
Citation: He, Z.; Chen, J.; Yuan, S.;

Chen, S.; Hu, Y.; Zheng, Y.; Li, D. Iron

Plaque: A Shield against Soil

Contamination and Key to Sustainable

Agriculture. Plants 2024, 13, 1476.

https://doi.org/10.3390/plants13111476

Academic Editor: Mariana Amato

Received: 25 April 2024

Revised: 14 May 2024

Accepted: 22 May 2024

Published: 27 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Review

Iron Plaque: A Shield against Soil Contamination and Key to
Sustainable Agriculture
Zeping He 1,†, Jinyuan Chen 1,†, Shilin Yuan 1, Sha Chen 1,2,3, Yuanyi Hu 4,5, Yi Zheng 1 and Ding Li 1,2,3,*

1 School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China;
hzping334748@163.com (Z.H.); slyuan2003@163.com (S.Y.); chensha@hut.edu.cn (S.C.);
z1277716629@outlook.com (Y.Z.)

2 Hunan Provincial Engineering Research Center of Lily Germplasm Resource Innovation and Deep Processing,
Hunan University of Technology, Zhuzhou 412007, China

3 Zhuzhou City Joint Laboratory of Environmental Microbiology and Plant Resources Utilization,
Hunan University of Technology, Zhuzhou 412007, China

4 State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China;
huyuanyi237@163.com

5 National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China
* Correspondence: liding@hut.edu.cn
† The authors contributed equally to this work.

Highlights:

What are the main topic discussed?
• Description of the formation process of iron plaque.
• The factors affecting the formation of iron plaque were summarized.
What are the implications of these discussions?
• Understanding the role of iron plaque in environmental processes.
• Insights into the interactions between iron plaque, plants, and microbes for environmental remediation.

Abstract: Soils play a dominant role in supporting the survival and growth of crops and they are
also extremely important for human health and food safety. At present, the contamination of soil
by heavy metals remains a globally concerning environmental issue that needs to be resolved. In
the environment, iron plaque, naturally occurring on the root surface of wetland plants, is found to
be equipped with an excellent ability at blocking the migration of heavy metals from soils to plants,
which can be further developed as an environmentally friendly strategy for soil remediation to ensure
food security. Because of its large surface-to-volume porous structure, iron plaque exhibits high
binding affinity to heavy metals. Moreover, iron plaque can be seen as a reservoir to store nutrients
to support the growth of plants. In this review, the formation process of iron plaque, the ecological
role that iron plaque plays in the environment and the interaction between iron plaque, plants and
microbes, are summarized.

Keywords: iron plaque; hydrophytes; heavy metals

1. Introduction

In the past few decades, the contamination of soils by heavy metals (HMs) has raised
worldwide concerns due to the intensive human activities on the environment [1–4]. For
instance, soils from the central area of Yueliangbao gold tailings (located in central China),
were found to be rich in Cu, Pb, Zn, Mn, Mo and Cd, of which concentrations were much
higher than that of these species in soils from the surrounding regions [5]. A total of 12 metal
pollutants, including As, Cr and Hg, etc., were detected in the sediments of the Fuyang
river system in north China, potentially risking local ecological safety and human health
based on analyses of the geo-accumulation index and Pearson’s correlation [6]. In Florida
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(the United States), As and Pb concentrations in urban soils exceeded the local criteria for
residential site soils by 2.1 mg kg−1 and 400 mg kg−1, respectively [7]. In the suburbs of
Multan, a city in east-central Pakistan, the contents of Cd, Cu, Mn, Ni and Pb in Brassica
rapa, which is commonly used as fodder for local animals, far exceeded the permissible
limits that the World Health Organization (WHO) prescribed for B. rapa as animal fodder,
resulting in high carcinogenic health risks to animals, as evidenced by the super high values
of the total target health quotient (TTHQ), which ranged from 47.22 to 136.64 (TTHQ > 1
is an indicator of carcinogenic food stuffs, according to the US Environmental Protection
Agency) [8].

Unlike organic pollutants that generally consist of carbon chains, HMs cannot be
decomposed or eliminated in soils via chemical and biological processes [9]. Thus, they
will be likely absorbed by plant roots from the soil. In plant tissues, an over-accumulation
of HMs will interfere with various metabolic processes, such as damaging the protein
structure, replacing essential metals in the biomolecules (e.g., pigments and enzymes),
retarding cell division, inactivating photosynthesis and respiration, thereby resulting in
significant inhibition of growth and loss of yields [10–15]. Accordingly, to safeguard
against toxic HMs, plants have developed several elaborate strategies in vivo, including
compartmentalization of HMs in cell organelles, inactivation of HMs by chelation with
organic ligands, exclusion of HMs by using specific transporters and ion channels [16].

Apart from the above-mentioned in vivo strategies, another in vitro one, i.e., IP, which
naturally occurs on the surface of wetland plant roots, was found to be effective in blocking
the uptake of HMs by roots from soils [17–21]. In fact, IP can be considered as a respiratory
by-product of plant roots grown in the submerged soils [22]. In this case, underground roots
are in water-logged conditions that usually lack gaseous oxygen. Through well-developed
aerenchyma, abundant oxygen is transferred from the overground tissues to the roots,
mostly acting as electron receptors in root cells. Meanwhile, some oxygen and reactive
oxygen species (ROS) that are generally produced along the respiratory chains may interact
with various Fe species from the soil to generate IP, gradually enveloping the surface of
roots. Because of the large surface-to-volume porous structure, IP often exhibits a high
binding affinity to metal ions and hence can act as a sink for HMs and physically insulate
HMs from the surface of roots [23].

To date, it is widely acknowledged that IP plays a pivotal role in safeguarding hy-
drophytes against HM toxicity. Therefore, comprehending the formation process and
environmental functions of IP holds great significance for soil remediation. This review
focuses on elucidating the mechanism underlying IP formation and its impact on impeding
HM uptake by hydrophytes. Additionally, we discuss the effects of IP on soil properties
and plant growth as well as the interactions between plants, IP and microbes.

