Assessment of Various Nanoprimings for Boosting Pea Germination and Early Growth in Both Optimal and Drought-Stressed Environments
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Nanoparticle (NPs)-Based Priming Materials
4.2. Characterization of Nanoparticles
4.3. Seed Material
4.4. Seed Priming
4.5. Laboratory Assay
4.6. Measurement of Growth-Related Parameters and Physiological Indexes
- FG—final germination (%),
- SL—Seedling length (cm).
- SLS—Shoot length determined five days following seeding (mm),
- SLE—Shoot length determined eight days following seeding (mm),
- RLS—Root length determined five days following seeding (mm),
- RLE—Root length determined eight days following seeding (mm),
- T—The interval of time (in days) between two measurements (day).
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rajsekhar, D.; Gorelick, S.M. Increasing Drought in Jordan: Climate Change and Cascading Syrian Land-Use Impacts on Reducing Transboundary Flow. Sci. Adv. 2017, 3, e1700581. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.M.; Singh, A.K.; Ansari, M.I. Effect of Drought Stress on Crop Production. In New Frontiers in Stress Management for Durable Agriculture; Rakshit, A., Singh, H., Singh, A., Singh, U., Fraceto, L., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 35–48. [Google Scholar] [CrossRef]
- Dietz, K.J.; Zörb, C.; Geilfus, C.M. Drought and Crop Yield. Plant Biol. 2021, 23, 881–893. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.C.; Mansur, R.J.; Nogueira, C.; Silva, M.A.; Albuquerque, M.B. Drought Stress and Plant Nutrition. Plant Stress 2011, 5, 32–41. [Google Scholar]
- Hussain, H.A.; Hussain, S.; Khaliq, A.; Ashraf, U.; Anjum, S.A.; Men, S.; Wang, L. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. Front. Plant Sci. 2018, 9, 383. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, H.; Chen, Y.; Zhang, L.; Kudusi, K.; Song, J. Effects of Drought and Salt Stress on Seed Germination of Ephemeral Plants in Desert of Northwest China. Front. Ecol. Evol. 2022, 10, 1026095. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wahid, A.; Siddique, K.H.M. Drought Stress in Plants: An Overview. In Plant Responses to Drought Stress; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–33. [Google Scholar] [CrossRef]
- Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Appl. Sci. 2020, 10, 5692. [Google Scholar] [CrossRef]
- Wahab, A.; Abdi, G.; Saleem, M.H.; Ali, B.; Ullah, S.; Shah, W.; Mumtaz, S.; Yasin, G.; Muresan, C.C.; Marc, R.A. Plants’ Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. Plants 2022, 11, 1620. [Google Scholar] [CrossRef] [PubMed]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global Synthesis of Drought Effects on Food Legume Production. PLoS ONE 2015, 10, e0127401. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT Database. Food and Agriculture Organization Statistics. Available online: https://www.fao.org/faostat/en/ (accessed on 11 March 2024).
- Bagheri, M.; Santos, C.S.; Rubiales, D.; Vasconcelos, M.W. Challenges in Pea Breeding for Tolerance to Drought: Status and Prospects. Ann. Appl. Biol. 2023, 183, 108–120. [Google Scholar] [CrossRef]
- Wu, D.-T.; Li, W.-X.; Wan, J.-J.; Hu, Y.-C.; Gan, R.-Y.; Zou, L. A Comprehensive Review of Pea (Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods 2023, 12, 2527. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, L.K.; Lindsay, D.; Yang, T.; Zakeri, H.; Tar’an, B.; Knight, J.D.; Warkentin, T.D. Biological nitrogen fixation potential of pea lines derived from crosses with nodulation mutants. Field Crops Res. 2022, 289, 108731. [Google Scholar] [CrossRef]
- Costa, M.P.; Reckling, M.; Chadwick, D.; Rees, R.M.; Saget, S.; Williams, M.; Styles, D. Legume-Modified Rotations Deliver Nutrition with Lower Environmental Impact. Front. Sustain. Food Syst. 2021, 5, 656005. [Google Scholar] [CrossRef]
- Anjum, S.A.; Ashraf, U.; Zohaib, A.; Tanveer, M.; Naeem, M.; Ali, I.; Tabassum, T.; Nazir, U. Growth and Developmental Responses of Crop Plants under Drought stress: A Review. Zemdirbyste 2017, 104, 267–276. [Google Scholar] [CrossRef]
- Saha, D.; Choyal, P.; Mishra, U.N.; Dey, P.; Bose, B.; Prathibha, M.D.; Gupta, N.K.; Brijesh Kumar Mehta, B.K.; Kumar, P.; Pandey, S.; et al. Drought Stress Responses and Inducing Tolerance by Seed Priming Approach in Plants. Plant Stress 2022, 4, 100066. [Google Scholar] [CrossRef]
