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Abstract: Plants, being sessile, are continuously exposed to varietal environmental stressors, which
consequently induce various bio-physiological changes in plants that hinder their growth and
development. Oxidative stress is one of the undesirable consequences in plants triggered due
to imbalance in their antioxidant defense system. Biochemical studies suggest that nanoparticles
are known to affect the antioxidant system, photosynthesis, and DNA expression in plants. In
addition, they are known to boost the capacity of antioxidant systems, thereby contributing to
the tolerance of plants to oxidative stress. This review study attempts to present the overview of
the role of nanoparticles in plant growth and development, especially emphasizing their role as
antioxidants. Furthermore, the review delves into the intricate connections between nanoparticles
and plant signaling pathways, highlighting their influence on gene expression and stress-responsive
mechanisms. Finally, the implications of nanoparticle-assisted antioxidant strategies in sustainable
agriculture, considering their potential to enhance crop yield, stress tolerance, and overall plant
resilience, are discussed.

Keywords: oxidative stress; antioxidants; nanoparticles; reactive oxygen species

1. Introduction

Global biomass production from agricultural farmlands is challenged by varietal
environmental stresses [1–3]. Being sessile, plants are constantly exposed to these envi-
ronmental stressors, which are generally categorized as biotic and abiotic stressors [4–8].
The main biotic stressors include pathogens, insects, and herbivores, while abiotic stres-
sors include heavy metal exposure, soil salinity, erratic weather patterns, and climate
change [7,9]. Consequently, these stresses induce a cascade of bio-physiological changes
in plants, ultimately affecting their overall health and productivity [6,10]. One prominent
consequence of these stressors is oxidative stress, which is identified by an imbalance in the
antioxidant defense system [7,11]. Reactive oxygen species (ROS) are produced as a natural
byproduct of standard metabolic pathways involving oxygen [12,13]. Principally, the sites
of ROS generation include apoplast, chloroplast, mitochondria, and peroxisomes [14,15].
These ROS can potentially lead to DNA damage (by affecting nucleic acids), enzyme inhibi-
tion (due to oxidation of proteins), and lipid peroxidation, eventually inducing cell injury,
bursting cell organelles, and causing programmed cell death [16] (Figure 1). As a coping
mechanism, plants have evolved various intricate mechanisms against diverse environmen-
tal stressors [17]. Normally, there is a balance in the production and elimination of ROS
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within the cell. However, external stressors hamper the production–elimination balance
resulting in the excess generation and accumulation of ROS [18,19]. Consequently, rapid
leakage of ROS occurs, which further alters the metabolic, morphological, and physiological
processes of the plant [20–22]. To counteract the deleterious effects of ROS, plants have
evolved complex enzymatic and non-enzymatic defense mechanisms collectively called
the “antioxidant system” [23,24]. The enzymes of antioxidant system include ascorbate
peroxidase (APX), Catalase (CAT), dehydro-ascorbate reductase (DHAR), glutathione re-
ductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST), mono-hydro
ascorbate reductase (MDAR), peroxide reduction (PRX) and superoxide dismutase (SOD).
The non-enzymatic antioxidants include ascorbic acid (AA), α-tocopherol, carotenoids,
flavonoids, glutathione (GSH), and plastoquinone/ubiquinone [25–27]. Both groups of
antioxidants are necessary for ROS homeostasis, and previous studies suggest that high
antioxidative activity is linked to stress tolerance in plants and thus plays a pivotal role in
adaptation to stress in plants [28–30].
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In recent years, the advancement in nanotechnology has been observed to be aligned
with the study of nanoparticles in plants, as it can trigger the various enzymatic and
non-enzymatic antioxidant capabilities of plants. Nanoparticles are natural or artificially
synthesized particles, having sizes ranging from 1 to 100 nanometers. As compared to
their bulk materials, nanoparticles have different properties; however, their effects vary ac-
cording to their concentrations [31,32]. Previous studies suggest that higher concentrations
(up to 2000 mgL−1) in the application of nanoparticles negatively affects the biochemistry,
morphology, and physiology of plants, as well as causing genotoxicity [33–35], while ap-
plication at appropriately standardized concentrations causes positive effects [36–39]. The
current study presents a comprehensive review of the role of nanoparticles in stress ame-
lioration through redox homeostasis and by improving the antioxidative system in plants.
Furthermore, the use of different nanoparticles and their role in mediating biochemical,
physiological, proteomic, and gene expression changes are discussed.