2. Characteristics of IP
2.1. Discovery of IP

The discovery of IP could be traced back to as early as the 1960s. Armstrong (1967) [24]
found that in two plant species (Menyanthes trifoliata and Molinia coerulea), the root oxidizing
activity was the highest at the root apex, and gradually diminished towards the root base.
Concomitantly, iron oxide deposits were formed to substantially accumulate around the
root apical region, and once more, to gradually diminish towards the root base. However,
it is worth noting that the apical region itself was commonly free of iron oxides because this
region exhibited the greatest oxidizing activity, causing the oxidation of ferrous iron to occur
at some distance from the root tip [24]. Later, Bacha and Hossner (1977) [25] demonstrated
a positive correlation between the contents of iron precipitates formed on the roots of rice
plants (Oryza sativa ‘Brazos’) and the initial concentrations of ferrous chloride added in
soils. Moreover, they used the techniques of scanning electron microscopy (SEM) and X-ray
diffraction (XRD) to examine the morphology and mineral structure of iron precipitates on
the rice roots, showing that these iron precipitates corresponded to the poorly crystalline
lepidocrocite (γ-FeOOH). By far, numerous studies have shown that IP can be considered
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as a natural armor to protect wetland plants (e.g., rice, reed and Typha, etc.) from HMs
(Table 1), whilst also benefiting from adsorbing nutrients from soils [26–30]. Furthermore,
IP can help rush plants survive in strongly acidic soils, where the concentration of inorganic
carbon is commonly lower than that of natural soils [27]. Specifically speaking, it acts as a
carbon sink to fix organic compounds exudated by rush roots, thereby allowing the rapid
bacterial recycling of carbon elements back to plants. As a result, IP enabled rush roots to
have access to relatively high concentrations of carbon sources that are required for growth
metabolism (e.g., photosynthesis) in low-carbon soils [27].

Table 1. The species of HMs that were reported to be blocked by IP.

Plants. HMs IP Composition Reference

Typha latifolia As

Ferrihydrite (Fe2O3.nH2O)
Lepidocrocite (γ-FeOOH)

Goethite (α-FeOOH)
Siderite (FeCO3)

Hansel et al. (2002) [31]

Phalaris arundinacea As
Ferrihydrite (Fe2O3.nH2O)

Goethite (α-FeOOH)
Siderite (FeCO3)

Hansel et al. (2002) [31]

Phalaris arundinacea Mn, Pb, Zn
Ferrihydrite (Fe2O3.nH2O)

Goethite (α-FeOOH)
Siderite (FeCO3)

Hansel et al. (2001) [32]

Typha latifolia Zn, Pb, Cd Not mentioned Ye et al. (1998) [33]

Oryza sativa L. As Not mentioned Deng et al. (2010) [34]; Lee et al. (2013) [35];
Xiao et al. (2020) [36];

Oryza sativa L. Cd Not mentioned Liu et al. (2007) [37]

Oryza sativa L. As Not mentioned Deng et al. (2010) [34]; Lee et al. (2013) [35];
Xiao et al. (2020) [36];

Oryza sativa L. Cd Not mentioned Liu et al. (2007) [37]
Oryza sativa L. Cu, Ni Not mentioned Greipsson and Crowder (1992) [38]

Oryza sativa L. Cr Not mentioned Zandi et al. (2020) [39]; Xu et al. (2018) [40];
Xiao et al. (2021) [41]

Oryza sativa L. Zn, Cd Not mentioned Xu and Yu, (2013) [42]
Pistia stratiotes L. Cd Not mentioned Singha et al. (2019) [43]
Iris pseudacorus Cd Not mentioned Ma et al. (2020) [18]

Spartina alterniflora Cu, Zn, Pb, Cr Not mentioned Zhang et al. (2020) [44]; Xu et al. (2018) [45]

2.2. Mineral Composition of IP

Chen et al. (1980) [46] proposed that when the oxidation of Fe(II) by O2 occurred,
the formed iron oxide, FeOOH, was incipiently precipitated on the epidermal cell wall of
rice roots. As the outermost cell wall decomposed, the FeOOH particles began to fill the
cellular spaces to generate polyhedral casts [47]. Now, it is generally accepted that IP can
be separated into two classes, i.e., amorphous and poorly crystalline IP, and the changes
in environmental conditions such as redox potential (Eh), pH and Fe(II) concentration
may favor the transformation between them. For instance, the crystallinity of IP that
occurred on the roots of Spartina alterniflora increased with the Fe(II) concentration in the
soil [48]. Crystalline IP mainly consists of iron oxides [32,49,50]. In the natural environment,
there are at least 16 iron oxide counterparts (Table 2) but in most cases, only ferrihydrite
(Fe2O3·nH2O), goethite [α-FeO(OH)] and lepidocrocite [γ-FeO(OH)] are believed to be
the major components of crystalline IP [32], while sometimes, minor amounts of siderite
(FeCO3) are also present in it [31].



Plants 2024, 13, 1476 4 of 23

Table 2. The iron oxides and hydroxides [49].

Oxides Hydroxides and Oxide-Hydroxides

Hematite α-Fe2O3 Ferrihydrite Fe2O3·nH2O
β-Fe2O3 Goethite α-FeOOH

Maghemite γ-Fe2O3 Lepidocrocite γ-FeOOH
ε-Fe2O3 Bernalite Fe(OH)3

Magnetite Fe3O4 (Fe2+Fe3+
2 O4) Akaganéite β-FeOOH

Wüstite FeO δ-FeOOH
Feroxyhyte δ′-FeOOH

High pressure FeOOH (laboratory compound)
Fe(OH)2

Schwertmannite Fe16O16(OH)y(SO4)z·nH2O
Green rusts: Fe3+

x Fe2+
y (OH)3x+2y−z(A−)z; A−= Cl−;1/2SO2−

4

The reddish-brown ferrihydrites, regardless of the natural and synthetic ones, are
poorly crystalline iron oxide-hydroxides [49]. According to XRD patterns (the number
of peaks in XRD spectra), ferrihydrites can be basically classified into five types: 2-line,
3-line, 4-line, 5-line and 6-line one, among which the 2-line and 6-line are seen as the
two extremes of the crystal order for ferrihydrites, and are more prevalent than others in
the environment [49]. As structural crystallinity increases, the 2-line ferrihydrite shows
two reflections while the 6-line one displays six–eight reflections in the XRD spectra.
Environmental reaction conditions play a significant role in shaping the crystallinity form
of ferrihydrites. For instance, the crystalline lattice order decreases as the rate of Fe(III)
hydrolysis increases, and as the concentration of silicate or soil organic anions increases [51].

