, D.; Liang, Y.; Wang, Y. Advances and Perspectives of Transgenic Technology and Biotechnological Application in Forest Trees. Front. Plant Sci. 2021, 12, 786328. [Google Scholar] [CrossRef]
- Ren, Y.; Zhou, X.; Dong, Y.; Zhang, J.; Wang, J.; Yang, M. Exogenous Gene Expression and Insect Resistance in Dual Bt Toxin Populus × euramericana ‘Neva’ Transgenic Plants. Front. Plant Sci. 2021, 12, 660226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, J. Molecular Events Involved in Fruitlet Abscission in Litchi. Plants 2020, 9, 151. [Google Scholar] [CrossRef]
- Schmid, R.; Hickey, M.; King, C. The Cambridge Illustrated Glossary of Botanical Terms. Taxon 2001, 50, 1294. [Google Scholar] [CrossRef]
- Zaman, Q.U.; Chu, W.; Hao, M.; Shi, Y.; Sun, M.; Sang, S.F.; Mei, D.; Cheng, H.; Liu, J.; Li, C.; et al. CRISPR/Cas9-Mediated Multiplex Genome Editing of JAGGED Gene in Brassica napus L. Biomolecules 2019, 9, 725. [Google Scholar] [CrossRef]
- Balanzà, V.; Roig-Villanova, I.; Di Marzo, M.; Masiero, S.; Colombo, L. Seed abscission and fruit dehiscence required for seed dispersal rely on similar genetic networks. Development 2016, 143, 3372–3381. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karthik, S.; Chae, J.; Han, S.J.; Kim, J.H.; Kim, H.J.; Chung, Y.-S.; Kim, H.U.; Heo, J.B. Improving the Traits of Perilla frutescens (L.) Britt Using Gene Editing Technology. Plants 2024, 13, 1466. https://doi.org/10.3390/plants13111466
Karthik S, Chae J, Han SJ, Kim JH, Kim HJ, Chung Y-S, Kim HU, Heo JB. Improving the Traits of Perilla frutescens (L.) Britt Using Gene Editing Technology. Plants. 2024; 13(11):1466. https://doi.org/10.3390/plants13111466
Chicago/Turabian StyleKarthik, Sivabalan, Jia Chae, Seong Ju Han, Jee Hye Kim, Hye Jeong Kim, Young-Soo Chung, Hyun Uk Kim, and Jae Bok Heo. 2024. "Improving the Traits of Perilla frutescens (L.) Britt Using Gene Editing Technology" Plants 13, no. 11: 1466. https://doi.org/10.3390/plants13111466
APA StyleKarthik, S., Chae, J., Han, S. J., Kim, J. H., Kim, H. J., Chung, Y. -S., Kim, H. U., & Heo, J. B. (2024). Improving the Traits of Perilla frutescens (L.) Britt Using Gene Editing Technology. Plants, 13(11), 1466. https://doi.org/10.3390/plants13111466