2. Environmental Stressors and Their Impact on Plants
2.1. Abiotic Stressors

The term abiotic stressors refers to all the nonliving entities which negatively impact
the metabolism and growth of plants. Heavy metal accumulation in soil, drought, salinity,
erratic weather conditions, and extreme low and high temperatures, all contribute to
abiotic stress in plants that greatly affect agriculture worldwide, consequently, leading
to massive economic losses. In addition to natural causes such as climate change and
global warming, various anthropogenic activities, such as intensive agriculture, rapid
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industrialization and rising population, indirectly trigger abiotic stress (Figure 2). For
instance, drought and salinity can hinder water uptake, impairing plant physiological
processes and reducing crop yields; extreme temperatures can cause thermal stress, which
damages cellular structures and inhibits enzyme activity; heavy metal accumulation, such
as cadmium, lead, and arsenic, in the soil can lead to phytotoxicity, disrupting cellular
processes by generating reactive oxygen species (ROS) that damage DNA, proteins, and
lipids. This metal-induced oxidative stress interferes with photosynthesis and respiration,
ultimately stunting plant growth and development. Erratic weather conditions, including
unseasonal rain or prolonged dry spells, can disrupt the phenological stages of plants,
such as flowering and fruiting, thereby affecting reproductive success and crop yield.
Additionally, flooding can lead to hypoxic conditions in the root zone, inhibiting root
respiration and nutrient uptake [1–3,40,41]. To counteract and promote tolerance, plants
activate early stress signaling mechanisms [7]. These include the release of secondary
messengers, such as nitric oxide, reactive oxygen species, and calcium, that transmit and
amplify the signals as well as activating protein kinases, like SnRk1, which changes the
expression of key stress-responsive genes to restore homeostasis in plant cells [42–44].
These intricate mechanisms consequently activate the transcription factors that eventually
activate various stress responsive genes, thereby facilitating stress tolerance. Besides,
releases of phytohormones, including ethylene and Abscisic acid, trigger the activation of
stress response.
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Under drought stress, major phytohormones, including auxins (AUX), gibberellic
acids (GA), cytokinin (CK), and abscisic acid (ABA), have been reported to be decisive in
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plant adaptation to drought stress. For instance, the ABA signaling genes OsABI5, Oshox22,
OsNAC5, DSM2 in rice have been reported to improve yield in drought stress through ABA
biosynthesis. Similarly, induced expression of a CK biosynthetic gene, isopentyl transferase
(IPT), is known to increase CK levels, thereby protecting the plant by delaying drought-
induced senescence. Another gene DRO1, upon higher expressions and improved drought
tolerance, is negatively regulated by Auxin. In addition, decreased levels of GA aligned
with decreased plant growth [45]. Accumulation of late embryogenesis-abundant (LEA)
mRNA was also observed upon downregulation of IAA [46]. A similar study on barley
observed a fivefold increase of ABA in drought tolerant varieties as compared to suscep-
tible ones [47]. Overexpression of ABA biosynthesis gene NCED3 (9-cis-epoxycarotenoid
dioxygenase) in Arabidopsis resulted in improved shoot growth under drought stress [48].
In maize, ABA deficiency resulted in increased ethylene production and triggered ethylene-
induced leave senescence [49].

Studies suggest that transcription factors are critical in mediating abiotic stress tol-
erance upon overexpression [50]. Aligning with this, various transcription factors have
been reported for promoting abiotic stress tolerance, including OsERF1 in rice, GmERF3
in soybean, and ERF1 in Arabidopsis [51–54]. In transgenic Arabidopsis, the transcription
factor SCDREB5 from screw moss regulated jasmonic acid biosynthesis, thereby promoting
salinity stress [55]. The upregulation of OsDREB1A in Arabidopsis has also been linked
with salinity tolerance [56]. Moreover, in rice, the upregulation of TF OsSTAP1 and Os-
DREB1B enhanced salinity tolerance, and the upregulation of OsDREB2A and OsDREB2B
improved salt tolerance in both Arabidopsis and rice [57]. Change in temperature is also
linked with triggering stress in plants; cold temperature results in inactivation of enzymes,
halting cellular machinery and heat results in denaturation of proteins and enzymes [57,58].
In cold stress, a cascade of transcription factors is activated which activates COR genes
(cold responsive genes) that regulate the membrane fluidity and inward flow of calcium,
e.g., a loss of function mutation at AtANN1 results in promoting freezing tolerance in
Arabidopsis [59]. Likewise, in heat stress, various heat shock proteins (HSP) are activated
that prevent protein denaturation [60]. For instance, in rice and Arabidopsis, heat stress
(40 ◦C), HSP70 was activated in a short span of time [61]. Various nanoparticles have been
deployed to promote stress tolerance in plants. The use of silicon nanoparticles in different
concentrations via two different methods (foliar and soil application) suggested improved
plant growth by foliar application, as it contributed to an increased content of photosyn-
thetic pigments and antioxidant enzymes in Lilium. Similar results were concluded for
silicon nanoparticles in potato plants in drought stress, in wheat plants against Rhizocto-
nia solani infection and in blueberry plants against hypoxia-induced oxidative damage.
Similarly, foliar supplementation of rice plants at 90 ppm of silicon dioxide nanoparticles
showed improved growth under water regime conditions. Consistent with these findings,
application of biosynthesized copper nanoparticles on seeds of Lens culnaris revealed that
roots treated with 0.025 mgmL−1 of copper oxide nanoparticles had the highest activity
of enzymes related to the defense system, along with increased total phenolic content.
Supplementation of media with zinc oxide nanoparticles also resulted in olive plants in
increased chlorophyll a and b content. Likewise, supplementation of culture media with
silver nanoparticles suggested that higher concentrations (more than 110 mgdm−3) cause
decreased activity of antioxidant enzymes (peroxidase, catalase, super oxidase dismutase,
ascorbate peroxidase) in lavender. The spray application of boron nanoparticles at 12.5 ppm
significantly increased the antioxidant activity of pea plants in drought stress [62–72]. The
application of silica nanoparticles in rice for enhanced growth in water regime conditions
has been reported [68].