The yellow-brown goethite, occurring throughout the global ecosystem, is one of the
most thermodynamically stable iron oxides at environmental temperatures. Structurally,
goethite is characterized by double chains of Fe octahedra, which are formed by edge-
sharing and oriented parallel to the crystallographic direction. Within each octahedral unit,
the Fe(III) cation is octahedrally coordinated by three O2- anions and three OH- anions.
Notably, the orthorhombic symmetry of goethite arises from the alternating arrangement
of these double chains of Fe octahedra with double chains of vacant lattice sites [52]. In
the idealized structure of goethite, the bond lengths between the Fe(III) cation and the
surrounding oxygen atoms, denoted as d(Fe-O), exhibit two distinct values: 1.95 Å for
three oxygen atoms and 2.09 Å for the remaining three oxygen atoms [53,54]. Moreover,
the distinctive edge-sharing and double chain arrangement of the Fe octahedra in goethite
give rise to three unique Fe-Fe distances, d(Fe-Fe), specifically 3.01 Å for two edge-sharing
Fe atoms, 3.28 Å for another set of two edge-sharing Fe atoms and 3.46 Å for four Fe atoms
sharing double corners [55].

Lepidocrocite (γ-FeO(OH)) is a naturally occurring iron oxide mineral widely dis-
tributed in the environment, playing a crucial role in the geochemical cycling of iron
elements. The structural characteristic of lepidocrocite is the presence of double chains
composed of FeO6 octahedra that share edges, parallel to the crystallographic c-axis. These
chains are held together by hydrogen bonding between the oxygen atoms of the octahe-
dral units. In each octahedral unit, the Fe(III) cation is coordinated by five O2− anions
and one OH- anion, with varying Fe-O bond lengths which reflect the different bonding
environments of the oxygen atoms [49]. Lepidocrocite is known for its ability to adsorb
various cations and anions from water, making it useful in natural water purification [56].
Additionally, lepidocrocite often coexists with goethite and other iron oxides in nature, also
playing a critical role in the cycling of trace elements except for iron [57].

It should be noted that different types of iron oxides coexist in the natural synthesis
process of IP, and they interact and transform with each other, ultimately forming a reddish-
brown film on the roots of plants.
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2.3. Formation of IP

Iron exists as an abundant transition metal element in the environment. As shown
in Figure 1, in the early stage, after redox by root exudates and microbes, the iron ele-
ments (including different valence states) in the rhizosphere are transformed into soluble
Fe(II). Then, O2 is supplied by radical oxygen loss (ROL) through the aeration tissues
(aerenchyma), creating an oxygen-rich zone. In the middle and late stages, through the
equation of 4Fe(II) + 10H2O + O2 → 4Fe(OH)3 + 8H+ [58–60], Fe(II) is transformed into
iron oxide, which precipitates on the surface of the roots, thus forming IP and protecting
plant roots from HMs via adsorption.
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Figure 1. The formation process of IP. Through various oxidation-reduction processes occurring outside
the root (shown as cross-section), a large amount of soluble Fe(II) is formed, which is readily oxidized
by dissolved oxygen in soils. According to the equation of 4Fe(II) + 10H2O + O2→ 4Fe (OH)3 + 8H+, this
results in the rapid precipitation of iron oxide on the surface of roots.

Previous studies have shown that IP is more likely to occur in acidic pH environments [61,62].
After a series of redox reactions, it ultimately precipitates on the root surface in the form
of Fe2O3 or Fe(OH)3 [20]. Interestingly, the distribution of IP on the root surface is not
uniform. IP is principally found in the elongation and root-hair zones of plant roots but is
rarely observed in young lateral roots or newly formed roots [26,63]. This may result from
the continuous growth of roots during plaque formation, where the older sections of the
root (the root base) are exposed to plaque accumulation for more extended periods, thus
fostering a more pronounced formation of IP [59].

A wide variety of plants were proven to form IP, comprising underwater plants,
emergent plants, terrestrial plants in aquatic environments, and so on. Representatives of
these plants are Oryza sativa, Camellia sinensis, Iris pseudacorus, Canna indica, Rhizophoraceae,
Acorus gramineus L., Jumex bulbosus, Pistia stratiotes L. and Elodea canadensis [17,18,43,64]. The
occurrence of IP is a naturally spontaneous phenomenon in the environment, influenced
by a number of abiotic and biotic factors, such as soil properties, moisture levels, root
oxygenation capacity, and so on (Figure 2) [65,66].
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2.3.1. Effect of Abiotic Factors on the Formation of IP
Soil Properties

The physiochemical properties of soils, including texture, organic matter (OM), pH,
reduction potential (Eh) and elemental composition, exert significant and diverse influences
on the formation of IP. Specifically, soil texture can influence IP formation by altering plant
root growth, soil porosity, and the transport of rhizosphere elements. Notably, soils with
lower clay content tend to favor the deposition of kinin on root surfaces compared to soils
with higher clay content, as demonstrated by Chen et al. (1980) [46].

OM is an important soil component, comprising a wide variety of multifunctional
groups derived from the decomposition residues of plants and animals. The degradation
of OM facilitates the development of anaerobic or hypoxic conditions in the rhizosphere,
hence creating favorable circumstances for root-oriented IP formation. Moreover, OM
exhibits a great impact on the adsorption and migration behaviors of metallic elements in
soils [67]. For instance, OM can effectively chelate more iron from its biogeochemical cycle,
causing its accumulation at a higher level in the form of Fe(II) within the rhizosphere to be
translocated in flooded environments [67].

The pH of soils significantly affects the concentrations of soluble Fe(II) and Mn(II)
in soils, which are indispensable ingredients for IP aggregation via oxidation [62,68,69].
Under acidic circumstances, substantial amounts of iron and manganese are present in the
form of soluble Fe(II) and Mn(II) in soils, which are favorable to IP formation, whereas,
under alkaline circumstances, iron and manganese primarily exist as metallic hydroxides,
which are not in favor of their further oxidation.

