The Impact of Salinity in the Irrigation of a Wild Underutilized Leafy Vegetable, Sonchus oleraceus L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth Evaluation
2.2. Quality Evaluation
2.3. Nutrient Composition
3. Materials and Methods
3.1. Experimental Setup
3.2. Nutrient Solution
3.3. Growth Parameters
3.4. Quality Traits Analyses
3.5. Nutrient Analyses
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vengosh, A. Salinization and Saline Environments. Treatise Geochem. 2003, 9, 333–365. [Google Scholar] [CrossRef]
- Rasool, S.; Hameed, A.; Azooz, M.; Muneeb, U.; Siddiqi, T.; Ahmad, P. Salt Stress: Causes, Types and Responses of Plants. In Ecophysiology and Responses of Plants under Salt Stress; Springer: New York, NY, USA, 2013; pp. 1–24. [Google Scholar]
- Hopmans, J.W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Grattan, S.R.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.S.; et al. Critical Knowledge Gaps and Research Priorities in Global Soil Salinity. In Advances in Agronomy; Academic Press Inc.: Cambridge, MA, USA, 2021; Volume 169, pp. 1–191. [Google Scholar]
- Omuto, C.T.; Vargas, R.R.; El Mobarak, A.M.; Mohamed, N.; Viatkin, K.; Yigini, Y. Mapping of Salt-Affected Soils—Technical Manual; FAO: Rome, Italy, 2020. [Google Scholar]
- Rhoades, J.D.; Kandiah, A.; Mashali, A.M. The Use of Saline Waters for Crop Production; FAO Irrigation and Drainage; FAO: Rome, Italy, 1992. [Google Scholar]
- Giordano, M.; Petropoulos, S.A.; Rouphael, Y. Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress. Agriculture 2021, 11, 463. [Google Scholar] [CrossRef]
- Zamann, M.; Shahidd, S.A.; Heng, L. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil Salinity under Climate Change: Challenges for Sustainable Agriculture and Food Security. J. Environ. Manag. 2021, 280, 111736. [Google Scholar] [CrossRef] [PubMed]
- Minhas, P.S.; Ramos, T.B.; Ben-Gal, A.; Pereira, L.S. Coping with Salinity in Irrigated Agriculture: Crop Evapotranspiration and Water Management Issues. Agric. Water Manag. 2020, 227, 105832. [Google Scholar] [CrossRef]
- Munns, R. Genes and Salt Tolerance: Bringing Them Together. New Phytol. 2005, 167, 645–663. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate Change Impacts on Soil Salinity in Agricultural Areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Panfili, G.; Niro, S.; Bufano, A.; D’Agostino, A.; Fratianni, A.; Paura, B.; Falasca, L.; Cinquanta, L. Bioactive Compounds in Wild Asteraceae Edible Plants Consumed in the Mediterranean Diet. Plant Foods Hum. Nutr. 2020, 75, 540–546. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Chrysargyris, A.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.D.; Barros, L.; et al. Chemical Composition and Plant Growth of Centaurea raphanina subsp. mixta Plants Cultivated under Saline Conditions. Molecules 2020, 25, 2204. [Google Scholar] [CrossRef]
- Alexopoulos, A.A.; Assimakopoulou, A.; Panagopoulos, P.; Bakea, M.; Vidalis, N.; Karapanos, I.C.; Petropoulos, S.A. Impact of Salinity on the Growth and Chemical Composition of Two Underutilized Wild Edible Greens: Taraxacum officinale and Reichardia picroides. Horticulturae 2021, 7, 160. [Google Scholar] [CrossRef]
- Calone, R.; Bregaglio, S.; Sanoubar, R.; Noli, E.; Lambertini, C.; Barbanti, L. Physiological Adaptation to Water Salinity in Six Wild Halophytes Suitable for Mediterranean Agriculture. Plants 2021, 10, 309. [Google Scholar] [CrossRef]