Moreover, a positive effect on plant growth was observed by application of magnetite
nanoparticles [73]. Consistent with this, a positive effect on leaf area and shoot length was
observed by application of silica nanoparticles in drought stress [74]. In addition, improved
photosynthesis and antioxidants in wheat plant were observed by application of iron oxide
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nanoparticles [75]. Similar studies on banana have been conducted suggesting improved
resistance to cold stress by application of chitosan nanoparticles [76].

2.2. Biotic Stressors

In agriculture, biotic stress is a major contributor to pre- and post-harvest crop
losses [77]. Biotic stress is induced by living entities, more specifically by fungi, viruses,
bacteria, insect pests, and herbivores, which unlike abiotic stress drastically hamper
plant growth by nutritional deprivation, which potentially causes plant death [78,79]
(Figures 1 and 3). With the course of evolution, plants have evolved sophisticated strate-
gies that lead to activation of their defense systems, just as in the case of abiotic stresses.
Jasmonic acid (JA) signaling has been reported to be critical in promoting biotic stress
tolerance as it induces the production of protease inhibitors, phytoalexins, and key genes
required in plant defense [80,81]. In rice, JA-responsive genes ch11 and AP24 were observed
to induce tolerance to sheath blight [82]. Similarly, the JA-responsive WRKY gene in maize
has been reported in defense against herbivore attack [83]. Likewise, the ORA12 gene in
Arabidopsis thaliana has been reported to be involved in plant defense against diverse biotic
stressors [84]. The role of zinc oxide nanoparticles in tomato plants has also been suggested
to boost immunity [85].
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Accumulation of ROS as response to abiotic and biotic stresses can impair various
essential physiological processes of plants. In addition, long term exposure of these stressors
might permanently damage plants, thereby affecting the overall yield and productivity
of the plants. For mitigating impacts caused by abiotic and biotic stresses on plants,
nanoparticles are suggested to be promising. In various studies, nanoparticles have been
reported to mitigate varietal abiotic and biotic stresses. The use of various nanoparticles
and their roles in alleviating varietal abiotic and biotic stresses have been highlighted in
Tables 1 and 2 in the upcoming sections.

3. Nanoparticles and Antioxidant System
3.1. Oxidative Stress and Plant Physiology

The production of ROS is a normal part of photosynthesis [86]. However, rapid
ROS synthesis leads to its accumulation and activation of the antioxidative system, as
discussed in the previous sections [87]. The main consequence of excessive ROS is its
oxidative effects on proteins, nucleic acids, lipids, and other cellular organelles leading to
cell death [88]. In plants, the chlorophyll content and carotenoids determine photosynthesis
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rate. These pigments absorb sunlight, and carotenoid helps to provide photoprotection to
plants via non-photochemical quenching [89]. The biotic/abiotic oxidative stress induced
triggers oxidative damage and ROS leads to destruction of photosynthetic machinery [20].
Preservation of chlorophyll and carotenoids in plants is suggested against numerous
stressors, so that plants can continue to perform photosynthesis [90,91]. A few studies
have demonstrated the modulation of antioxidant systems in order to understand the
physiological, biochemical, and morphological changes in citrus plants upon aging at three
different stages, viz. young leaves, mature and senescent leaves. The study observed
a gradual decrease in the effect of the non-enzymatic antioxidant system [92]. Similarly,
induction of phenolic compounds and expression of ROS detoxification genes was observed
to be associated with chitosan in grapevine [93]. Furthermore, in Arabidopsis, the effect of
H2O2 on chloro-plastic DJ-1B revealed that H2O2 decreased glyoxalase activity [94].

Various nano-assisted approaches have been used to improve tolerance to oxidative
stress in plants (Tables 1 and 2). Considering the importance of preservation of chlorophyll
and other pigments for photosynthesis in plants, various attempts have been made to-
wards nano-mediated improvement in plant pigments. A recent study on citrus (mandarin
oranges) suggested considerable improvement in chlorophyll and carotenoid concentra-
tions in HLB-infected (Huanglongbing) plants by foliar treatments with green synthesized
AgNPs (silver nanoparticles). The same study further suggested that the varied amounts
of AgNPs enhanced the performance of enzymatic and non-enzymatic antioxidants, in-
cluding superoxide dismutase, peroxidase, catalase, total phenolics, and flavonoid content.
Consistent with the findings, the authors suggested the use of AgNPs at 75 mgL−1 as
ideal for increasing antioxidant enzymes [95]. In another similar study in rice plants, the
application of AgNPs alleviated the levels of catalase (CAT), ascorbate peroxidase (APX)
and glutathione reductase (GR), along with enhancing the growth of plants. Besides, de-
creased H2O2, lipid peroxidation and ROS were observed in treated plants [96]. Consistent
with these findings, in bananas a significant increase in concentrations of SOD, POD and
CAT was observed in seedlings treated with AgNPs, as well as an increased content of
chlorophyll and carotenoids. Higher concentrations of AgNPs also resulted in increased
H2O2 and proline content [97]. Likewise, increase in plant height and seed germination
have been suggested in summer savory [98]. Furthermore, enhanced sugar synthesis in
tomato was reported by treatment of silver nanoparticles [99].