- McDonald, M.B. Seed Priming. In Seed Technology and Its Biological Basis; Black, M., Bewley, J.D., Eds.; Sheffield Academic Press: Sheffield, UK, 2000; pp. 287–325. [Google Scholar]
- Paparella, S.; Araújo, S.S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed Priming: State of the Art and New Perspectives. Plant Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Wojtyla, Ł.; Lechowska, K.; Kubala, S.; Garnczarska, M. Molecular Processes Induced in Primed Seeds—Increasing the Potential to Stabilize Crop Yields under Drought Conditions. J. Plant Physiol. 2016, 203, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Romdhane, L.; Al Sulti, M.K.; Rehman, A.; Al-Busaidi, W.M.; Lee, D.J. Morphological, Physiological and Biochemical Aspects of Osmopriming-Induced Drought Tolerance in Lentil. J. Agron. Crop Sci. 2020, 206, 176–186. [Google Scholar] [CrossRef]
- Devika, O.S.; Singh, S.; Sarkar, D.; Barnwal, P.; Suman, J.; Rakshit, A. Seed Priming: A Potential Supplement in Integrated Resource Management Under Fragile Intensive Ecosystems. Front. Sustain. Food Syst. 2021, 5, 654001. [Google Scholar] [CrossRef]
- Tamindžić, G.; Ignjatov, M.; Miljaković, D.; Červenski, J.; Milošević, D.; Nikolić, Z.; Vasiljević, S. Seed Priming Treatments to Improve Heat Stress Tolerance of Garden Pea (Pisum sativum L.). Agriculture 2023, 13, 439. [Google Scholar] [CrossRef]
- Marthandan, V.; Geetha, R.; Kumutha, K.; Renganathan, V.G.; Karthikeyan, A.; Ramalingam, J. Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants. Int. J. Mol. Sci. 2020, 21, 8258. [Google Scholar] [CrossRef] [PubMed]
- Aswathi, K.P.R.; Kalaji, H.M.; Puthur, J.T. Seed Priming of Plants Aiding in Drought Stress Tolerance and Faster Recovery: A Review. Plant Growth Regul. 2022, 97, 235–253. [Google Scholar] [CrossRef]
- Tabassum, T.; Ahmad, R.; Farooq, M.; Basra, S.M.A. Improving the Drought Tolerance in Barley by Osmopriming and Biopriming. Int. J. Agric. Biol. 2018, 20, 1597–1606. [Google Scholar] [CrossRef]
- Khan, M.N.; Fu, C.; Li, J.; Tao, Y.; Yanhui Li, Y.; Hu, J.; Chen, L.; Khan, Z.; Wu, H.; Li, Z. Seed Nanopriming: How do Nanomaterials Improve Seed Tolerance to Salinity and Drought? Chemosphere 2023, 310, 136911. [Google Scholar] [CrossRef] [PubMed]
- Shelar, A.; Singh, A.V.; Maharjan, R.S.; Laux, P.; Luch, A.; Gemmati, D.; Tisato, V.; Singh, S.P.; Santilli, M.F.; Shelar, A.; et al. Sustainable Agriculture through Multidisciplinary Seed Nanopriming: Prospects of Opportunities and Challenges. Cells 2021, 10, 2428. [Google Scholar] [CrossRef] [PubMed]
- Mittal, D.; Kaur, G.; Singh, P.; Yadav, K.; Ali, S.A. Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Front. Nanotechnol. 2020, 2, 579954. [Google Scholar] [CrossRef]
- Khalid, F.; Asif, K.; Rasheed, Y.; Ashraf, H.; Maqsood, M.F.; Rana, S.; Zulfiqar, U.; Naz, N.; Shahbaz, M.; Sardar, R.; et al. Nano Priming for Boosting Growth and Resilience in Crops under Abiotic Stresses. Biocatal. Agric. Biotechnol. 2023, 53, 102892. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Siddique, K.H.M. Micronutrient application through seed treatments—A review. J. Soil Sci. Plant Nutr. 2012, 12, 125–142. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhang, B.; Chachar, Z.; Li, J.; Xiao, G.; Wang, Q.; Hayat, F.; Lansheng Deng, L.; Narejo, M.N.; Bozdar, B.; et al. Micronutrients and their effects on Horticultural crop quality, productivity and sustainability. Sci. Hort. 2024, 323, 112512. [Google Scholar] [CrossRef]
- Mazhar, M.W.; Ishtiaq, M.; Maqbool, M.; Akram, R. Seed priming with calcium oxide nanoparticles improves germination, biomass, antioxidant defence and yield traits of canola plants under drought stress. S. Afr. J. Bot. 2022, 151, 889–899. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, J.; Wu, J.; Zhang, L.; Wang, J.; Zhang, B.; Wang-Pruski, G. Alleviating effect of silicon on melon seed germination under autotoxicity stress. Ecotoxicol. Environ. Saf. 2020, 188, 109901. [Google Scholar] [CrossRef] [PubMed]