- Alexopoulos, A.A.; Assimakopoulou, A.; Panagopoulos, P.; Bakea, M.; Vidalis, N.; Karapanos, I.C.; Rouphael, Y.; Petropoulos, S.A. Hedypnois cretica L. and Urospermum picroides L. Plant Growth, Nutrient Status and Quality Characteristics under Salinity Stress. Horticulturae 2023, 9, 65. [Google Scholar] [CrossRef]
- Platis, D.P.; Papoui, E.; Bantis, F.; Katsiotis, A.; Koukounaras, A.; Mamolos, A.P.; Mattas, K. Underutilized Vegetable Crops in the Mediterranean Region: A Literature Review of Their Requirements and the Ecosystem Services Provided. Sustainability 2023, 15, 4921. [Google Scholar] [CrossRef]
- Mattas, K.; Raptou, E.; Alayidi, A.; Yener, G.; Baourakis, G. Assessing the Interlinkage between Biodiversity and Diet through the Mediterranean Diet Case. Adv. Nutr. 2023, 14, 570–582. [Google Scholar] [CrossRef] [PubMed]
- Mattas, K.; Nastis, S.A.; Michailidis, A.; Tsakiridou, E.; Koutroubas, S. Unveiling the Hidden Gems: Minor Crops as Catalysts for Sustainable Development, Biodiversity Conservation, and Economic Resilience. Sustain. Dev. 2024, 32, 1–10. [Google Scholar] [CrossRef]
- Disciglio, G.; Tarantino, A.; Frabboni, L.; Gagliardi, A.; Giuliani, M.M.; Tarantino, E.; Gatta, G. Qualitative Characterisation of Cultivated and Wild Edible Plants: Mineral Elements, Phenols Content and Antioxidant Capacity. Ital. J. Agron. 2017, 12, 383–394. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Giménez-Giménez, A.; Rodríguez-García, I.; Torija-Isasa, M.E. Nutritional Composition of Sonchus Species (S asper L., S oleraceus L. and S tenerrimus L.). J. Sci. Food Agric. 1998, 76, 628–632. [Google Scholar] [CrossRef]
- Li, X.M.; Yang, P.L. Research Progress of Sonchus Species. Int. J. Food Prop. 2018, 21, 147–157. [Google Scholar] [CrossRef]
- Chauhan, B.; Gill, G.; Preston, C. Factors Affecting Seed Germination of Annual Sowthistle (Sonchus oleraceus) in Southern Australia. Weed Sci. 2009, 54, 854–860. [Google Scholar] [CrossRef]
- Khan, Z.; Albrecht, M.; Traveset, A. Salt Application as an Effective Measure to Control Ruderal Invaders Threatening Endangered Halophytic Plant Species. Appl. Veg. Sci. 2013, 16, 448–456. [Google Scholar] [CrossRef]
- Johnson-Green, P.C.; Kenkel, N.C.; Booth, T. The Distribution and Phenology of Arbuscular Mycorrhizae along an Inland Salinity Gradient. Can. J. Bot. 1995, 73, 1318–1327. [Google Scholar] [CrossRef]
- Naz, I.; Bano, A.; Hassan, T. Isolation of Phytohormones Producing Plant Growth Promoting Rhizobacteria from Weeds Growing in Khewra Salt Range, Pakistan and Their Implication in Providing Salt Tolerance to Glycine max L. Afr. J. Biotechnol. 2009, 8, 5762–5768. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.-R.; Zhang, Z.-S.; Hu, Y.-G.; Wu, P. Soil-Plant Relationships in the Hetao Irrigation Region Drainage Ditch Banks, Northern China. Arid Land Res. Manag. 2014, 28, 74–86. [Google Scholar] [CrossRef]
- Carrascosa, Á.; Pascual, J.A.; Ros, M.; Petropoulos, S.; del Mar Alguacil, M. The Effect of Fertilization Regime on Growth Parameters of Sonchus oleraceus and Two Genotypes of Portulaca oleracea. Biol. Life Sci. Forum 2022, 16, 7. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Goumenos, C.; Tzortzakis, N. Use of Medicinal and Aromatic Plant Residues for Partial Peat Substitution in Growing Media for Sonchus oleraceus Production. Agronomy 2023, 13, 1074. [Google Scholar]
- Chrysargyris, A.; Tzortzakis, N. Optimising Fertigation of Hydroponically Grown Sowthistle (Sonchus oleraceus L.): The Impact of the Nitrogen Source and Supply Concentration. Agric. Water Manag. 2023, 289, 108528. [Google Scholar] [CrossRef]
