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Abstract: Physical dormancy of seeds is a form of dormancy due to the presence of an impermeable
seed coat layer, and it represents a feature for plants to adapt to environmental changes over an
extended period of phylogenetic evolution. However, in agricultural practice, physical dormancy is
problematic. because it prevents timely and uniform seed germination. Therefore, physical dormancy
is an important agronomical trait to target in breeding and domestication, especially for many
leguminous crops. Compared to the well-characterized physiological dormancy, research progress
on physical dormancy at the molecular level has been limited until recent years, due to the lack of
suitable research materials. This review focuses on the structure of seed coat, factors affecting physical
dormancy, genes controlling physical dormancy, and plants suitable for studying physical dormancy
at the molecular level. Our goal is to provide a plethora of information for further molecular research
on physical dormancy.
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1. Introduction

The development of agriculture is a key point in human history, and one of the core
elements in agriculture is the evolution of new forms of plants and the domestication
of crops [1,2]. In the process of plant evolution and adaptation, seed dormancy has
played an important role, as it determines the beginning of the new generation [3–5].
In the long history of evolution, in order to maintain their survival capacity, plant seeds
have evolved various forms of dormancy to adapt to the complex and changing climate
and environments [6,7]. Despite its merits in plant evolution, seed dormancy is not a
favorable feature in agricultural production, mainly due to its effects on seed germination.
Seed dormancy is primarily classified as physiological dormancy (PD), morphological
dormancy (MD), morphophysiological dormancy (MPD), physical dormancy (PY), and
physical plus physiological dormancy (PD + PY) [8,9]. Though physical dormancy has
been reviewed many times over the years [10,11], compared to the well-studied hormone-
mediated physiological dormancy in Arabidopsis thaliana or cereals, only a few articles
have been published on physical dormancy regarding molecular aspects [8,11–13].

Physical dormancy is caused by the impermeability of the seed coat (or fruit coat),
which prevents seed germination [3,13–15]. Physical dormancy exists in at least 18 an-
giosperm families including most legume crops [3,9,16]. To date, research on physical
dormancy has primarily focused on leguminous plants, such as soybean, Medicago trun-
catula, pea (Pisum sativum), and other legume crops [3]. This article systematically reviews
the literature on physical dormancy, summarizing the structure of seed coat, the seed coat
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compositions influencing physical dormancy, the genes controlling physical dormancy, and
the plants suitable for studying physical dormancy at the molecular level.

2. Seed Coat Organ for Physical Dormancy

In species exhibiting physical dormancy, a significant structure known as the hard
seed coat covers the seed to prevent water from entering. Research on physical dormancy
has primarily focused on the morphological structure and composition of the seed coat, as
well as methods for breaking the impermeable seed coat and cuticle [17,18].

2.1. Morphological Characteristics of Seed Coat on Physical Dormancy

Morphological observations indicate that seed hardness is related to the structure of
the palisade and epidermal layers [19]. The epidermal cells of the seed coat are smooth,
with a regular dome-like arrangement [20]. A number of studies suggest that physically
dormant seeds have specific morphological characteristics, with the impermeable seed coat
primarily consisting of a hardened layer of intact cells, known as the palisade layer [20].
When comparing the non-hard and hard seeds of lupin beans, it has been found that hard
seeds have a thicker palisade layer [21].

The palisade layer in the seed coat of Trifolium repens and alfalfa is covered by a cuticle
layer, which increases the seed hardness [22]. The impermeable cuticle layer of a hard-
seeded seed coat is essential for physical dormancy. Scratching the seed coat destroys the
cuticle layer, making the impermeable seed permeable [23]. The impermeability of hard
soybean seeds can also be attributed to the intact cuticle around the seeds [24,25].

The palisade layer is composed of sclerenchyma cells with thick secondary walls.
The most common type of sclerenchyma cells are macrosclereids or Malpighian cells [26].
When the palisade layer of the M. truncatula seed coat is observed under a microscope,
a bright line crossing the cells is clearly visible, which is known as the light line [27,28].
The light line was identified as the major barrier to water penetration in dormant pea
seeds [29]. Cells underneath the palisade layer are hourglass cells. Analysis of the seed coat
sections of Trifolium pratense showed that the non-hard-seeded seed coat tends to have short
and round-shaped hourglass cells, whereas the hard-seeded seed coat has long hourglass
cells [30]. Parenchyma cells are located at the bottom layer of the seed coat, adjacent to the
endosperm, and are transient nutrient storage organs [31–33].