- Prerna, D.I.; Govindaraju, K.; Tamilselvan, S.; Kannan, M.; Vasantharaja, R.; Chaturvedi, S.; Shkolnik, D. Influence of nanoscale micro-nutrient α-Fe2O3 on seed germination, seedling growth, translocation, physiological effects and yield of rice (Oryza sativa) and maize (Zea mays). Plant Physiol. Biochem. 2021, 162, 564–580. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Pramanik, K.; Panda, D.; Dutta, D.; Karmakar, S.; Bose, B. Sulfur in Seeds: An Overview. Plants 2022, 11, 450. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hasanuzzaman, M.; Wen, H.; Zhang, J.; Peng, T.; Sun, H.; Zhao, Q. High Temperature and Drought Stress Cause Abscisic Acid and Reactive Oxygen Species Accumulation and Suppress Seed Germination Growth in Rice. Protoplasma 2019, 256, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Zhou, X.; Nie, Y.; Bai, S.H.; Zhou, L.; Shao, J.; Cheng, W.; Wang, J.; Hu, F.; Fu, Y. Drought-Induced Changes in Root Biomass Largely Result from Altered Root Morphological Traits: Evidence from a Synthesis of Global Field Trials. Plant Cell Environ. 2018, 41, 2589–2599. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.L.; Li, J.; Wang, H.C.; Zhang, C.L.; Naeem, M.S. Fullerol Improves Seed Germination, Biomass Accumulation, Photosynthesis and Antioxidant System in Brassica napus L. under Water Stress. Plant Physiol. Biochem. 2018, 129, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Saadaoui, W.; Tarchoun, N.; Msetra, I.; Pavli, O.; Falleh, H.; Ayed, C.; Amami, R.; Ksouri, R.; Petropoulos, S.A. Effects of Drought Stress induced by D-Mannitol on the Germination and Early Seedling Growth Traits, Physiological Parameters and Phytochemicals Content of Tunisian squash (Cucurbita maxima Duch.) Landraces. Front. Plant Sci. 2023, 14, 1215394. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Iqbal, M.S.; Li, H.; Nazir, M.F.; Khalid, S.; Sarfraz, S.; Hu, D.; Baojun, C.; Geng, X.; Tajo, S.M.; et al. Differential Seedling Growth and Tolerance Indices Reflect Drought Tolerance in Cotton. BMC Plant Biol. 2022, 22, 331. [Google Scholar] [CrossRef] [PubMed]
- Arafa, S.A.; Attia, K.A.; Niedbała, G.; Piekutowska, M.; Alamery, S.; Abdelaal, K.; Alateeq, T.K.; Ali, M.; Elkelish, A.; Attallah, S.Y. Seed Priming Boost Adaptation in Pea Plants under Drought Stress. Plants 2021, 10, 2201. [Google Scholar] [CrossRef] [PubMed]
- EL Sabagh, A.; Hossain, A.; Barutçular, C.; Abdelaal, A.A.; Fahad, S.; Anjorin, F.B.; Islam, M.S.; Ratnasekera, D.; Kizilgeçi, F.; Yadav, S.; et al. Sustainable Maize (Zea mays L.) Production under Drought Stress by Understanding its Adverse Effect, Survival Mechanism and Drought Tolerance Indices. J. Exp. Biol. Agric. Sci. 2018, 6, 282–295. [Google Scholar] [CrossRef]
- Abbas, M.; Abdel-Lattif, H.; Shahba, M. Ameliorative Effects of Calcium Sprays on Yield and Grain Nutritional Composition of Maize (Zea mays L.) Cultivars under Drought Stress. Agriculture 2021, 11, 285. [Google Scholar] [CrossRef]
- Abdelaal, K.A.A. Effect of Salicylic acid and Abscisic Acid on Morpho-Physiological and Anatomical Characters of Faba Bean Plants (Vicia faba L.) under Drought Stress. J. Plant Prod. 2015, 6, 1771–1788. [Google Scholar] [CrossRef]
- Abdelaal, K.; AlKahtani, M.; Attia, K.; Hafez, Y.; Király, L.; Künstler, A. The Role of Plant Growth-Promoting Bacteria in Alleviating the Adverse Effects of Drought on Plants. Biology 2021, 10, 520. [Google Scholar] [CrossRef] [PubMed]
- Petrović, G.; Živanović, T.; Stikić, R.; Nikolić, Z.; Jovičić, D.; Tamindžić, G.; Milošević, D. Effects of Drought Stress on Germination and Seedling Growth of Different Field Pea Varieties. Matica Srpska J. Nat. Sci. 2021, 140, 59–70. [Google Scholar] [CrossRef]
- Lahuta, L.B.; Szablińska-Piernik, J.; Horbowicz, M. Changes in Metabolic Profiles of Pea (Pisum sativum L.) as a Result of Repeated Short-Term Soil Drought and Subsequent Re-Watering. Int. J. Mol. Sci. 2022, 23, 1704. [Google Scholar] [CrossRef] [PubMed]
- Bouchyoua, A.; Kouighat, M.; Hafid, A.; Ouardi, L.; Khabbach, A.; Hammani, K.; Nabloussi, A. Evaluation of Rapeseed (Brassica napus L.) Genotypes for Tolerance to PEG (polyethylene glycol) Induced Drought at Germination and Early Seedling Growth. J. Agric. Food Res. 2024, 15, 100928. [Google Scholar] [CrossRef]
- Wang, L.X.; Manzoni, S.; Ravi, S.; Riveros-Iregui, D.; Caylor, K. Dynamic interactions of ecohydrological and biogeochemical processes in water-limited systems. Ecosphere 2015, 6, 133. [Google Scholar] [CrossRef]
- do Espirito Santo Pereira, A.; Caixeta Oliveira, H.; Fernandes Fraceto, L.; Santaella, C. Nanotechnology Potential in Seed Priming for Sustainable Agriculture. Nanomaterials 2021, 11, 267. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Mor, V.S.; Tokas, J.; Punia, H.; Malik, S.; Malik, K.; Sangwan, S.; Tomar, S.; Singh, P.; Singh, N.; et al. Biostimulant-Treated Seedlings under Sustainable Agriculture: A Global Perspective Facing Climate Change. Agronomy 2021, 11, 14. [Google Scholar] [CrossRef]