The Eh value takes charge of Fe(II) concentrations within the rhizosphere by influenc-
ing the diffusion rate of iron in soils [70]. Christensen et al. (1998) [71] found that in the
soil sediments with appropriate Eh values, reduced forms of iron and manganese readily
diffused toward the root surface. Then, the oxygen released by the roots triggered the
oxidation of these elements into oxides on the root surface. Yang et al. (2012) [72] reported
that in the soils adjacent to the hydrophyte rhizosphere, the Eh value was less than +50 mV,
which was insufficient to gather enough Fe(II) ions to be oxidized within the rhizosphere.
By contrast, Masscheleyn et al. (1991) [73] suggested that oxygen released from the roots
could increase Eh values to at least +100 mV within the rhizosphere, benefiting a densified
Fe(II) concentration for the further development of IP on the roots.
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Non-metallic elements in the rhizosphere also have an effect on IP formation. Selenium
(Se) and arsenic (As) are ubiquitous metalloids in natural soils, usually occurring with other
metals in the form of oxides (e.g., selenite, SeO3

2− and arsenite, AsO3
3−) [74]. Se could

largely induce the response to oxidative stress in plants, resulting in an increase in the
concentration of ROS in the roots and further stimulating the development of IP to inhibit
the uptake of HMs [28,35,75]. Also, Se0 was found to facilitate the process of ROL in rice
tissues, which was beneficial to advance IP formation on the roots [76]. Similarly, previous
studies indicated that the exposure of As to the roots of hydrophilic plants advanced the
development of IP, also by responding to the oxidative stress to generate a large amount
of ROS, such as H2O2 and O2− [35,75]. In addition, phosphorus (P) not only stands as
a critical nutrient for plant growth but also impacts the biogeochemical cycles of iron in
soil ecosystems [77–80]. The bioavailability of phosphorus in soils can affect the microbial
community structure and activity, which play an important role in iron oxidation [81,82].
Furthermore, the addition of sulfide compounds in soils, e.g., hydrogen sulfide (H2S), can
increase the root oxidation capacity of plants [59]. Rice plants grown in both soil pot and
hydroponic settings supplemented with H2S, ranging from 2.64 to 5.28 mM, promoted
the formation of IP Also, this concentration range of H2S enhanced rice growth, including
seedling vigor, root length and the dry weights of roots and shoots [83,84]. However, it
should be noted that in freshwater sediments, the excessive amount of H2S may not favor
IP development on plant roots because H2S would chemically precipitate iron into the
insoluble form of FeS and FeS2 [85,86].

Irrigation Regime

The different irrigation regimes give rise to different consequences concerning the
synthesis of IP on root surfaces [87]. Excessively waterlogged soils will hinder the formation
of IP. For example, continuous flooding has proven to significantly increase the population
of Fe-reducing bacteria (FeRB), thus accelerating the reduction reaction of iron oxides
around the root surface [21]. Therefore, a rational irrigation regime is important for creating
a favorable environment for the accumulation of IP on the root surface [87]. Commonly,
periodic flooding regimes can facilitate the conversion of IP from the amorphous form to
the crystalline one [88–91]. This is because, in comparison to continuous flooding, periodic
flooding (intermittent wetting and drying cycles) speeds up water movement in soils,
stimulating bacterial growth and increasing the oxygen bioavailability [92,93]. Hence,
under periodic flooding conditions, the amorphous iron was more likely to be transformed
into the crystalline one within the rhizosphere soils with the abundant Fe-oxidizing bacteria
(FeOB) and oxygen sources, thereby promoting the crystalline ratio of IP [94,95].

Other Factors

It is crucial to highlight the significance of planting density in maintaining soil health,
recognizing that it is merely one of the numerous influencing factors. When considering
planting density, it is evident that it plays a pivotal role in shaping the soil’s condition.
Similarly, like other influencing factors, plant density has the potential to influence the Eh
level of the soil and facilitate the formation of IP. This occurs because the roots of plants
release additional oxygen into the soil when they are planted closer together. This extra
oxygen not only enhances soil quality but also encourages the formation of IP. Therefore,
when aiming to promote soil health and IP formation, it is imperative to consider planting
density alongside other influencing factors, as supported by Christensen et al. (1998) [71]
and Tripathi et al. (2014) [96].

The formation of IP is greatly augmented when exposed to combined HMs stress,
rather than individual HMs stress. A recent study, conducted by Shen et al. (2021) [97],
demonstrated that the presence of multiple HMs significantly enhances IP formation at
the apical, middle, and basal regions of the root, with a gradual increase in formation over
time. When mangrove plants are subjected to combined stress from Cu, Pb and Zn, they
exhibit increased metal tolerance, which is associated with the substantial thickening and
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increased lignification and suberization of the exodermis. This enhanced lignification and
suberization of the exodermis effectively delay the penetration of metals into the roots,
thereby aiding in enhanced tolerance to heavy metals [98]. Furthermore, the deposition of
increased lignin within the exodermis leads to a reduction in ROL emitted from mangrove
roots [99]. The formation of IP on the root surfaces of mangrove plants is intricately
intertwined with root ROL, as observed by [100] and Dai et al. (2017) [81].

Biochar, a carbon-rich and porous substrate, exhibits the ability to adsorb organic com-
pounds and nutrients from the soil, thereby enhancing its fertility [101]. This adsorption
capacity may influence the concentration of iron ions in the soil, potentially affecting the
formation of IP. By fortifying biochar with iron (referred to as DCB-Fe), it significantly
augments its specific surface area and enhances its surface functional groups, leading to
an increase in its adsorptive capacity for heavy metals (HMs) [48,102]. The incorporation
of biochar into soils is considered an environmentally friendly strategy to mitigate soil
contamination, enhance phytoremediation, and reduce health-related hazards. The remedi-
ation efficiency of biochar in soils depends on various factors such as soil pH, HM content
and porosity [15].

Biochar amendments were observed to increase pH and phosphorus levels in soil pore
water, resulting in an elevation of IP formation on the root surface. This elevation was
shown to reduce concentrations of Cd, Zn and Pb in rice shoots by up to 98%, 83% and 72%,
respectively [103]. Similarly, laboratory experiments using nano-Fe3O4-modified biochar
have demonstrated that its application promotes IP formation, thereby enhancing the root
barrier against Cd [48].

Recent studies have shown that biochar derived from rice straw can be used to reduce
Cd, Pb and Zn accumulation in rice shoots. However, it simultaneously increases As
content. This increase in As content may be attributed to a decrease in soil pH, which
promotes the conversion of As(V) to the more soluble and toxic As(III) form [103,104].