The primary path of water entry into the seed with physical dormancy includes
strophiole, hilum, micropyle, and small dispersed fissures [24,29]. During the entire seed
development process of M. truncatula, the palisade layer of the outer envelope elongates
radially, and the cell wall thickens, ultimately leading to the formation of tightly packed
giant hard-shell layers, which increase seed hardness (Figure 1) [34]. The thickness and
arrangement of these layers can vary among species and affect seed hardness. Seeds with a
thicker palisade layer and intact epidermis tend to have higher levels of physical dormancy.

2.2. Composition of Seed Coat and Physical Dormancy

The impermeability of the seed coat cannot be explained solely by its thickness [35].
In addition to anatomical differences in the seed coat, the chemical composition of the
seed coat also varies. The palisade layer, which is composed of macrosclereid cells with
thick secondary walls, is impermeable to water because of the presence of hydrophobic
substances such as cutin, lignin, quinones, pectins, suberin, and wax [21,36,37]. Owing
to genetic and environmental factors, the composition of seed coats differs in different
species [38].
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Figure 1. Seed coat of M. truncatula. (A). Scanning electron micrograph of epidermal cells, scale bar 
= 10 μm. (B). Cross-sections of the seed coat at the stage of maturation before desiccation. (C). Car-
toons depicting cross-sections of seed coat development in different development stages: embryo-
genesis (6D), seed filling (13D, 20D), maturation drying (27D). 
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ylated fatty acids [25]. The cuticle of an impermeable soybean cultivar contains a dispro-
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ones. According to Shao et al. [25] and Ma et al. [24], the difference between hard and soft 
soybean seeds is based on the composition and continuity of the outermost seed cuticle 
and the presence/absence of small cracks in cuticles. A deficiency in hydroxylated fatty 
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in physical dormancy in M. truncatula [20]. A significant decrease in the content of very-
long-chain fatty acids (VLCFAs) affects the formation of seed physical dormancy in M. 

Figure 1. Seed coat of M. truncatula. (A). Scanning electron micrograph of epidermal cells, scale
bar = 10 µm. (B). Cross-sections of the seed coat at the stage of maturation before desiccation.
(C). Cartoons depicting cross-sections of seed coat development in different development stages:
embryogenesis (6D), seed filling (13D, 20D), maturation drying (27D).

2.2.1. Lipids

In legumes, such as alfalfa, seed permeability is regulated by changes in extracellu-
lar lipid biosynthesis [34]. Chemical composition analysis has shown that impermeable
soybean seeds contain more hydroxylated fatty acids than permeable seeds [25]. Chemi-
cal analysis identified a seed coat-specific cutin with unusual chemical composition that
lacks typical mid-chain hydroxylated fatty acids but is relatively rich in other types of
hydroxylated fatty acids [25]. The cuticle of an impermeable soybean cultivar contains a
disproportionately high amount of hydroxylated fatty acids compared with that of per-
meable ones. According to Shao et al. [25] and Ma et al. [24], the difference between hard
and soft soybean seeds is based on the composition and continuity of the outermost seed
cuticle and the presence/absence of small cracks in cuticles. A deficiency in hydroxylated
fatty acids may alter the cuticle layer permeability and is a possible explanation for the
change in physical dormancy in M. truncatula [20]. A significant decrease in the content of
very-long-chain fatty acids (VLCFAs) affects the formation of seed physical dormancy in
M. truncatula (Figure 2) [39]. Electronically driven micromanipulation (EDM) and (matrix-
assisted) laser desorption/ionization mass spectrometric ((MA)LDI-MS) analyses revealed
that the long-chain hydroxylated fatty acid (HLFA) content in the seed coat of the dor-
mant (wild) pea genotype (JI64) was significantly higher than in their counterparts treated
with micropeeling [40]. These results confirm the accumulation of HLFA in the outermost
layers (cutin).
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Figure 2. A proposed model for seed coat development in M. truncatula. The schematic model depicts
known and potential genes and other factors involved in physical seed dormancy in legumes.