- Tavanti, T.R.; Melo, A.A.R.; Moreira, L.D.K.; Sanchez, D.E.J.; Silva, R.S.; Silva, R.M.; Reis, A.R. Micronutrient Fertilization Enhances ROS Scavenging System for Alleviation of Abiotic Stresses in Plants. Plant Physiol. Biochem. 2021, 160, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Szőllősi, R.; Molnár, Á.; Kondak, S.; Kolbert, Z. Dual Effect of Nanomaterials on Germination and Seedling Growth: Stimulation vs. Phytotoxicity. Plants 2020, 9, 1745. [Google Scholar] [CrossRef] [PubMed]
- Bayat, M.; Zargar, M.; Murtazova, K.M.-S.; Nakhaev, M.R.; Shkurkin, S.I. Ameliorating Seed Germination and Seedling Growth of Nano-Primed Wheat and Flax Seeds Using Seven Biogenic Metal-Based Nanoparticles. Agronomy 2022, 12, 811. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Bindraban, P.S.; Fugice, J.; Agyin-Birikorang, S.; Singh, U.; Hellums, D. Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron. Sustain. Dev. 2017, 37, 5. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, J.; Li, M.; Li, Y.; Zhou, P.; Wang, Q.; Sun, Y.; Zhu, G.; Wang, Q.; Zhang, P.; et al. Effect of Silica-Based Nanomaterials on Seed Germination and Seedling Growth of Rice (Oryza sativa L.). Nanomaterials 2022, 12, 4160. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, S.; Hatami, M.; Ghorbanpour, M. Silicon-Nanoparticle Mediated Changes in Seed Germination and Vigor Index of Marigold (Calendula officinalis L.) Compared to Silicate under PEG-induced Drought Stress. Gesunde Pflanz. 2021, 73, 575–589. [Google Scholar] [CrossRef]
- Rai-Kalal, P.; Tomar, R.S.; Jajoo, A. Seed Nanopriming by Silicon Oxide Improves Drought Stress Alleviation Potential in Wheat Plants. Funct. Plant Biol. 2021, 48, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, M.W.; Ishtiaq, M.; Maqbool, M.; Atiq Hussain, S.; Casini, R.; Abd-ElGawad, A.M.; Elansary, H.O. Seed Nano-Priming with Calcium Oxide Maintains the Redox State by Boosting the Antioxidant Defense System in Water-Stressed Carom (Trachyspermum ammi L.) Plants to Confer Drought Tolerance. Nanomaterials 2023, 13, 1453. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, S.; Raja, K.; Manonmani, V.; Jeyaprakash, P.; Ramesh, T.; Vanniarajan, C.; Kavitha, S. CaO Nanoparticles Seed Invigoration on Germination and Seedling Growth of Rice var. TRY 3. Int. J. Environ. Clim. Change 2023, 13, 2160–2167. [Google Scholar] [CrossRef]
- Hawkesford, M.J. Sulfur. In Nutritional Genomics; Broadley, M.R., White, P., Eds.; Blackwell Publishers: Oxford, UK, 2005; pp. 87–111. [Google Scholar]
- Henriet, C.; Aime, D.; Terezol, M.; Kilandamoko, A.; Rossin, N.; Combes-Soia, L.; Labas, V.; Serre, R.-F.; Prudent, M.; Kreplak, J.; et al. Water Stress Combined with Sulfur Deficiency in Pea Affects Yield Components but Mitigates the Effect of Deficiency on Seed Globulin Composition. J. Exp. Bot. 2019, 70, 4287–4303. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Lara, L.O.; Medrano-Macías, J.; Pérez-Labrada, F.; Rivas-Martínez, E.N.; García-Enciso, E.L.; González-Morales, S.; Juárez-Maldonado, A.; Rincón-Sánchez, F.; Benavides-Mendoza, A. From Elemental Sulfur to Hydrogen Sulfide in Agricultural Soils and Plants. Molecules 2019, 24, 2282. [Google Scholar] [CrossRef] [PubMed]
- Ragab, G.; Saad-Allah, K. Seed Priming with Greenly Synthesized Sulfur Nanoparticles Enhances Antioxidative Defense Machinery and Restricts Oxidative Injury Under Manganese Stress in Helianthus annuus (L.) Seedlings. J. Plant Growth Regul. 2021, 40, 1894–1902. [Google Scholar] [CrossRef]
- Burstrom, H.G. Calcium and Plant Growth. Biol. Rev. 1968, 43, 287–316. [Google Scholar] [CrossRef]
- Matoh, T.; Kobayashi, M. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res. 1998, 111, 179–190. [Google Scholar] [CrossRef]
- Pirayesh, N.; Giridhar, M.; Khedher, A.B.; Vothknecht, U.C.; Chigri, F. Organellar calcium signaling in plants: An update. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118948. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.D.; Minkina, T.; Feizi, M.; Kumari, A.; Khan, M.; Mandzhieva, S.; Sushkova, S.; El-Ramady, H.; Verma, K.K.; Singh, A.; et al. Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. Biology 2021, 10, 791. [Google Scholar] [CrossRef] [PubMed]