2.3.2. Biotic Factors Effect on IP Formation

Apart from abiotic factors, it is generally acknowledged that numerous biological
elements are capable of either directly or indirectly influencing the formation of IP. These
influential factors span a wide spectrum, encompassing aspects such as microbial activ-
ities [76,105–107], durations of root oxidation [100], the presence and nature of root exu-
dates [108], enzymatic activity within the plant [24], the genotypic variety of the plant [109],
as well as the specific cultivar and age of the plant [110]. These factors collectively con-
tribute to the ecological dynamics that govern IP formation on plant roots.

Expanding on this foundation, the species and genotypes of plants significantly in-
fluence the formation of IP, particularly through their impact on radial oxygen loss (ROL).
Diverse hydrophytes, including Typha latifolia L., Phragmites communis L., and Oryza sativa
L., exhibit varied capabilities in forming IP [111]. For instance, in rice, variations in IP
formation among different genotypes and varieties are attributed to disparities in oxy-
gen secretion capacity. These differences critically affect the plants’ ability to oxidize
and precipitate iron around their roots, thereby influencing the extent and nature of IP
formation [35,39,112,113]. This highlights how specific biological traits of plants can in-
teract with their environment to modulate their physiological responses and adapt to
varying conditions.

Radical Oxygen Loss (ROL) Facilitated by Aeration Tissues (Aerenchyma)

Aerenchyma, a plant tissue featuring thin walls and sufficient intercellular spaces, serves as
the primary conduit for oxygen transport from above ground to below ground, which is gener-
ally classified into two types: schizogenous and lysigenous aerenchyma [63,114]. Schizogenous
aerenchyma forms gas spaces through cell separation and differential cell expansion, while
lysigenous aerenchyma results from the death and lysis of specific cells in cereal crops like
rice [115], maize [116], wheat [117] and barley [118].
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Aerenchyma plays a crucial role in the growth of wetland and IP formation due to its
interconnected intercellular spaces, which form an efficient ventilation system facilitating
gas exchange [119]. This system enables the transfer of oxygen produced during photosyn-
thesis to the roots, while also providing buoyancy and structural support to the plant [120].
For instance, Hydrophytes, such as rice, utilize aerenchyma to transport captured oxy-
gen to the roots for metabolic activities and distribute the remaining oxygen to the entire
rhizosphere through pressurized ventilation or simple diffusion [28,121]. Beyond that,
species like Cyperus alternifolius L., subsp. flabelliformis, Myriophyllum spicatum L., Vallisneria
spiralis L., and Juncus effusus L. develop aerenchyma to preserve air and release oxygen
from their roots into the rhizosphere. This process leads to the transformation of hazardous
dissolved substances into less toxic, insoluble, or unabsorbed forms (Fe3+, FeOOH, Mn3+,
NO3−) [122,123].

Under anaerobic conditions, aerenchyma provides a diffusion pathway that reduces
the resistance of oxygen transport from the plant’s above-ground parts to the flooded
or oxygen-deficient roots, ensuring the metabolic needs of the roots and contributing to
ROL [76,124–126].

ROL stands as one of the most pivotal processes that trigger the formation of IP and
oxidized root channels [79,112]. ROL was demonstrated to exert a substantial influence on
the pH, Eh and the balance between Fe(II) and Fe(III) in the rhizosphere [127]. Through
ROL, plants can effectively release or diffuse oxygen into the rhizosphere [128]. Conse-
quently, Fe(II) readily undergoes oxidation to Fe(III) and precipitates onto the root surface
in the form of hydroxide or hydroxyl oxide, thus giving rise to Fe plaque [20,99,129–131].
ROL is regulated by oxidation-reduction reactions mediated by ROS, and different wet-
land plant species exhibit varying root porosity and ROL rates [13,132]. Research has
shown that rice genotypes with higher ROL rates have a more pronounced impact on
pH, Eh and the balance between Fe(II) and Fe(III) in the rhizosphere. This results in the
formation of a more extensive Fe plaque on the root surfaces compared to genotypes with
lower ROL rates [127]. This underscores the significant role of ROL in plaque formation.
Furthermore, Bravin et al. (2008) [133] established that the ROL capacity of rice roots and
the soil’s buffering capacity are crucial factors affecting oxidation-reduction changes in
the rhizosphere.

Hydrophyte Oxidative Systems

Hydrophyte roots possess a robust oxidation system capable of oxidizing metal ions
present in the environment. This system, owing to its ability to form IP, protects the
root zone from harmful substances. The oxidation system comprises root exudates and
enzymatic activities of plant root [134]. They both reduce the Fe(III) into soluble Fe(II) in
the rhizosphere, preparing Fe(II) for IP formation [135].

Root exudates are essential components of the oxidative secretions released by plants,
playing a critical role in the transformation and mobility of Fe and Mn [136]. Root exudates
(organic acid, phytosiderophores, etc.) were also documented to mitigate HM toxicity, in-
cluding Al, Zn and Cd, through the exudation of glyoxylic, oxalic, and formic acid [137–142].
For instance, the oxalate content in the roots was observed to increase upon treatment with
Pb in Pb-resistant rice varieties, as demonstrated by Yang et al. (2000) [143], highlighting
its potential for HM blocking. Furthermore, excessive organic acids can be enzymatically
decomposed into harmless CO2 and H2O2, as reported by Ando et al. (1983) [144] and
Emerson et al. (1999) [105].

Enzymatic activities play an important role in oxidating Fe(II) [145]. The enzymatic
antioxidant system maintains a delicate balance between the production and removal of
ROS. ROS, comprising superoxide anion (O2−), singlet oxygen (1O2), hydrogen peroxide
(H2O2) and hydroxyl radical (OH), are prevalent in plant cells [146]. They play a vital role
in cellular metabolism and signal transduction. However, the excessive ROS production
in plants causes oxidative stress and damage to biological molecules under stress (HMs,
slat or abnormal temperature), leading to cellular dysfunction or death [147]. In this case,
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the activity of the enzymatic antioxidant system is accelerated. The superoxide dismutase
(SOD) and catalase (CAT) activities involved in the elimination of ROS are activated [148],
resulting in a large amount of O2, which is beneficial to create an oxidizing environment in
the rhizosphere [147].