2.2.2. Polyphenolics

Many genes related to polyphenol biosynthesis are expressed or even specifically ex-
pressed in the seed coat [34]. These genes include MYB–bHLH–WDR (MBW) transcription
factor complex as well as some structural genes. Polyphenols such as procyanidins and
anthocyanins also accumulate in the seed coat, especially in leguminous plants. Therefore,
their impact on the development of the seed coat has attracted attention.

The outer layer cells of the pea seed coat accumulate a large number of polyphenolic
compounds that can affect seed permeability when oxidized [5,10]. In pea seeds, the
excessive accumulation of gallocatechin in the hilum also alters the permeability of the
seed coat [41]. Normalized intensities of signals (NS) of particular polyphenols, namely
(epi) gallocatechin and luteolin, are significantly higher in the seed coat of non-dormant
(domesticated) genotypes than that in dormant (wild) genotypes [40]. When comparing
non-dormant and dormant recombinant inbred lines in chickpea, significant differences
were observed in the contents of phenolic acids and flavonoids [42].

2.2.3. Other Components

Physical dormancy is featured with tightly packed epidermal palisade cells. Irre-
versible cell wall loosening is an important step during seed germination followed by
water uptake [43]. Plant cell wall loosening and weakening of the seed coat are affected
by various factors and substances [44]. The maintenance of cell wall integrity is vital for
the formation of physical dormancy. Increased deposition of β-1,3-glucans (callose) and
β-1,4-glucans in the seed coat during seed maturation is associated with increased physical
dormancy [45,46].

Ca2+ is an important component of the cell wall and plays a significant role in physio-
logical plant regulation, stress tolerance, signal transduction, and cell membrane stability.
The Ca2+ content is significantly higher in the hard seed coat of wild species than that
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in the non-hard seed coat of cultivated soybeans; however, its exact function remains
unclear [47]. Understanding the structural and compositional features of the soybean
seed coat is essential for developing effective strategies to overcome seed dormancy and
improve germination.

2.3. Molecular Characteristics of Seed Coat

Research on seed development has primarily focused on embryonic development.
With an increased understanding of the importance of seed coats in seed growth and devel-
opment, and the advancement of sequencing technologies, multi-omics studies application
and other aspects of seed coats in different species have become increasingly prominent,
enhancing our understanding of seed coat development (Table 1).

To understand the mechanism of seed development in wild type soybean and mutants
with ruptured seed coats, transcriptomes of the seed coat at three stages were analyzed
and differential expressions of cell wall-related proteins between the wild type, and the
mutant seed coats were identified [48]. In addition to studies on the transcriptome of the M.
truncatula seed coat before [34,49], Fu et al. explored macrosclerid cells of the M. truncatula
seed coat at six different time points during seed development by anatomy and microarray
analysis [50]. Analysis of the anatomy, metabolomics, and transcriptomics of pea seed coats
revealed significant differences in surface texture, length of palisade layer cells, and seed
coat thickness between wild (dormant) and cultivated (non-dormant) peas, and 14 genes
possibly related to physical dormancy were predicted [5].

Gene expression in seed coats is dynamically complex. Histology, transcriptomics,
and metabolomics analyses can not only identify process-related transcriptional genes and
metabolite changes but also focus on biochemical pathways related to seed coats, thus
delineating candidate genes that affect seed coat development. Genes encoding Type I-
Inositol polyphosphate 5 phosphatase1 and E3 Ubiquitin ligase could be a preliminary
association with the desirable permeability characteristics by whole genome resequencing
of cultivated (soft) and wild (hard) soybeans [51]. Genome-wide association studies on
seven seed dormancy traits and three bioclimatic variables identified 136 candidate genes as
potential regulators of physical dormancy, most of which are involved in the biosynthesis of
secondary metabolites, cell wall modification, and hormone regulation in M. truncatula [52].
Bulked segregant analysis (BSA) revealed that seed water uptake is associated with the
candidate gene pectin acetylesterase 8 of a single major quantitative trait locus (QTL) on Pv03
in the common bean (Phaseolus vulgaris) [53]. By analyzing the isi2 mutant that absorbs
water from the lens groove, VsPSAT1 was identified as a candidate gene for reduced hard-
seededness in Vigna stipulacea [54]. In hairy vetch (Vicia villosa), key genes with a potential
role in hard-seededness, such as KNOX4 (a class II KNOTTED-like homeobox KNOXII gene),
qHs1 (endo-1,4-β-glucanase), and GmHs1-1 (calcineurin-like metallophosphoesterase), were
further explored based on genes involved in hard-seededness from other species to query
the transcriptome data [55].