- Franco-Lagos, C.L.; Sánchez, E.; Palacio-Márquez, A.; Pérez-Álvarez, S.; Terrazas-Gómez, M.; Villalobos-Cano, O.; Ramírez-Estrada, C.A. Efficacy of the Application of Boron Nanofertilizer on Biomass, Yield, Nitrogen Assimilation and Photosynthetic Activity in Green Beans. Not. Bot. Horti Agrobot. Cluj-Napoca 2023, 51, 12795. [Google Scholar] [CrossRef]
- Feng, Y.; Kreslavski, V.D.; Shmarev, A.N.; Ivanov, A.A.; Zharmukhamedov, S.K.; Kosobryukhov, A.; Yu, M.; Allakhverdiev, S.I.; Shabala, S. Effects of Iron Oxide Nanoparticles (Fe3O4) on Growth, Photosynthesis, Antioxidant Activity and Distribution of Mineral Elements in Wheat (Triticum aestivum). Plants 2022, 11, 1894. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A.; Shafiei-Masouleh, S.S.; Mohsin, R.M.; Salih, Z.K. Foliar Application of Iron Oxide Nanoparticles Promotes Growth, Mineral Contents, and Medicinal Qualities of Solidago virgaurea L. J. Soil Sci. Plant Nutr. 2023, 23, 2610–2624. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, R.; Wang, L.; Bi, H.; Peng, Z.; Li, J.; Guo, C.; Bi, Y.; Lai, Y.; Guo, D. Enhanced Germination and Growth of Alfalfa with Seed Presoaking and Hydroponic Culture in Fe2O3 Magnetic Nanoparticles. J. Nanomater. 2023, 2023, 9783977. [Google Scholar] [CrossRef]
- Okeke, E.S.; Nweze, E.J.; Ezike, T.C.; Nwuche, C.O.; Ezeorba, T.P.C.; Nwankwo, C.E.I. Silicon-Based Nanoparticles for Mitigating the Effect of Potentially Toxic Elements and Plant Stress in Agroecosystems: A Sustainable Pathway Towards Food Security. Sci. Total Environ. 2023, 898, 165446. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraj, M.; Sathya Priya, R.; Jagathjothi, N.; Saranya, M.; Suganthi, N.; Sharmila, R.; Cyriac, J.; Anitha, R.; Subramanian, K.S. Silicon nanoparticles (SiNPs): Challenges and perspectives for sustainable agriculture. Physiol. Mol. Plant Pathol. 2023, 128, 102161. [Google Scholar] [CrossRef]
- Mathur, P.; Roy, S. Nanosilica facilitates silica uptake, growth and stress tolerance in plants. Plant Physiol. Biochem. 2020, 157, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Brdar-Jokanović, M. Boron Toxicity and Deficiency in Agricultural Plants. Int. J. Mol. Sci. 2020, 21, 1424. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, W.M.; Ishtiaq, M.; Maqbool, M.; Akram, R.; Shahid, A.; Shokralla, S.; Al-Ghobari, H.; Alataway, A.; Dewidar, A.Z.; El-Sabrout, A.M.; et al. Seed priming with iron oxide nanoparticles raises biomass production and agronomic profile of water-stressed flax plants. Agronomy 2022, 12, 982. [Google Scholar] [CrossRef]
- Mazhar, M.W.; Ishtiaq, M.; Maqbool, M.; Ullah, F.; Sayed, S.R.M.; Mahmoud, E.A. Seed priming with iron oxide nanoparticles improves yield and antioxidant status of garden pea (Pisum sativum L.) grown under drought stress. S. Afr. J. Bot. 2023, 162, 577–587. [Google Scholar] [CrossRef]
- Sutulienė, R.; Brazaitytė, A.; Małek, S.; Jasik, M.; Samuoliene, G. Biochemical Responses of Pea Plants to Drought Stress and in the Presence of Molybdenum Trioxide Nanoparticles. Plant Soil 2023, 492, 381–397. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: Amsterdam, The Netherland, 1995; pp. 1–889. [Google Scholar]
- Ramezan, D.; Zargar, M.; Nakhaev, M.R.; Said-Akhmadovich, K.A.; Bayat, M.; Ghaderi, A. Selenium alleviates growth characteristics, plant pigments, photosynthetic and antioxidant capacity of basil (Ocimum basilicum L.) under low temperature. Biocatal. Agric. Biotechnol. 2024, 58, 103198. [Google Scholar] [CrossRef]
- Linh, T.M.; Mai, N.C.; Hoe, P.T.; Lien, L.Q.; Ban, N.K.; Hien, L.T.T.; Chau, N.H.; Van, N.T. Metal-Based Nanoparticles Enhance Drought Tolerance in Soybean. J. Nanomater. 2020, 2020, 4056563. [Google Scholar] [CrossRef]
- Chandrashekar, H.K.; Singh, G.; Kaniyassery, A.; Thorat, S.A.; Nayak, R.; Murali, T.S.; Muthusamy, A. Nanoparticle-Mediated Amelioration of Drought Stress in Plants: A Systematic Review. 3 Biotech 2023, 13, 336. [Google Scholar] [CrossRef] [PubMed]
- Shelar, A.; Nile, S.H.; Singh, A.V.; Rothenstein, D.; Bill, J.; Xiao, J.; Chaskar, M.; Kai, G.; Patil, R. Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: Challenges, risk assessment, and future perspectives. Nanomicro Lett. 2023, 15, 54. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, L.; Li, W.; Ashraf, U.; Ma, L.; Tang, X.; Pan, S.; Tian, H.; Mo, Z. ZnO Nanoparticle-Based Seed Priming Modulates Early Growth and Enhances Physio-Biochemical and Metabolic Profiles of Fragrant Rice against Cadmium Toxicity. J. Nanobiotechnol. 2021, 19, 75. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, H.; Shiraz, M.; Mir, A.R.; Siddiqui, H.; Hayat, S. Nano-Priming Techniques for Plant Physio-Biochemistry and Stress Tolerance. J. Plant Growth Regul. 2023, 42, 6870–6890. [Google Scholar] [CrossRef]