Fe-Reducing and Fe-Oxidizing Bacteria

The oxidation of iron can occur through two distinct pathways in nature: chemically
driven and biologically driven oxidation, which is decided by the concentration of oxygen.
The former is primarily driven by chemical catalysts (≥275 µM), while the latter, is domi-
nated by microbial activity (≤50 µM) [147,149–152]. Therefore, in an anaerobic or anoxic
environment, biologically driven iron oxidation predominates in IP formation. Among all
the microbes, iron-oxidizing bacteria (FeOB) and FeRB serve as the primary driving force
in the vicinity of wetland plant roots.

FeOB can be classified into four types [152], namely acidophilic aerobic, neutrophilic
microaerobic, anaerobic phototrophic, and nitrate-reducing [153], which significantly im-
pact the kinetics of Fe(II) oxidation and oxygen consumption at the anoxic interface around
the roots [154]. The acidophilic aerobic and neutrophilic microaerobic Fe(II)-oxidizers
contribute the most during the IP formation [155]. Two distinct types of FeOB synergisti-
cally function in wetland and flooded environments, imparting numerous advantageous
effects and contributing to the formation of IP under anaerobic conditions. Neutrophilic
microaerobic Fe(II)-oxidizers were initially discovered by Ehrenberg in 1836 and subse-
quently purified and isolated in the 20th century [156]. These bacteria have since emerged
as crucial model organisms for investigating Fe(II) oxidation and associated environmental
processes [157]. They are commonly found in neutral environments, including soil, the
aerobic–anoxic interface of redox-stratified aquatic systems, plant rhizospheres, groundwa-
ter flow zones and deep-sea sediments. Under these neutral microaerophilic or anaerobic
conditions, they utilize Fe(II) as an electron donor and O2 as an electron acceptor, while
organic or inorganic carbon sources facilitate their growth [158]. Consequently, the pre-
cipitation of Fe(III) occurs on the root surface in the form of FeOOH along with other
elements. Acidophilic iron-oxidizing bacteria was first isolated by Colmer and colleagues
in 1947 [159]. These bacteria typically inhabit acidic environments with a pH range of
1.0–4.0 [160], such as acid leachate, acid mine drainage (AMD), deep-sea hydrothermal
vents, and hot springs that are abundant in iron, sulfur, and other metallic elements. Within
these acidic habitats, Fe(II) remains stable and bioavailable for microbial utilization, en-
abling iron-oxidizing microorganisms to outcompete oxygen-mediated abiotic oxidation
processes for acquiring Fe(II). Consequently, they thrive by utilizing elemental S or Fe(II)
as electron donors while employing O2, SO4

2−, or NO3
− as electron acceptors [161]. Addi-

tionally, organic or inorganic carbon serves as their carbon source. In a study on reeds, the
presence of acidophilic FeOB not only enhances the formation of IP but also diminishes
the uptake of Fe and Mn by the reeds. It is postulated that FeOB facilitates IP formation in
acidic environments, thereby indirectly impeding heavy metal absorption [162].

FeRB accounts for 12% of all rhizosphere bacteria and are dominant members in the
rhizosphere microbial community, along with the FeOB [163]. They utilize hydrogen (H2)
and acetic acid as electron donors to reduce Fe(III) to Fe(II) under anoxic conditions [164].
This makes IP an ideal electron acceptor for FeRB [165], decreasing iron precipitation by
influencing both Fe reduction and Eh in soil [47]. Beyond that, the presence of FeRB in
mangrove wetland sediments could potentially impact the phase transition of iron oxide.
In a controlled climate chamber experiment conducted by Zhang et al. (2023) [166], it
was observed that inoculation with FeRB strain Pseudomonas sp. SCSWA09 significantly
decreased IP formation on the roots of Kandelia obovata seedlings, particularly reducing
amorphous IP. This reduction can be attributed to the ability of FeRB to expedite the
transformation from amorphous ferrous/ferric hydroxide into crystalline forms, suggesting
their influence on IP generation and implying a potential acceleration of active iron cycling
in the rhizosphere.
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It is important to note that the formation of IP is regulated by a complex biological
system involving interactions between biotic and abiotic factors. For instance, secretions
from wetland plant roots (such as glucose, glycine, citrate and malate) are oxidized by
microorganisms into carbon dioxide, which can impact the pH of the rhizosphere [167]. Ad-
ditionally, an oxidation reaction occurs outside the cell wall and produces protons, thereby
influencing the pH of the soil [168]. Similarly, Johnson-Green and Crowder (1991) [169]
reported significant differences in Fe solution pH after exposure to axenic and non-axenic
seedlings. This suggests a weak trend of competition between iron-oxidizing bacteria
and chemical oxidation of Fe(II) at low pH levels. Under such conditions, Fe oxidation
kinetics are relatively slow (<4), but acidophilic FeOB like Thiobacillus ferrooxidans may
enhance Fe oxidation kinetics and contribute to IP formation [105]. Therefore, there could
be interactions among plants, environmental substances, and microbes during this process.

2.4. IP as an Armor for Metal Transfer in Plants

After decades of extensive research on IP, numerous significant discoveries were
made regarding the presence of IP, which effectively enhances plant resistance against
HM toxicity in soil. In the case of rice, Greipsson and Crowder (1992) [38] observed that
exposure to 0.5 mg·L−1 Cu(II), 2.0 mg·L−1 Ni(II) and a combination of Cu(II)+Ni(II) resulted
in chlorosis and necrosis in non-IP rice plants, whereas IP rice plants exhibited no signs of
toxicity throughout their growth period. In rice exposed to excessive Zn and Cu [170], IP
positively impacted the dry weight of shoots and roots, leaf and root length, and reduced
the occurrence of chlorotic leaves when exposed to excessive Cu [96]. Moreover, under Cd
stress, the concentration of Cd(II) in the root and bud as well as the transfer of Cd(II) from
root to bud in rice with IP decreased by 34.1%, 36.0% and 20.1%, respectively, compared
to rice without IP [17]. As is a highly toxic and carcinogenic metallic substance that can
be readily absorbed by rice in significant quantities [171]. The presence of IP effectively
inhibits As uptake by roots, thereby reducing its accumulation in brown rice [172]. More
surprisingly, IP can also oxidize As(III) to the less toxic As(V), thus reducing the toxicity of
As to plants [78,173]. It should be noted that when As is oxidized to arsenate by oxygen, IP
will reduce absorption [96,113], which may be due to their different structure, resulting in
different binding capabilities or ways to IP [174]. Li et al. (2016) [66] selected three distinct
types of paddy soils, denoted as C, D and N, and artificially manipulated the effective
concentrations of Pb by adding 0 mg/kg, 150 mg/kg and 300 mg/kg Pb(II) to soils C, D and
N, respectively. Despite higher effective concentrations of Pb in soils D and N compared to
soil C, rice plants exhibited significantly lower levels of Pb absorption in these soils. This
phenomenon is attributed to a substantial presence of IP coating on the surface of rice roots
which effectively reduces the mobilization of Pb in both soil types D and N. These findings
suggest that IP generally acts as a protective barrier against toxic metals while enhancing
plant growth [175].