Table 1. Sequencing studies of physical dormancy published in the past 10 years.

Species
No. of

Accessions
Studied

Accessions
Sequenced

Tissues and
Organs

Sequencing
Methods

Analysis
Performed

Potentially
Genes Reference(s)

Glycine max 2
Normal and

defective seed
coat

Seed coat

Illumina GaII
HiSeq2000

instruments (San
Diego, CA, USA)

RNA-Seq [48]

M. truncatula 1 A17 ecotype Macrosclereids
cells of seed coat Microarray HPLC-MS [50]

Pisum sativum 4 JI64, VIR320, JI92,
Cameor

seed coat
and pod

Illumina
HiSeq2000 RNA-Seq [5]
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Table 1. Cont.

Species
No. of

Accessions
Studied

Accessions
Sequenced

Tissues and
Organs

Sequencing
Methods

Analysis
Performed

Potentially
Genes Reference(s)

Glycine max 2

Glycine max
DS9712 (soft)
Glycine soja

DC2008–1 (hard)

Seed Whole genome
resequencing SNPs and InDels

Type I-Inositol
polyphosphate 5
phosphatase 1,

E3 ubiquitin
ligase

[51]

M. truncatula 10/178 10/178 Seed GWAS [52]

Phaseolus vulgaris 4 Seed coat BSA pectin
acetylesterase 8 [53]

Vigna stipulacea 384 F2 plants
wild-type and

another accession
JP252958

Whole genome
resequencing BSA VsPSAT1 [54]

Vicia villosa 2 Seed coat RNA-Seq KNOX4, qHs1,
Hs1-1 [55]

2.4. Mechanism of Seed Coat Development

In recent years, several genes that control physical seed dormancy have been identified
in soybean, M. truncatula, and pea (Table 2). In soybean, a single gene, GmHs1-1, was
found to primarily control the hard seed trait by crossing the permeable soybean variety
Williams 82 with two hard-seeded varieties, PI 468916 and PI 479752, resulting in a 3:1
segregation ratio of hard to non-hard seeds [47]. GmHs1-1 encodes a transmembrane
protein, calcineurin-like metallophosphoesterase. GmHs1-1 is primarily expressed in the
Malpighian layer of the seed coat and is associated with calcium levels [47]. Another
gene, GmqHS1, which is located adjacent to GmHs1-1 on soybean chromosome 2, also
regulates physical seed dormancy [46]. GmqHS1 encodes an endo-1,4-β-glucanase. When
GmqHS1 was introduced to the permeable soybean variety Kariyutaka, it resulted in the
accumulation of β-1,4-glucan outside the palisade layer cells, producing hard seeds [46].
This gene is likely involved in the accumulation of β-1,4-glucan derivatives, which enhances
the impermeability of soybean seed coats.

In M. truncatula, a forward genetic approach was used to screen a large tobacco
retrotransposon Tnt1-insertion mutant library to identify mutants lacking physical seed
dormancy. The KNOX4 gene, a class II KNOTTED-like homeobox gene, was found to control
physical seed dormancy [20]. The loss of the KNOX4 function in mutant seeds disrupts the
formation of the palisade cuticle layer, allowing the seeds to easily absorb water. One of the
downstream target genes of KNOX4, CYP86A, is a cytochrome P450 monooxygenase that is
involved in the biosynthesis of extracellular lipid esters. The cyp86a mutant seeds turned
blue when stained with methylene blue, indicating that the seed coat was permeable [20].
The functions of these genes have also been verified in mung bean (Vigna radiata) [26].

Another downstream target of KNOX4, β-ketoacyl-CoA synthase 12 (KCS12), was sig-
nificantly downregulated in knox4 mutant seeds, and kcs12 mutant seeds could absorb
water [39]. Chemical analysis showed a significant decrease in the monomers of C24:0
lipid esters in mutant seeds, indicating that KCS12 controls physical seed dormancy by
producing ultra-long-chain lipids in the seed coat [39].