- Salam, A.; Afridi, M.S.; Javed, M.A.; Saleem, A.; Hafeez, A.; Khan, A.R.; Zeeshan, M.; Ali, B.; Azhar, W.; Sumaira; et al. Nano-Priming against Abiotic Stress: A Way Forward towards Sustainable Agriculture. Sustainability 2022, 14, 14880. [Google Scholar] [CrossRef]
- Madanayake, N.H.; Adassooriya, N.M. Phytotoxicity of Nanomaterials in Agriculture. Open Biol. J. 2021, 15, 109–118. [Google Scholar] [CrossRef]
- McKee, M.S.; Filser, J. Impacts of Metal-based Engineered Nanomaterials on Soil Communities. Environ. Sci. Nano 2016, 3, 506–533. [Google Scholar] [CrossRef]
- Lee, J.H.J.; Kasote, D.M. Nano-Priming for Inducing Salinity Tolerance, Disease Resistance, Yield Attributes, and Alleviating Heavy Metal Toxicity in Plants. Plants 2024, 13, 446. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.K.; Shweta; Singh, S.; Swati, S.; Rishikesh, P.; Singh, V.P.; Sharma, N.C.; Prasad, S.M.; Dubey, N.K.; Chauhan, D.K. An Overview on Manufactured Nanoparticles in Plants: Uptake, Translocation, Accumulation and Phytotoxicity. Plant Physiol. Biochem. 2017, 110, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.; Minkina, T.; Mazarji, M.; Shende, S.; Sushkova, S.; Mandzhieva, S.; Burachevskaya, M.; Chaplygin, V.; Singh, A.; Jatav, H. Accumulation of Nanoparticles in the Soil-Plant Systems and their Effects on Human Health. Ann. Agric. Sci. 2020, 65, 137–143. [Google Scholar] [CrossRef]
- Sharma, P.; Urfan, M.; Anand, R.; Sangral, M.; Hakla, H.R.; Sharma, S.; Das, R.; Pal, S.; Bhagat, M. Green Synthesis of Zinc Oxide Nanoparticles using Eucalyptus lanceolata Leaf Litter: Characterization, Antimicrobial and Agricultural Efficacy in Maize. Physiol. Mol. Biol. Plants 2022, 28, 363–381. [Google Scholar] [CrossRef] [PubMed]
- Sundaria, N.; Singh, M.; Upreti, P.; Chauhan, R.P.; Jaiswal, J.; Kumar, A. Seed Priming with Iron Oxide Nanoparticles triggers Iron Acquisition and Biofortification in Wheat (Triticum aestivum L.) Grains. J. Plant Growth Regul. 2019, 38, 122–131. [Google Scholar] [CrossRef]
- Sanzari, I.; Leone, A.; Ambrosone, A. Nanotechnology in Plant Science: To Make a Long Story Short. Front. Bioeng. Biotechnol. 2019, 7, 120. [Google Scholar] [CrossRef] [PubMed]
- Daniel, A.I.; Hüsselmann, L.; Shittu, O.K.; Gokul, A.; Keyster, M.; Klein, A. Application of Nanotechnology and Proteomic Tools in Crop Development Towards Sustainable Agriculture. J. Crop Sci. Biotechnol. 2024, 27, 359–379. [Google Scholar] [CrossRef]
- Yurkevich, E.S.; Anisovich, M.V.; Azizbekyan, S.G. Study of Toxicological Properties of Microfertilizers “Nanoplant” in Experiments in Vitro. In Proceedings of the 9th International Conference Bionanotox 2018 “Biomaterials and Nanobiomaterials”, Heraklion, Greece, 6–13 May 2018; pp. 23–25. [Google Scholar]
- Vasilyeva, M.M.; Iliykova, I.I.; Anisovich, M.V.; Hamolka, T.N.; Azizbekyan, S.G.; Yurkevich, H.S.; Ioda, V.I. Study of the Toxicological Properties of Microfertilizers. Pub. Health Tox. 2021, 1 (Suppl. 1), A46. [Google Scholar] [CrossRef]
- Tamindžić, G.; Azizbekian, S.; Miljaković, D.; Turan, J.; Nikolić, Z.; Ignjatov, M.; Milošević, D.; Vasiljević, S. Comprehensive Metal-Based Nanopriming for Improving Seed Germination and Initial Growth of Field Pea (Pisum sativum L.). Agronomy 2023, 13, 2932. [Google Scholar] [CrossRef]
- Bootz, A.; Vogel, V.; Schubert, D.; Kreuter, J. Comparison of Scanning Electron Microscopy, Dynamic Light Scattering and Analytical Ultracentrifugation for the Sizing of Poly (butyl cyanoacry-late) Nanoparticles. Eur. J. Pharm. Biopharm. 2004, 57, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Yan, K.; Li, J.; Zafar, S.; Hasnain, Z.; Aslam, N.; Iqbal, N.; Hussain, S.S.; Usman, M.; Abbas, M.; et al. AgriNanotechnology and Tree Nanobionics: Augmentation in Crop Yield, Biosafety, and Biomass Accumulation. Front. Bioeng. Biotechnol. 2022, 10, 85304. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, R.G.; Paria, S. Synthesis of Sulfur Nanoparticles in Aqueous Surfactant Solutions. J. Colloid Interface Sci. 2010, 343, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Mikić, A.; Perić, V.; Đorđević, V.; Srebrić, M.; Mihailović, V. Anti-Nutritional Factors in some Grain Legumes. Biotechnol. Anim. Husb. 2009, 25, 1181–1188. [Google Scholar]