3.2. Nanoparticles in Abiotic and Biotic Stresses

Nanoparticles have been suggested as promising for alleviating the damage caused
by abiotic and abiotic stress. In recent studies, metallic nanoparticles have shown many
applications in plants. Enhanced plant growth and induced plant resistance against biotic
stress by silica nanoparticles have been reported. Similarly, the use of copper, zinc oxide,
and selenium nanoparticles as nano-fertilizers yielded excellent results [100–103]. Moreover,
chitosan nanoparticles releasing nitic oxide have been demonstrated to be promising
against salinity stress in maize plants [104]. Consistent with this, another study on soybean
reported the improvement of plant growth under copper stress mediated by release of
nitric oxide by chitosan nanoparticles [105]. Similarly, considering the biocompatibility and
antimicrobial properties of silver and copper, their nanoparticles have been widely used in
the amelioration of various biotic stressors [106–125].

Recent attempts have suggested the role of nanoparticles in promoting stress tolerance
by acting as antioxidants or boosting the antioxidative system [126] (Figure 3). Various
recent studies have confirmed the use of nanoparticles in alleviating ROS-induced stress by
boosting the antioxidant system. These include AuNPs in wheat, ZnO NPs in peas, tomato,
and okra, CeO2 and CuO NP in maize, corn, and soybean, Ca3(PO4)2 in beans, AgNP
in pearl millet, biochar NP in wheat, Zeolite NPs in potato, chitosan NP in bitter melon,
graphene oxide NPs in wheat and SiO2 NPs in peas [127–131]. The various nanoparticles
and their antioxidant roles have been highlighted in the tables below (Tables 1 and 2). These
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research projects have concluded that low concentration of NPs triggers detoxification of
the ROS and activates antioxidant enzymes by upregulating the signaling genes [132].

Table 1. Different nanoparticles used in amelioration of varietal abiotic stresses in different plant species.

Abiotic Stress Nanoparticle Crop Impact References

Salt SiO2 Tomato Improved phenolics, chlorophyll and PAL activity [127]

Drought Fe2O3 Linseed Decreased levels of H2O2 and MDA; enhanced
activity of SOD, POD, CAT [133]

Salt Fe3O4 Drumstick tree Decreased MDA, H2O2, lipid peroxidation [134]

Salt K2SO4 Alfalfa Decreased electrolyte leakage, Improved
antioxidant activity, increased proline [135]

Drought ZnO Rice Decreased MDA, lipid peroxidation [136]

Salt ZnO Okra
Decreased accumulation of proline, enhanced

photosynthetic pigments, improved activity of CAT
and SOD

[137]

Heavy metal (Pb) Si Coriander Decreased MDA, improved plant biomass [138]

Drought TiO2 Linseed Increased carotenoids, chlorophyll; decreased lipid
peroxidation, MDA and H2O2

[139]

Salt Ag Pearl millet Increased proline and relative water content [140]

Cold TiO2 Chickpea Decreased electrolyte leakage index [141]

Flood Al2O3 Soybean
Increased expression of proteins involved in lipid

metabolism, protein degradation/synthesis
and glycolysis

[142]

Salt Si Tomato Alleviation of oxidative stress by upregulation of
P5CS, AREB, MAPK and CRK1 [143]

Heat Ag Wheat Decreased ROS [144]

Drought Cu Maize decreased ROS accumulation, increased total
seed number [145]

Heavy metal (Cd
and Pb) Fe3O4 Wheat Increased activity of SOD and POD [146]

Heavy metal (As) Ti Moong bean Induced expression of CAT and SOD, upregulation
of antioxidant related genes [147]

Heavy metal (As) ZnO Soybean Increased activity of APX, GR, CAT and SOD [148]

Heavy metal (Cd) TiO2 Maize Decreased Cd accumulation along with increased
activity of antioxidant system [149]

Heavy metal (Cr) ZnO Wheat Increased activity of APX, CAT, POD and SOD [150]

Heavy metal (As) Fe Rice Improved defense enzymes and glyoxalase
machinery [151]

Heavy metal (Cd) ZnO Wheat Reduced electrolyte leakage, enhanced activity of
SOD and POD [152]

Drought ZnO Safflower Increased grain yield biomass yield and number
of seeds [153]

Salinity Si NPs Tomato Increased content of photosynthetic pigments;
Higher biomass and yield [154]

Drought ZnO Wheat Foliar application at 100 and 150 ppm resulted
most effective management of drought stress [155]

Salinity GO-Pro NPs Grapes Foliar application at 100 mM reduced electrolyte
leakage, proline and upregulated AOE, [156]
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Table 1. Cont.

Abiotic Stress Nanoparticle Crop Impact References

Heat and Drought Se NPs Wheat Foliar application at 10 mgL−1 improved GE, TR
and photosynthetic machinery

[157]

Heavy metal (Cd) Si NPs Wheat Improved photosynthetic pigments and AOEs [158]

Drought ZnO and
SiO2

Potato Foliar application of ZnO at 100 mg L−1 increased
productivity and enhanced quality

[159]

Heavy metals
(Cd, Pb) Zn, Se, Si Sage Improved plant weight, RWC, EL and EO [160]

Salinity Si NPs and
MT Cauliflower Improved chlorophyll content and osmolyte levels [161]

PEG induced
Drought stress Kn-ZnO NPs Mung bean Upregulation of osmolyte levels and

antioxidant system [162]

Salinity Si NPs Lemon grass Amplification of SC and photosynthetic
CO2 assimilation [163]

Heat ZnO Rice Decreased ABA levels, improved tolerance to
osmotic stress [164]