Overall, research on seed physical dormancy has mostly focused on transcriptome
sequencing. Although some studies have been conducted on related genes, there is a
lack of deeper systematic mechanistic investigation. The further elucidation into the
inherent relationship between lipids and physical seed dormancy, the identification of
genes associated with seed permeability and impermeability, and further research at the
population level will help clarify the molecular mechanisms of physical seed dormancy.
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Table 2. Genes that regulate physical dormancy.

Gene Orthologs in
Arabidopsis Species Gene Loci Gene Function Causative Change

Gene
Identification

Methods
Reference(s)

GmHs1-1

Glycine max

Glyma.02g269500 Metallophospholipase Accumulation Ca2+ Mapping [47]

qHS1 Glyma.02g43680
(Glyma.02g269400) Endo-1,4-β-glucanase Accumulation

β-1,4-Glucan Mapping [46]

KNOX4 KNAT7 M. truncatula
Vigna radiata Medtr5g011070 A class II KNOX gene Change palisade

cuticle layer TAIL-PCR [20,56]

KCS12 KCS12 M. truncatula Medtr2g096210 β-Ketoyl CoA Synthase

Control the
production of

VLCFAs in seed
coat

Microarray [39]

2.5. Functions of Seed Coat

The seed coat of higher plants maintains seed integrity, protects the embryo from
mechanical damage, and extends the life of seeds in a natural environment for hundreds
of years [57–59]. The presence of a seed coat prolongs seed viability, especially for seeds
harvested in field conditions [60]. In addition, the seed coat also blocks various harmful
substances from the surrounding environment, improves seed resistance to fungi and
bacteria, and prevents microbial invasion [61–63]. Furthermore, the seed coat controls gas
exchange between the embryo and the environment, playing a key role in maintaining seed
persistence in soil seed banks [64,65]. The seed coat also helps seeds to avoid being eaten
by rodents, who prefer to detect seeds by smell [66].

Under natural conditions, many seeds germinate only under certain conditions (fa-
vorable moisture, high or low temperature, etc.) or after the seed coat has been worn
off [67–70]. In agricultural production, hard seed coats result in reduced germination rates,
increased seed usage, and increased agricultural costs. Therefore, breaking physical seed
dormancy is crucial for agriculture production [46,47].

Seed coats develop from the maternal ovule. When non-physical-dormant materials
are used as female parents and cross with hard (physical dormant) materials, the harvested
seeds are non-hard seeds like the female parent and are suitable for summer sowing,
whereas the seeds harvested in the next generation are hard seeds for seed overwintering.
For example, hybridization experiments with Lupinus angustifolius showed that F1 seeds
are non-hard seeds, while all F2 seeds, including those with homozygous non-hard seeds,
are hard seeds.

3. Plants Potentially Suitable for Molecular-Level Study of Physical Seed Dormancy

Currently, the most widely studied model plants for plant genome research are Ara-
bidopsis thaliana and rice (Oryza sativa). However, because Arabidopsis and rice seeds lack
an impermeable layer, they are not good model plants for studying physical seed dormancy.
In this review, we list several plant species that have been or have the potential to be used
for studying physical seed dormancy. Although some physical dormancy-related genes
have been identified, it is not known if they play the same roles in all species, even among
leguminous species.

3.1. Soybean (Glycine max)

Soybean is an important legume crop. Soybean is a main source of dietary proteins
and oil in animal feed and a staple food consumed by humans [71]. Wild relative Glycine
soja varieties have a hard seed coat, whereas cultivated soybeans have a permeable seed
coat, making the soybean an excellent research material for studying the role of physical
dormancy during domestication. With the completion of genome sequencing in Glycine max
and Glycine soja, the entire genome sequence libraries have been progressively improved,
greatly promoting the research on soybean domestication and physical dormancy [72,73].
At present, both HS1 and qHS1 have been found to have functions in wild varieties but not
in cultivated varieties, thus determining that they affect hard-seededness in soybean [46,47].
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3.2. Medicago truncatula

Seeds of the model legume M. truncatula are impermeable without any scarification
treatment, thus exhibiting typical physical dormancy. Using a shotgun sequencing strategy,
sequences of the euchromatic regions of the eight chromosome arms of the Jemalong
A17 ecotype of M. truncatula were determined [74,75]. Kaur et al. [76] used in situ Hi-C to
reassemble and annotate the genome of another widely used ecotype, R108, of M. truncatula.