Currently, numerous studies have been conducted on the mechanism of IP blocking the
absorption of HMs by plants [176]. Chemically, most plant roots possess a negative charge,
enabling them to adsorb positively charged HMs [177]. The presence of IP physically
obstructs the interaction between roots and positively charged HMs [178,179]. Moreover,
due to the abundant functional groups present in iron hydroxides, IP can effectively
sequester metal(loid)s through adsorption and/or co-precipitation processes. Consequently,
this may influence the availability of metal(loid)s in the rhizosphere and subsequently
impact the uptake and accumulation of HMs by plants [180].

Physically, the adsorption mechanism of IP to HM is generally inferred by studying
the natural minerals contained in IP Wang et al. (2009) [181] choose goethite, magnetite,
e.g., (provided by Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) as represen-
tatives of metal (hydr)oxides commonly present in nature, and then found that Cd was
absorbed on these different oxide minerals. Hochella et al. (1989) [182] found that the
surface structure and nano-scale morphology of minerals play a key role in the dissolution
and adsorption reaction between the surface and the soils. The iron isotopic exchange
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experiments show that ferrihydrite contains labile and non-labile site populations; the
number of sites participating in the faster exchange process was reduced by adsorbing
arsenate before the exchange experiment. The labile sites, examined with Mossbauer spec-
troscopy, are found to have different local environments; compared to sites that exchange
slower, sites that exchange very quickly (within 20 min) had more distorted octahedral
geometry. When bonded to adsorbed arsenate, the distortion oflabile sites was slightly
reduced. Adsorbed arsenate may decrease the degree of distortion around the octahedra
by forming binuclear, bidentate bonds with the adjacent iron octahedra [183]. Arsenate
adsorbs on ferrihydrite surfaces mainly as an inner-sphere bidentate (bridging) complex
sharing apical oxygens of two adjacent edge-sharing Fe oxyhydroxyl octahedra. Monoden-
tate complexes were also observed, accounting for about 30% of all As–Fe correlations [184].
Fuller et al. (1993) [185] analyzed kinetics of ferrihydrite to adsorp and coprecipite arsenate.
In adsorption experiments, a period of rapid (5 min) As(V) uptake from solution was
followed by continued uptake for at least eight days, until As(V) diffused to adsorption
sites on fenihydrite surfaces within aggregates of colloidal particles. The time dependence
of As(V) adsorption is well described by a general model for diffusion into a sphere if it
was assumed that the subset of surface sites located near the exterior of aggregates can
quickly reach the adsorption equilibrium. In coprecipitation experiments, the initial As(V)
uptake was significantly greater than in post-synthesis adsorption experiments because
As(V) was coordinated by the surface sites before the process of crystallite growth and
aggregation; therefore, the absorption rate was not affected by diffusion. After the initial
adsorption, As(V) was slowly released from coprecipitates for at least one month, because
crystallite growth led to desorption of As(V). In addition, numerous adsorption models
were extensively developed, such as the diffusion layer model [186], three-layer complexa-
tion model [187], modified three-layer complexation model [188] and the metal (hydroxide)
oxide surface reaction group affinity valence band theory [189], these models proceed from
different angles, explaining the adsorption behavior of iron oxide minerals.

2.5. Native Plants in Phytoremediation: Interactions and Ecological Effects on Soils and Plants in
Heavy Metal Contaminated Environments
2.5.1. Effect on Plants and Soils

IP, as a key product of the iron oxidation-reduction cycle, plays a significant role in
transforming trace metals and organic matter in flooded soils, which contain high levels of
iron ions [190].

The impact of IP on plant growth remains a hotly debated issue. Its influence varies
depending on the heavy metal environment surrounding the plant. For instance, a study on
water lobelia (Lobelia dortmanna L.) revealed that IP does not affect the root diameter [191].
In research involving common bulrush (Typha latifolia), it was observed that the presence or
absence of IP had no significant effect on the dry weight of roots and shoots of seedlings,
whether in control conditions or in Zn and Cd solutions. However, roots were significantly
shorter when IP was present [33]. Similarly, Greipsson et al. (1994) [178] found that under
Ni and Cu stress, rice roots were shorter when IP was present. Although IP does not always
promote root growth, it does not necessarily imply a negative impact on overall plant
growth. For example, Møller and Sand-Jensen’s study showed that IP around the roots
of Lobelia dortmanna L. creates an oxygen diffusion barrier [192], which can be beneficial
in high-sediment environments by directing more oxygen to root meristems, thereby
improving survival. Likewise, while IP resulted in shorter rice roots under Ni and Cu
stress, it significantly enhanced rice shoot growth [176]. This suggests that the formation of
IP is an effective response of plants to various environmental stresses.

Moreover, IP influences the chemical behavior and bioavailability of nutrients [193–195],
acting as a nutrient reservoir to store essential elements [196]. IP on roots serves as an iron
reserve, aiding plants in overcoming iron deficiency. For instance, in Medicago sativa under
Cd stress, IP formation enhances photosynthesis efficiency and biomass production [62]. IP
enriches environmental phosphorus, thereby enhancing plant energy metabolism, nucleic
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acid biosynthesis, photosynthesis, enzyme activities, and the biogeochemical cycles of iron
and manganese [80]. Additionally, when Fe(OH)3 is added to phosphorus-rich nutrient
solutions, a significant increase in the P content of rice shoots is observed, correlating
positively with the amount of IP attached to the roots [197]. The adsorption function of
IP mainly stems from its primary component, Fe(OH)3. Its amphoteric colloid properties
and loose, porous structure provide a large surface area, facilitating the absorption of
phosphorus and other elements [196,198,199]. Furthermore, IP is suggested to contribute
to increased nitrogen accumulation in tea plant roots and stimulate plasma membrane ATP
enzyme activity [200].