- Tamindžić, G.; Červenski, J.; Milošević, D.; Vlajić, S.; Nikolić, Z.; Ignjatov, M. The Response of Garden Pea Cultivars to Simulated Drought. Acta Agric. Serb. 2021, 26, 167–173. [Google Scholar] [CrossRef]
- International Seed Testing Association (ISTA). Rules for Testing Seeds; ISTA: Zurich, Switzerland, 2023. [Google Scholar]
- Abdul-Baki, A.A.; Anderson, J.D. Vigour Determination in Soybean Seed by Multiple Criteria. Crop Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Channaoui, S.; Idrissi, I.S.; Mazouz, H.; Nabloussi, A. Reaction of some Rapeseed (Brassica napus L.) Genotypes to Different Drought Stress Levels during Germination and Seedling Growth Stages. OCL 2019, 26, 23. [Google Scholar] [CrossRef]
Traits | Factors | ||
---|---|---|---|
Condition (C) | Treatment (T) | C × T | |
Germination (First Count) | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Final Germination | 0.0000 *** | 0.0000 *** | 0.0037 *** |
Abnormal Seedlings | 0.0076 ** | 0.0054 ** | 0.0020 ** |
Shoot Length | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Root Length | 0.0000 *** | 0.0000 *** | 0.0001 *** |
Fresh Shoot Weight | 0.0000 *** | 0.0000 *** | 0.0022 *** |
Fresh Root Weight | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Dry Shoot Weight | 0.0000 *** | 0.0000 *** | 0.0002 *** |
Dry Root Weight | 0.0000 *** | 0.0000 *** | 0.0000 *** |
Shoot Elongation Rate | 0.0027 ** | 0.0000 *** | 0.0000 *** |
Root Elongation Rate | 0.0033 ** | 0.0001 *** | 0.0030 ** |
Seedling Vigour Index | 0.0000 *** | 0.0001 *** | 0.0016 ** |
Shoot Length Stress Tolerance Index | 0.0105 * | 0.0000 *** | 0.0000 *** |
Root Length Stress Tolerance Index | 0.7405 ns | 0.0003 *** | 0.0017 ** |
Treatman | Germination (First Count) (%) | Final Germination (%) | Abnormal Seedlings (%) | Shoot Length (mm) | Root Length (mm) |
---|---|---|---|---|---|
| |||||
Control | 71.6 ± 0.67 c | 78.7 ± 0.88 d | 10.3 ± 0.88 a | 105.5 ± 0.57 d | 130.5 ± 2.18 b |
HP | 74.0 ± 0.58 b | 79.7 ± 0.88 cd | 5.0 ± 0.58 c | 105.0 ± 1.04 d | 130.7 ± 1.17 b |
NP Ultra | 74.3 ± 0.33 b | 83.3 ± 0.67 ab | 6.7 ± 0.33 bc | 124.5 ± 0.29 b | 133.5 ± 0.76 b |
NP Ca-Si | 77.0 ± 0.58 a | 85.0 ± 0.58 a | 9.0 ± 0.58 a | 131.5 ± 1.53 a | 144.2 ± 2.33 a |
NP Sulfur | 77.7 ± 0.88 a | 81.3 ± 0.67 bc | 8.3 ± 0.67 ab | 112.7 ± 1.20 c | 140.3 ± 0.73 a |
| |||||
Control | 53.7 ± 0.88 c | 70.7 ± 0.67 c | 7.3 ± 0.67 a | 87.3 ± 0.60 d | 107.0 ± 1.61 c |
HP | 65.0 ± 1.00 a | 71.7 ± 0.88 c | 7.0 ± 1.00 a | 102.3 ± 0.44 b | 110.5 ± 0.58 bc |
NP Ultra | 61.0 ± 1.15 b | 75.3 ± 0.33 b | 6.7 ± 0.67 a | 109.5 ± 2.52 a | 115.7 ± 1.76 a |
NP Ca-Si | 60.3 ± 0.88 b | 76.7 ± 0.88 ab | 5.0 ± 0.88 a | 100.2 ± 0.67 b | 110.5 ± 0.58 bc |
NP Sulfur | 52.7 ± 0.88 c | 78.7 ± 0.67 a | 7.0 ± 0.58 a | 92.3 ± 0.60 c | 111.7 ± 0.33 b |
Treatment | Fresh Shoot Weight (g) | Fresh Root Weight (g) | Dry Shoot Weight (g) | Dry Root Weight (g) |
---|---|---|---|---|
| ||||
Control | 2.70 ± 0.01 c | 1.52 ± 0.01 c | 0.231 ± 0.003 c | 0.128 ± 0.004 c |
HP | 2.68 ± 0.01 c | 1.59 ± 0.03 c | 0.238 ± 0.003 c | 0.132 ± 0.000 c |
NP Ultra | 3.15 ± 0.01 ab | 1.59 ± 0.01 c | 0.254 ± 0.003 b | 0.187 ± 0.002 b |
NP Ca-Si | 3.25 ± 0.06 a | 1.96 ± 0.04 b | 0.267 ± 0.002 a | 0.209 ± 0.004 a |
NP Sulfur | 3.10 ± 0.04 b | 2.10 ± 0.06 a | 0.267 ± 0.002 a | 0.133 ± 0.001 c |
| ||||
Control | 2.10 ± 0.03 c | 1.36 ± 0.01 d | 0.181 ± 0.001 b | 0.123 ± 0.000 c |
HP | 2.14 ± 0.03 c | 1.43 ± 0.02 c | 0.179 ± 0.005 b | 0.122 ± 0.001 c |
NP Ultra | 2.46 ± 0.04 a | 1.57 ± 0.01 a | 0.210 ± 0.002 a | 0.142 ± 0.004 a |
NP Ca-Si | 2.52 ± 0.01 a | 1.50 ± 0.02 b | 0.183 ± 0.007 b | 0.128 ± 0.001 bc |
NP Sulfur | 2.28 ± 0.02 b | 1.44 ± 0.01 c | 0.198 ± 0.004 a | 0.134 ± 0.003 b |
Treatment | Shoot Elongation Rate (mm day−1) | Root Elongation Rate (mm day−1) | Seedling Vigor Index | SLSI (%) | RLSI (%) |
---|---|---|---|---|---|
| |||||
Control | 22.32 ± 0.31 c | 14.94 ± 0.61 a | 1879.1 ± 39.1 c | 100.0 ± 0.00 d | 100.0 ± 0.00 c |
HP | 22.11 ± 0.40 c | 16.61 ± 0.45 a | 2029.2 ± 63.3 bc | 99.54 ± 1.52 d | 100.1 ± 0.93 c |
NP Ultra | 28.33 ± 0.10 a | 11.61 ± 0.28 b | 1962.8 ± 54.2 bc | 118.02 ± 0.56 b | 102.3 ± 1.36 bc |
NP Ca-Si | 28.39 ± 0.70 a | 15.72 ± 0.82 a | 2342.5 ± 45.0 a | 124.66 ± 2.00 a | 110.6 ± 3.07 a |
NP Sulfur | 24.33 ± 0.35 b | 15.50 ± 0.19 a | 2057.8 ± 22.9 b | 106.8 ± 1.39 c | 107.6 ± 1.60 ab |