Drought Si NPs Wheat Upregulation of defense related genes DREB2,
MYB33, MYB3R, WRKY 19, SnRK2.4 [165]

Drought NNS Tomato Foliar application at 1%, 3% and 5% gradually
increased AOE activity [166]

Salinity Ag NPs Pearl millet Upregulation of SOD, CAT and POD [167]

Heavy metal
contaminated
Wastewater

Se Carrot Decreased free proline, MDA, hydrogen peroxide
and increased soluble protein, β-carotene [168]

Drought Si, Zn,
Zeolite Coriander Improved photosystem II, water used efficiency,

leaf chlorophyll and transpiration rate [169]

The table summarizes various nanoparticles used in mitigation of abiotic stress in different crops. Abbreviations:
Ag—silver; Al2O3—aluminum oxide; AOE: anti-oxidant enzymes: AREB—ABA response element binding protein;
As—arsenic; CAT—catalase; Cd—cadmium; CRK1—cysteine rich receptor-like protein kinase 42; Cr—chromium;
Cu—copper; EL—electrolyte leakage; EO: essential oil; Fe2O3 and Fe3O4—iron oxide; GE—gas exchange; GO-Pro
NPs—proline functionalized graphene oxide nanoparticles; GR—glutathione reductase; H2O2—hydrogen peroxide;
K2SO4—potassium sulfate; Kn-ZnO NPs—kinetin capped zinc oxide nanoparticles; MAPK—mitogen-activated
protein kinase; MDA—malondialdehyde; MT—melatonin; NNS—nano-nutrient solution; PAL—phenylalanine
ammonia lyase; P5CS—pyrroline-5-carboxylate synthetase 1; Pb—Lead; POD—peroxidase; RWC—relative water
content; SC—stomatal conductance; Se—selenium; SOD—superoxidase dismutase; Si—silicon/silica; SiO2—silicon
dioxide; TiO2—titanium dioxide; TR—transpiration rate; ZnO—zinc oxide.

Table 2. Various nanoparticles used in mitigating biotic stress in different plants.

Biotic Stress Nanoparticle Crop Impact References

Magnporthe oryzae ZnO Rice

Inhibition of appressorium formation,
upregulation of OsNAC4, OsPRO10,

OsKSL4, OsPR1b genes involved
in resistance

[164]

Bipolaris sarokiniana Se Wheat
Increased chlorophyll content,

membrane stability index, leaf surface
area, root length

[170]

Xanthomonas oryzae Ag Rice decreased effects of ROS by boosting
cellular antioxidative system [171]

Rhyzopertha dominica and
Sitophilus granarius CuO Wheat

Increased concentration of leaf pigments,
Increased activity of antioxidant

enzymes viz SOD, APX, POD; increased
insect mortality

[172]
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Table 2. Cont.

Biotic Stress Nanoparticle Crop Impact References

Puccinia striiformis TiO2 Wheat Downregulation of proteins involved in
production of ROS [173]

Fusarium oxysporum and
Aspergillus niger Si Maize Increased phenolics, POD and PPO [174]

Fusarium fujikuroi Si Rice Improved electrolyte leakage and
POD activity [175]

Fusarium oxysporum ZnO Chickpea Increased antioxidant activity and
activation of SOD, POD, CAT [176]

Phytophthora nicotianae and
Thielaviopsis basicola MgO Tobacco Induced ROS production [177]

Meloidogyne incognita,
Pectobacterium betavasculorum,

and Rhizoctonia solani
SiO2 Beetroot

Enhanced chlorophyll content and
improved activity of defense

related enzymes
[178]

Rhizoctonia solani Ca3(PO4)2, SiO2
and CuO Potato Boosted activities of POD, PPO, CAT and

chitinase enzymes [179]

Fusarium andiyazi Chitosan Tomato Upregulation of PR genes, activation of
SOD and related antioxidant genes [180]

Alternaria solani AgNP Tomato Increased activity of antioxidant enzymes
SOD, CAT, APX, PAL, POD, PPO [181]

The table summarizes various nanoparticles used in the mitigation of various biotic stress in different crops. Abbre-
viations: Ag—silver; APX—ascorbate peroxidase; Ca3(PO4)2—calcium phosphate; CAT—catalase; CuO—copper
oxide; MgO—magnesium oxide; PAL—phenylalanine ammonia lyase; POD—peroxidase; PPO—polyphenol
oxidase; PR genes—pathogenesis related genes; ROS—reactive oxygen species; SOD—superoxidase dismutase;
Se—selenium; Si—silicon/silica; SiO2—silicon dioxide; TiO2—titanium dioxide; ZnO—zinc oxide.