IP also has an impact on the rhizosphere soil of plants. The formation and reductive
dissolution of IP can significantly influence the rhizosphere’s iron budget, affecting the
mobilization of soil pollutants and nutrients [130]. During its formation, there is a release
of H+ and the secretion of various organic acids such as malic acid, lactic acid, oxalic acid,
citric acid and succinic acid into the rhizosphere [60,201]. These processes lead to changes
in the pH and Eh values of the rhizosphere soil, subsequently affecting the bioavailability
and concentration of HMs [23,26,165].

IP also acts as a barrier against oxygen loss, enhancing oxygen supply to the root meris-
tems. This, in turn, influences the composition and distribution of aerobic and anaerobic
microorganisms in the soil [36]. For example, during the iron oxidation process, the relative
abundance of copper bacteria such as Maxilla, Pseudomonas, Rosella, Coleopomonas and
Proteus increases, eventually becoming dominant [202]. This suggests that the formation of
IP leads to a more stable microbial community structure, aiding our understanding of the
transformation of organic matter and HMs [203]. Figure 3 shows a sketch of the interaction
between plants, IP and microbes.
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2.5.2. Ecological Role in Environmental Remediation

In today’s era of rapid industrial and agricultural technological advancement, environ-
mental pollution, such as heavy metals, has become a global concern. Waste materials from
industrial and agricultural activities are discharged into natural environments through
sewage and sludge, eventually entering agricultural soils and posing risks to human and
environmental safety [204–207].
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Among various soil remediation methods, bioremediation is favored for its cost-
effectiveness and eco-friendliness. For instance, Pteris vittata L., known for its robust
growth and high tolerance to HM toxicity, is used for biomonitoring and assessment of
metal pollution in sediments [208]. As a crucial link between plants, microorganisms and
soil, IP plays a significant role in the remediation of soil heavy metals. Wetland plants
use their aeration tissues to transfer oxygen to their roots, while the low redox potential
of sediments leads to the gradual accumulation of substances like Fe(II), Mn(II), H2S and
CH4 [38]. These conditions create an ideal environment for microbial survival, and both the
oxygenating ability of roots and microbial activity support the formation of IP in aquatic
plant roots [209]. The IP attached to the root surface provides a large binding surface area
for the absorption of metals and other elements, effectively remediating polluted soils [36].

Numerous researches indicated that plants with IP adherence, which thrive with
high biomass in saline water conditions and possess deep root systems, can flourish in
challenging environments and demonstrate strong metal accumulation capabilities [210],
especially in their roots [211]. For example, Spartina alterniflora Loisel. is identified as an
effective species for remediation due to its ability to accumulate considerable amounts of
certain HMs (Cd, Cr and Mn), and lead, in its above-ground parts [212]. Jia et al. (2018) [213]
confirmed that the IP characteristics of wetland plants can regulate iron, manganese and
phosphorus in agricultural drainage.

Apart from HMs, environmental pollutants that pose a threat to plant survival include
persistent organic pollutants (POPs), microplastics (MPs) and emerging contaminants (ECs)
such as waterborne antibiotics and sterol hormones [100]. Under waterlogged conditions,
certain steroidal hormones and waterborne antibiotics can accumulate on IP, with high
adsorption sites and functional groups of IP facilitating their removal [214]. Polycyclic
aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs) are persistent
organic pollutants commonly found in both industrial discharges and ecosystems [215]. IP
can serve as a physical barrier to impede the entry of contaminants into plants, contributing
to the immobilization of PAHs and PBDEs [216].

2.6. Perspectives and Conclusion
2.6.1. Exploring the Cultivation of High-Yielding IP Plant–Microbe Combinations to
Address Environmental Pollution

The formation of IP is a natural process that does not cause secondary pollution, making
it a promising strategy for remediating soils contaminated with HMs. The plant–microbe–soil
system is complex, and a more comprehensive study is needed to understand the interac-
tions within polluted soils. Meng et al. (2024) [217] revealed for the first time the process of
IP generating highly reactive hydroxyl radicals (·OH) and verified the role of the produced
·OH in the oxidation and transformation of pollutants in the rhizosphere. In addition
to pollutants, the produced ·OH may also affect the redox cycling of elements and the
composition of the rhizosphere microbial community [218], subsequently impacting the
growth of rice. Correspondingly, rhizospheric FeOB and FeRB may significantly alter the
composition of IP, thus affecting the generation of ·OH by IP. In the future, the oxidative
effects induced by ·OH generated from IP should be incorporated into the framework of
understanding IP’s impact on rice plants.

2.6.2. Policy and Sustainability

Integrating IP research into environmental protection policy involves developing
guidelines and strategies that utilize IP to mitigate soil and water pollution. Governments
and environmental agencies can formulate policies that encourage the use of plants with
high IP-forming capabilities in areas affected by heavy metal contamination. This ap-
proach can be part of a broader environmental restoration plan aimed at reducing the
impact of industrial and agricultural pollutants on ecosystems. In addition, policies can
provide funding and incentives for research into the mechanisms of IP formation, its im-
pact on plant growth and soil health and methods to enhance IP formation in different
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plant species. Such research could lead to new agricultural practices and environmental
remediation techniques.

3. Conclusions

Plants have evolved adaptive and versatile strategies to perceive and respond to
fluctuations in element availability, optimizing their growth, development and reproduc-
tion under changing environmental conditions. These strategies encompass a range of
mechanisms, from chelation and osmoregulation to antioxidant systems, including root
secretions, cell walls, cell membranes and vacuolar compartmentalization. These factors
significantly influence the mobility of heavy metals (HMs) and microbial activity [219–221].
Increasingly, IP is being recognized as a microbial armor and nutrient treasury for plants.

The intricate plant–microbe–soil system poses significant challenges in comprehending
the interactions within polluted soils. FeOB plays a pivotal role in the iron cycle, yet the
metabolic pathways of these bacteria and their involvement in the iron cycle around
roots remain enigmatic. It is imperative to investigate the ecological and environmental
implications of IP to gain a deeper understanding of its significance.

In conclusion, a profound comprehension of the intricate interactions among plants,
rhizosphere microorganisms and polluted soils is crucial for addressing the environmental
impacts of soil pollution and developing effective remediation strategies. Key avenues for
future research include exploring the metabolic pathways of FeOB and assessing the safety
and practical significance of IP plants.
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