To accelerate genetic discovery, M. truncatula has been subjected to chemical, physical,
and biological mutagens, including EMS, fast neutron bombardment (FNB), and transpos-
able elements of Nicotiana tabacum cell type 1 (Tnt1) [77–79]. The establishment of these
mutant resources has been instrumental for the discovery of the genes required for physical
dormancy. Currently, two key genes (KNOX4 and KCS12) that control seed physical dor-
mancy have been identified using M. truncatula as a research material, fully demonstrating
the advantages of M. truncatula in the study of physical dormancy [20,39].

3.3. Pea (Pisum sativum)

Pea is the second most important legume crop after soybeans and is a valuable source
of dietary proteins, mineral nutrients, complex carbohydrates, and fibers, providing signifi-
cant health benefits for humans [80]. Since the 18th century, pea has been used as a genetic
model. In 1866, Gregor Mendel revealed the laws of inheritance through genetic analysis
of different morphological pea types [81]. However, because of its large genome size
(1 C~4.45 gigabases, Gb), genomic research on pea has largely lagged behind that of other
legume species with smaller genomes, such as M. truncatula [74], Lotus japonicus [82], and
soybean [72]. In 2019, the genome sequence of seven chromosomes of the self-fertilizing pea
variety “Caméor”, characterized by its high protein content, was reported [83]. However,
when comparing repetitive DNA sequences in pea, soybean, and M. truncatula, there is
almost no sequence similarity between pea and soybean. Although the repetitive sequences
between pea and M. truncatula are more similar, their abundance is different [84]. Wild
pea species have typical physical dormancy, and potential genes related to physical seed
dormancy exist in cultivated pea varieties, which will help us understand the genetic and
molecular processes related to physical seed dormancy.

3.4. Chickpea (Cicer arietinum)

Chickpea is one of the most consumed legumes and the third largest legume crop after
soybean and pea. Its high nutritional and economic values make it extremely important
for food security, especially in developing countries where this crop is often grown in
nutrient-poor soils under harsh climatic conditions [85]. The genome of the chickpea variety
CDC Frontier was sequenced using a shotgun approach, and a genome of 300 Mbp was
determined and estimated to contain 28,269 genes [86]. In addition, using next-generation
sequencing platforms, artificial bacterial chromosome end sequences, and genetic maps,
520 Mbp of sequences covering 70% of the predicted 740 Mbp genome and approximately
27,571 genes were identified [87]. These data provide resources for the molecular breeding
improvement of chickpeas and insight into genomic diversity and domestication.

Compared to cultivated chickpea, the seed coat of wild chickpea has significantly
longer macrosclereid length and differences in lipidic substances [42]. QTL mapping
analysis revealed that chickpea LG1 and LG3 control seed filling and seed coat devel-
opment, thereby affecting seed shape, size, color, composition, and weight, which are
key factors in determining crop yield and quality [88]. Through the long-term evolution
and adaptation to extreme conditions, genes that confer tolerance to a range of abiotic
stresses, including drought and cold, have been identified in chickpea [89,90]. Through
an extreme domestication-related genetic bottleneck in chickpea, the genetic history of
wild populations was deciphered, and the adaptive traits of the ancestral protective seed
coat color were analyzed to estimate the influence of the environment on genetic structure
and agronomic traits and to demonstrate the agronomic differences between wild and
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cultivated species [91]. Therefore, chickpea is an essential germplasm resource for the study
of extreme genetic, domestication, breeding, and physical seed dormancy processes.

3.5. Alfalfa

As the most widely cultivated and used forage crop in the world, alfalfa has many
characteristics such as tolerance to cold, drought, salt, and alkali; wide adaptability; a well-
developed root system; and a strong regeneration ability. Alfalfa seeds also exhibit physical
dormancy, which causes uneven germination and seedling growth [92]. To overcome this
situation, some researchers use the corona discharge field to change the hydrophilicity
of alfalfa seeds [93], while others use multispectral imaging and multivariate analysis to
classify hard and soft seeds [92]. In practice, people coat seeds to improve yield by changing
the composition of the coating agent [94]. However, these methods are not only costly
and inefficient but also provide only temporary solutions. Solving the physical dormancy
problem of alfalfa seeds at the molecular level is the ultimate solution.