4. Nano-Assisted Agricultural Practices
4.1. Nano-Delivery

Recent attempts have been made to design nano-structured carriers, utilizing materials
like nano-clays and polymeric nanoparticles for controlled-release formulations of fertiliz-
ers and pesticides [182]. These nano-carriers protect active ingredients, enabling gradual
release and targeted delivery to plants, reducing environmental impact, and optimizing
resource utilization [183]. Innovations include the use of controlled release nano-fertilizers
(CRFs) [183]. CRFs can deliver nutrient to plants for extended days to months, besides
protection from the release of fertilizers in environment, contributing to their applica-
bility in sustainable agricultural practices (Figure 4) [184,185]. Various nanomaterials,
including quantum dots, graphene, and carbon-nanotube, due to their small size and
unique properties, have been adversely used in controlled release applications [186,187].
Moreover, the nano-encapsulation technique has been recently used to protect seeds from
pathogens, enhance nutrient uptake during germination, and to provide improved drought
tolerance [188–191]. Nano-fertilizers possessing phosphorous, potassium and nitrogen
have been reported to improve growth and productivity in plants [192]. Likewise, nano-
fertilizers have been suggested to improve tolerance from biotic and abiotic stresses in
plants [6]. Advances have also focused on using nanomaterials for seed delivery and
improved seed germination [193]. Nano-encapsulation techniques employ materials like
lipid-based nanoparticles and biodegradable polymers to protect seeds [194]. Recent stud-
ies have explored the potential of nanomaterials, such as zinc oxide nanoparticles, in seed
priming to enhance early growth and stress tolerance in crops [195,196]. A study on bitter
almond seedlings reported the successful germination of seeds treated with nano-urea
modified hydroxyapatite nanoparticles under salinity stress [197]. Similarly, for the growth
of corn seedlings, a copper oxide-based tenorite nano-fertilizer demonstrated effective
results [198]. Moreover, for improvement of biomass in maize, a chitosan based sustained
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release nano-fertilizer was also developed [199]. The use of zerovalent iron nano-fertilizer
in aromatic rice improved germination [200].
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4.2. Nano-Monitoring

For maintaining sustainability in agriculture, development of new techniques is im-
perative. These advancements have led to the development of nano-based biosensors
“nano-biosensors”, which have the potential to sense their environments [201]. In agri-
culture, nano-based sensors have evolved to provide real-time monitoring of crucial pa-
rameters. The use of these nano-biosensors, due to their ability to sense, process and
detect changes, has contributed to the growth of “smart agriculture” and “precise farm-
ing” [202,203]. Carbon nanotube-based sensors are gaining attention for their applications
in soil sensing, offering high sensitivity and selectivity for detecting nutrient levels and
moisture content [204–206]. Similarly, quantum dot nano-biosensors have been used to
detect mycotoxins in barley and corn. A surface plasmon resonance biosensor has been
used to detect the Cymbidium Mosaic virus [207]. Molecular imprinted polymer-based nano-
biosensors have been employed to sense polyphenols in vegetables [208]. Graphene-based
molecular imprinted polymer nano-biosensors have been used to detect chlorothalonil
and chlorpyrifos methyl pesticides [209]. Likewise, an acetylcholine esterase biosensor has
been used to detect parathion, parazoan and methyl-parathion pesticides. Moreover, a
nano-biosensor “artificial nose” has been reported to sense released organic compounds
and detect pathogens based on those compounds [210]. Consistent with these studies,
current attempts are ongoing on for the integration of nanoscale sensors with wireless
communication systems, enabling remote and continuous monitoring of agricultural fields.
Furthermore, nano-farming strategies have aimed at a holistic integration of nanotechnol-
ogy into farming practices [211]. These include the use of engineered nanomaterials, such
as functionalized nanoparticles and nano-composites, for enhancing soil fertility, water
retention, and nutrient availability [212] (Figure 5). The ongoing research is investigating
the potential of nanoscale delivery systems not only for nutrients and pesticides but also
for beneficial microorganisms, promoting sustainable and eco-friendly farming practices.
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5. Current Challenges and Limitations

The unique properties of nanoparticles contribute to their applicability in sustainable
agricultural practices. The ultra-small particle size of NPs makes them immensely useful
for deterioration of ROS at enzymatic, non-enzymatic, biochemical, and molecular levels.
However, contrastingly, the same properties of NPs adversely affect the health of plants,
as well as humans [213–215]. These challenges and limitations hinder their widespread
use and acceptance. One major concern is the potential ecotoxicity of nanoparticles, which
poses a threat to the environment [216]. The impact on soil microorganisms, aquatic
ecosystems, and non-target organisms questions the overall safety and sustainability of
nanoparticle applications. Addressing these concerns necessitates a thorough assessment of
the ecological consequences associated with nanoparticle exposure. Moreover, the absence
of standardized protocols for assessing nanoparticle toxicity complicates the regulatory
approval process [217]. A still imperative challenge is the establishment of clear and uni-
versally accepted guidelines for nanoparticle safety testing. The lack of such regulatory
frameworks hinders the industrial applicability of nanoparticles [218,219]. Understanding
the fate and transport of nanoparticles in the environment is another critical challenge.
The long-term impacts of nanoparticles on ecosystems remain uncertain without compre-
hensive knowledge of their fate and transport dynamics. This knowledge gap makes it
challenging to predict and mitigate potential associated adverse effects. Cost and scalability
issues further contribute to the limited adoption of nanoparticles on a large scale. Some
nanoparticles are highly expensive to produce, restricting their practical applicability. For
overcoming these challenges, the development of cost-effective and scalable synthesis
methods, aligning with safety for implementation, are necessary. Additionally, the vari-
able responses of different plant species to different nanoparticle exposure makes it more
difficult to assess environmental impact [220–222]. An extensive understanding of these
species-specific responses is crucial for predicting and managing the potential consequences
accurately. Henceforth, these hurdles need to be addressed for ensuring the responsible,
safe and sustainable use of nanoparticles in agriculture.
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6. Future Directions

Future advancements in nanoparticles and plant interactions should prioritize long-
term ecotoxicity studies, standardized testing protocols for regulatory approval, and the
development of advanced tracking techniques to monitor nanoparticle fate and transport
in real-time. Additionally, there is an urge for innovative and cost-effective synthesis
methods, precision agriculture approaches that consider species-specific responses, and a
deeper understanding of the nano–bio interface. Exploring nano-enabled nutrient deliv-
ery systems for plants and developing integrated risk assessment models are crucial for
sustainable agriculture practices. Intense exploration of the benefits and risks of nanopar-
ticles, along with interdisciplinary collaborations, will play a pivotal role in expanding
nanoparticle applications.