| |||||
Control | 21.17 ± 0.25 d | 13.28 ± 0.63 a | 1480.0 ± 57.38 bc | 100.0 ± 0.00 d | 100.0 ± 0.00 c |
HP | 25.39 ± 0.31 b | 14.28 ± 0.44 a | 1418.9 ± 66.89 c | 117.1 ± 0.75 b | 103.3 ± 1.43 bc |
NP Ultra | 27.50 ± 0.92 a | 13.44 ± 0.44 a | 1696.2 ± 39.29 a | 125.4 ± 3.68 a | 108.1 ± 0.06 a |
NP Ca-Si | 23.56 ± 0.29 c | 13.61 ± 0.39 a | 1614.1 ± 24.31 ab | 114.7 ± 1.43 b | 103.3 ± 1.43 bc |
NP Sulfur | 22.89 ± 0.40 c | 14.50 ± 0.44 a | 1605.2 ± 65.96 ab | 105.7 ± 0.039 c | 104.4 ± 1.33 b |
| ||||||||||||||
Variable | GFC | FG | AS | SL | RL | FSW | FRW | DSW | DRW | SER | RER | SVI | SLSI | RLSI |
GFC | 1.00 | 0.65 ** | −0.04 ns | 0.47 ns | 0.74 ** | 0.74 ** | 0.87 *** | 0.89 *** | 0.37 ns | 0.40 ns | 0.13 ns | 0.63 * | 0.45 ns | 0.79 *** |
FG | 1.00 | −0.02 ns | 0.87 *** | 0.61 * | 0.86 *** | 0.45 ns | 0.74 *** | 0.85 *** | 0.84 *** | −0.30 ns | 0.54 * | 0.84 *** | 0.72 ** | |
AS | 1.00 | 0.07 ns | 0.29 ns | 0.13 ns | 0.23 ns | 0.09 ns | 0.03 ns | −0.01 ns | 0.02 ns | 0.05 ns | 0.08 ns | 0.22 ns | ||
SL | 1.00 | 0.66 ** | 0.87 *** | 0.38 ns | 0.70 ** | 0.96 *** | 0.98 *** | −0.36 ns | 0.64 * | 0.99 *** | 0.60 * | |||
RL | 1.00 | 0.79 *** | 0.83 *** | 0.84 *** | 0.52* | 0.55 * | 0.29 ns | 0.74 ** | 0.66 ** | 0.87 *** | ||||
FSW | 1.00 | 0.66 ** | 0.88 *** | 0.77 *** | 0.85 *** | −0.31 ns | 0.59 ** | 0.86 *** | 0.76 *** | |||||
FRW | 1.00 | 0.84 *** | 0.21 ns | 0.28 ns | 0.29 ns | 0.60* | 0.37 ns | 0.77 *** | ||||||
DSW | 1.00 | 0.57* | 0.65 ** | −0.05 ns | 0.62* | 0.69 ** | 0.81 *** | |||||||
DRW | 1.00 | 0.92 *** | −0.38 ns | 0.65 ** | 0.95 *** | 0.49 ns | ||||||||
SER | 1.00 | −0.51 ns | 0.49 ns | 0.98 *** | 0.48 ns | |||||||||
RER | 1.00 | 0.31 ns | −0.35 ns | 0.22 ns | ||||||||||
SVI | 1.00 | 0.65 ** | 0.59 * | |||||||||||
SLSI | 1.00 | 0.56 ** | ||||||||||||
RLSI | 1.0000 | |||||||||||||
| ||||||||||||||
GFC | 1.00 | −0.25 ns | −0.27 ns | 0.752 *** | 0.21 ns | 0.20 ns | 0.44 ns | −0.10 ns | −0.09 ns | 0.66 ** | −0.11 ns | −0.15 ns | 0.75 *** | 0.28 ns |
FG | 1.00 | −0.25 ns | 0.16 ns | 0.51 ns | 0.64 ** | 0.44 ns | 0.49 ns | 0.60 * | 0.13 ns | 0.40 ns | 0.66 ** | 0.14 ns | 0.43 ns | |
AS | 1.00 | −0.22 ns | −0.17 ns | −0.49 ns | −0.43 ns | 0.04 ns | −0.08 ns | −0.03 ns | 0.05 ns | −0.25 ns | −0.19 ns | −0.10 ns | ||
SL | 1.00 | 0.72 ** | 0.59 * | 0.83 *** | 0.37 ns | 0.44 ns | 0.96 *** | 0.03 ns | 0.38 ns | 0.99 *** | 0.70 ** | |||
RL | 1.00 | 0.56 * | 0.78 *** | 0.68 ** | 0.71 ** | 0.76 *** | 0.40 ns | 0.63 * | 0.69 ** | 0.73 ** | ||||
FSW | 1.00 | 0.83 *** | 0.46 ns | 0.54 * | 0.44 ns | −0.06 ns | 0.65 ** | 0.58 * | 0.56 * | |||||
FRW | 1.00 | 0.56 * | 0.64 ** | 0.75 *** | −0.06 ns | 0.68 ** | 0.83 *** | 0.75 *** | ||||||
DSW | 1.00 | 0.81 *** | 0.41 ns | 0.09 ns | 0.52 * | 0.34 ns | 0.77 *** | |||||||
DRW | 1.00 | 0.47 ns | −0.00 ns | 0.66 ** | 0.40 ns | 0.70 ** | ||||||||
SER | 1.00 | 0.09 ns | 0.37 ns | 0.96 *** | 0.69 ** | |||||||||
RER | 1.00 | 0.13 ns | −0.03 ns | 0.12 ns | ||||||||||
SVI | 1.00 | 0.37 ns | 0.61 ** | |||||||||||
SLSI | 1.00 | 0.68 ** | ||||||||||||
RLSI | 1.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamindžić, G.; Azizbekian, S.; Miljaković, D.; Ignjatov, M.; Nikolić, Z.; Budakov, D.; Vasiljević, S.; Grahovac, M. Assessment of Various Nanoprimings for Boosting Pea Germination and Early Growth in Both Optimal and Drought-Stressed Environments. Plants 2024, 13, 1547. https://doi.org/10.3390/plants13111547
Tamindžić G, Azizbekian S, Miljaković D, Ignjatov M, Nikolić Z, Budakov D, Vasiljević S, Grahovac M. Assessment of Various Nanoprimings for Boosting Pea Germination and Early Growth in Both Optimal and Drought-Stressed Environments. Plants. 2024; 13(11):1547. https://doi.org/10.3390/plants13111547
Chicago/Turabian StyleTamindžić, Gordana, Sergei Azizbekian, Dragana Miljaković, Maja Ignjatov, Zorica Nikolić, Dragana Budakov, Sanja Vasiljević, and Mila Grahovac. 2024. "Assessment of Various Nanoprimings for Boosting Pea Germination and Early Growth in Both Optimal and Drought-Stressed Environments" Plants 13, no. 11: 1547. https://doi.org/10.3390/plants13111547
APA StyleTamindžić, G., Azizbekian, S., Miljaković, D., Ignjatov, M., Nikolić, Z., Budakov, D., Vasiljević, S., & Grahovac, M. (2024). Assessment of Various Nanoprimings for Boosting Pea Germination and Early Growth in Both Optimal and Drought-Stressed Environments. Plants, 13(11), 1547. https://doi.org/10.3390/plants13111547