Previously, the exploration of the genetic and genomic resources of alfalfa relied pri-
marily on investigations into its close relative, the diploid clover, which has been sequenced.
However, because they are different species with different genomes, there are clear limi-
tations. Recently, by integrating high-fidelity single-molecule sequencing and Hi-C data,
a chromosome-level alfalfa genome was generated, consisting of 32 allelic chromosomes
identified using allelic gene recognition [95]. With the completion of alfalfa genome se-
quencing, research and molecular breeding of this important forage crop are expected to
accelerate. This reference sequence will accelerate our understanding of the molecular
basis of important traits, including physical dormancy, in agriculture and will support
crop improvement.

3.6. Hairy Vetch

Kucek et al. [96] quantified the magnitude of genetic and environmental effects on
physical dormancy among 1488 maternal hairy vetch plants from 18 diverse environments
to explore the relationship between physical dormancy and environmental conditions
during seed development. Tilhou et al. [97] reported a genome-wide association study
of 1019 hairy vetch individuals to evaluate the proportion of dormant seeds. A major
locus controlling seed dormancy was found (q-value: 1.29 × 10−5; chromosome 1: posi-
tion: 63611165), which can be used by breeding programs to rapidly reduce dormancy in
breeding populations [97].

4. Significances of Physical Dormancy

Physical dormancy of seeds is an adaptive feature for wild plant species. Physical
dormancy is considered an anti-predator trait that evolved in response to powerful selection
by small mammal seed predators [66]. Some studies suggest that not only predatory
pressure but also several other environmental pressures were involved in increasing the
fitness of species producing seeds with PY [98].

Field experiments have shown that physical dormancy reduces seed germination rates
and leads to a significant decrease in wild pea yield [99]. In the processing of plant oils and
soy products, physical dormancy affects seed oil yield and soy product quality [100,101]. In
most food legumes, seeds without physical dormancy absorb moisture more easily, making
them easier to cook [100,101].

Loss of physical seed dormancy is crucial for the domestication of many leguminous
crops and is one of the key traits for legume crop domestication [102,103]. In general, wild
leguminous plant seeds exhibit physical dormancy, whereas modern cultivated varieties
often lose physical dormancy [24,25,104,105]. In wild fruits, the loss of physical dormancy
is a basic characteristic that ensures seed dispersal. In cultivated fruits, people often
choose varieties with physical dormancy to reduce seed coat (fruit skin) breakage and
facilitate fruit harvest and storage [106,107]. Research on physical dormancy and other
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domestication-related changes in seeds will helps to enhance understanding of evolution
and domestication [108,109].

5. Conclusions and Perspectives

In this review, we discussed the developmental mechanisms of seed coats and their
composition, which influence physical dormancy, and suitable research materials for study-
ing this physiological phenomenon. Although physical dormancy has long been recognized,
it was not until 2015 that the first gene responsible for hard seededness was discovered
in soybean. Due to the lack of suitable research materials, there is much less research on
physical dormancy than on physiological dormancy in Arabidopsis and rice. With more
legume resources becoming available in recent years, some exciting studies on physical
dormancy have been reported, although many more remain to be investigated. Further
gene identification in this field in the future will provide more insight into the real mecha-
nisms of physical dormancy and provide more potential for legume crop improvement. In
the past, since the mechanism of physical dormancy is unclear, research on the relationship
of physical dormancy and plant pathogens is scarce. With more breakthroughs in physical
seed dormancy, the relationship between physical seed dormancy and plant pathogens
is another field to pay attention to. The use of genome editing technology is a promising
approach to improve the hard and fruity traits of leguminous forage seeds. With the
identification and characterization of more and more genes involved in physical dormancy
in model legumes, it is feasible to edit these genes in leguminous and other crops with
physical dormancy. The advantage of genome editing technology is that it can effectively
replace the long hybridization and screening process required for traditional domestication,
thereby shortening the domestication process.
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