7. Conclusions

Nanoparticles, based on their size, composition, and sensitivity, interact with plants in
a number of ways. These interactions result in various anatomical, morpho-physiological
and biochemical changes that are directly related to the overall efficiency of crop plants.
Some of the beneficial effects of nanoparticles in plants include enhanced growth, increased
fresh biomass, improved chlorophyll content, improved metabolism, increased antioxi-
dant potential upregulation and improved expression of stress-related genes, which are
crucial for stress resilience by alleviating protein and chlorophyll and promoting nitrogen
metabolism. Despite the effectiveness of nanoparticles in ameliorating various stresses,
most of these studies are still in the laboratory stage. The increased applicability of nanopar-
ticles is of concern due to their unexpected effects on the environment, as well as their
accumulation in edible plant organs, which pose serious risks of bioaccumulation in the
food chain. Hence, more efforts to develop proper evaluation methodologies for eval-
uating the effects and predicting the fate of nanoparticles is required. Additionally, the
standardization of the acceptable limits of nanoparticles in their wide range of applicable
areas is needed. Future studies should focus on the development of non-toxic, ecologically
safe, affordable, stable, and self-degradable nanoparticles for commercializing nanotech-
nology from laboratories to the agricultural fields. A multidisciplinary and collaborative
approach involving researchers, policymakers, and industry stakeholders is essential to
navigate these complexities and unlock the full potential of nanoparticles while ensuring
environmental sustainability and safety.
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Drought-Stressed Green Pea (Pisum sativum L.) Affected by Watering and Foliar Spray with Silica Nanoparticles. Horticulturae
2021, 8, 35. [CrossRef]

75. Feng, Y.; Kreslavski, V.D.; Shmarev, A.N.; Ivanov, A.A.; Zharmukhamedov, S.K.; Kosobryukhov, A.; Yu, M.; Allakhverdiev, S.I.;
Shabala, S. Effects of Iron Oxide Nanoparticles (Fe3O4) on Growth, Photosynthesis, Antioxidant Activity and Distribution of
Mineral Elements in Wheat (Triticum aestivum) Plants. Plants 2022, 11, 1894. [CrossRef]

76. Wang, A.; Li, J.; AL-Huqail, A.A.; AL-Harbi, M.S.; Ali, E.F.; Wang, J.; Ding, Z.; Rekaby, S.A.; Ghoneim, A.M.; Eissa, M.A.
Mechanisms of Chitosan Nanoparticles in the Regulation of Cold Stress Resistance in Banana Plants. Nanomaterials 2021, 11, 2670.
[CrossRef]

77. Chaudhary, P.; Agri, U.; Chaudhary, A.; Kumar, A.; Kumar, G. Endophytes and Their Potential in Biotic Stress Management and
Crop Production. Front. Microbiol. 2022, 13, 933017. [CrossRef]

78. Gull, A.; Ahmad Lone, A.; Ul Islam Wani, N. Biotic and Abiotic Stresses in Plants. In Abiotic and Biotic Stress in Plants; IntechOpen:
London, UK, 2019. [CrossRef]

79. Bolaji Umar, O.; Amudalat Ranti, L.; Shehu Abdulbaki, A.; Lukman Bola, A.; Khadijat Abdulhamid, A.; Ramat Biola, M.;
Oluwagbenga Victor, K. Stresses in Plants: Biotic and Abiotic. In Current Trends in Wheat Research; IntechOpen: London, UK, 2022.
[CrossRef]

https://doi.org/10.3390/ijms22052254
https://www.ncbi.nlm.nih.gov/pubmed/33668247
https://doi.org/10.1093/jxb/erab090
https://www.ncbi.nlm.nih.gov/pubmed/33619527
https://doi.org/10.15252/embj.2020104559
https://www.ncbi.nlm.nih.gov/pubmed/33372703
https://doi.org/10.1016/j.bbagrm.2011.10.002
https://www.ncbi.nlm.nih.gov/pubmed/22033015
https://doi.org/10.1080/14620316.2019.1685412
https://doi.org/10.3390/plants10112338
https://www.ncbi.nlm.nih.gov/pubmed/34834701
https://doi.org/10.3390/horticulturae9080883
https://doi.org/10.1007/s11104-023-06179-0
https://doi.org/10.3390/antiox12020528
https://doi.org/10.3390/molecules25235511
https://doi.org/10.3390/horticulturae8020161
https://doi.org/10.3390/ma14051150
https://doi.org/10.3390/agronomy11112143
https://doi.org/10.3390/nano10020312
https://doi.org/10.3390/plants10122758
https://doi.org/10.3390/plants10112254
https://doi.org/10.3390/antiox11061193
https://doi.org/10.3390/horticulturae8010035
https://doi.org/10.3390/plants11141894
https://doi.org/10.3390/nano11102670
https://doi.org/10.3389/fmicb.2022.933017
https://doi.org/10.5772/intechopen.85832
https://doi.org/10.5772/intechopen.100501


Plants 2024, 13, 1528 16 of 22

80. Yang, J.; Duan, G.; Li, C.; Liu, L.; Han, G.; Zhang, Y.; Wang, C. The Crosstalks Between Jasmonic Acid and Other Plant Hormone
Signaling Highlight the Involvement of Jasmonic Acid as a Core Component in Plant Response to Biotic and Abiotic Stresses.
Front. Plant Sci. 2019, 10, 1349. [CrossRef]

81. Rady, M.M.; Desoky, E.-S.M.; Ahmed, S.M.; Majrashi, A.; Ali, E.F.; Arnaout, S.M.A.I.; Selem, E. Foliar Nourishment with
Nano-Selenium Dioxide Promotes Physiology, Biochemistry, Antioxidant Defenses, and Salt Tolerance in Phaseolus Vulgaris.
Plants 2021, 10, 1189. [CrossRef]

82. Sripriya, R.; Parameswari, C.; Veluthambi, K. Enhancement of Sheath Blight Tolerance in Transgenic Rice by Combined Expression
of Tobacco Osmotin (Ap24) and Rice Chitinase (Chi11) Genes. Vitr. Cell. Dev. Biol.-Plant 2017, 53, 12–21. [CrossRef]

83. Tang, Y.; Guo, J.; Zhang, T.; Bai, S.; He, K.; Wang, Z. Genome-Wide Analysis of WRKY Gene Family and the Dynamic Responses
of Key WRKY Genes Involved in Ostrinia furnacalis Attack in Zea Mays. Int. J. Mol. Sci. 2021, 22, 13045. [CrossRef]

84. Huang, L.; Zhang, J.; Lin, Z.; Yu, P.; Lu, M.; Li, N. The AP2/ERF Transcription Factor ORA59 Regulates Ethylene-induced
Phytoalexin Synthesis through Modulation of an Acyltransferase Gene Expression. J. Cell. Physiol. 2022. early view. [CrossRef]

85. Sofy, A.R.; Sofy, M.R.; Hmed, A.A.; Dawoud, R.A.; Alnaggar, A.E.-A.M.; Soliman, A.M.; El-Dougdoug, N.K. Ameliorating the
Adverse Effects of Tomato Mosaic Tobamovirus Infecting Tomato Plants in Egypt by Boosting Immunity in Tomato Plants Using
Zinc Oxide Nanoparticles. Molecules 2021, 26, 1337. [CrossRef]

86. Khorobrykh, S.; Havurinne, V.; Mattila, H.; Tyystjärvi, E. Oxygen and ROS in Photosynthesis. Plants 2020, 9, 91. [CrossRef]
87. Huang, H.; Ullah, F.; Zhou, D.-X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses.

Front. Plant Sci. 2019, 10, 800. [CrossRef]
88. Sharma, S.; Singh, V.K.; Kumar, A.; Mallubhotla, S. Effect of Nanoparticles on Oxidative Damage and Antioxidant Defense System

in Plants. In Molecular Plant Abiotic Stress; Wiley: Hoboken, NJ, USA, 2019; pp. 315–333. [CrossRef]
89. Niedzwiedzki, D.M.; Tronina, T.; Liu, H.; Staleva, H.; Komenda, J.; Sobotka, R.; Blankenship, R.E.; Polívka, T. Carotenoid-Induced

Non-Photochemical Quenching in the Cyanobacterial Chlorophyll Synthase–HliC/D Complex. Biochim. Et Biophys. Acta
(BBA)-Bioenerg. 2016, 1857, 1430–1439. [CrossRef]

90. Sherin, G.; Aswathi, K.P.R.; Puthur, J.T. Photosynthetic Functions in Plants Subjected to Stresses Are Positively Influenced by
Priming. Plant Stress 2022, 4, 100079. [CrossRef]

91. Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med. 2020, 74, 1–16. [CrossRef]
92. Arena, C.; Vitale, L.; Bianchi, A.; Mistretta, C.; Vitale, E.; Parisi, C.; Guerriero, G.; Magliulo, V.; De Maio, A. The Ageing Process

Affects the Antioxidant Defences and the Poly (ADPribosyl)Ation Activity in Cistus incanus L. Leaves. Antioxidants 2019, 8, 528.
[CrossRef]

93. Singh, R.K.; Soares, B.; Goufo, P.; Castro, I.; Cosme, F.; Pinto-Sintra, A.L.; Inês, A.; Oliveira, A.A.; Falco, V. Chitosan Upregulates
the Genes of the ROS Pathway and Enhances the Antioxidant Potential of Grape (Vitis vinifera L. ‘Touriga Franca’ and ’Tinto Cão’)
Tissues. Antioxidants 2019, 8, 525. [CrossRef]

94. Chaki, M.; Begara-Morales, J.C.; Barroso, J.B. Oxidative Stress in Plants. Antioxidants 2020, 9, 481. [CrossRef]
95. Umair Raza, M.; Abasi, F.; Shahbaz, M.; Ehsan, M.; Seerat, W.; Akram, A.; Raja, N.I.; Mashwani, Z.U.-R.; Hassan, H.U.; Proćków, J.
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