- Salonikioti, A.; Petropoulos, S.; Antoniadis, V.; Levizou, E.; Alexopoulos, A. Wild Edible Species with Phytoremediation Properties. Procedia Environ. Sci. 2015, 29, 98–99. [Google Scholar] [CrossRef]
- Shannon, M.C.; Grieve, C.M. Tolerance of Vegetable Crops to Salinity. Sci. Hortic. 1998, 78, 5–38. [Google Scholar] [CrossRef]
- Lepeduš, H.; Brkić, I.; Cesar, V.; Jurković, V.; Antunović Dunić, J.; Jambrović, A.; Brkić, J.; Šimić, D. Chlorophyll Fluorescence Analysis of Photosynthetic Performance in Seven Maize Inbred Lines under Water-Limited Conditions. Period Biol. 2012, 114, 73–76. [Google Scholar]
- Tao, R.; Ding, J.; Li, C.; Zhu, X.; Guo, W.; Zhu, M. Evaluating and Screening of Agro-Physiological Indices for Salinity Stress Tolerance in Wheat at the Seedling Stage. Front. Plant Sci. 2021, 12, 646175. [Google Scholar] [PubMed]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Morton, M.J.L.; Awlia, M.; Al-Tamimi, N.; Saade, S.; Pailles, Y.; Negrão, S.; Tester, M. Salt Stress under the Scalpel—Dissecting the Genetics of Salt Tolerance. Plant J. 2019, 97, 148–163. [Google Scholar] [PubMed]
- Hniličková, H.; Hnilička, F.; Orsák, M.; Hejnák, V. Effect of Salt Stress on Growth, Electrolyte Leakage, Na+ and Κ+ Content in Selected Plant Species. Plant Soil Environ. 2019, 65, 90–96. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Plumbdhindsa, P.; Thorpe, T.A. Leaf Senescence: Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation, and Decreased Levels of Superoxide Dismutase and Catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Romero-Romero, J.L.; Inostroza-Blancheteau, C.; Reyes-Díaz, M.; Matte, J.P.; Aquea, F.; Espinoza, C.; Gil, P.M.; Arce-Johnson, P. Increased Drought and Salinity Tolerance in Citrus aurantifolia (Mexican Lemon) Plants Overexpressing Arabidopsis CBF3 Gene. J. Soil Sci. Plant Nutr. 2020, 20, 244–252. [Google Scholar] [CrossRef]
- Abdelaal, K.; Alsubeie, M.S.; Hafez, Y.; Emeran, A.; Moghanm, F.; Okasha, S.; Omara, R.; Basahi, M.A.; Darwish, D.B.E.; Ibrahim, M.F.M.; et al. Physiological and Biochemical Changes in Vegetable and Field Crops under Drought, Salinity and Weeds Stresses: Control Strategies and Management. Agriculture 2022, 12, 2084. [Google Scholar] [CrossRef]
- Petretto, G.L.; Urgeghe, P.P.; Massa, D.; Melito, S. Effect of Salinity (NaCl) on Plant Growth, Nutrient Content, and Glucosinolate Hydrolysis Products Trends in Rocket Genotypes. Plant Physiol. Biochem. 2019, 141, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Siddiq, Z.; Hayyat, M.U.; Zhang, Y.J.; Ghaffar, R.; Gatasheh, M.K. Na+ and K+ Compartmentalization in Spinacea oleracea and Their Effects on Growth, Water Relations, Endogenous Melatonin, and Non-Structural Carbohydrates. Sci. Hortic. 2024, 323, 112467. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as Eustressor for Enhancing Quality of Vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Hamilton, J.M.; Fonseca, J.M. Effect of Saline Irrigation Water on Antioxidants in Three Hydroponically Grown Leafy Vegetables: Diplotaxis tenuifolia, Eruca sativa, and Lepidium sativum. HortScience 2010, 45, 546–552. [Google Scholar] [CrossRef]
- Neocleous, D.; Koukounaras, A.; Siomos, A.S.; Vasilakakis, M. Assessing the Salinity Effects on Mineral Composition and Nutritional Quality of Green and Red “Baby” Lettuce. J. Food Qual. 2014, 37, 1–8. [Google Scholar] [CrossRef]
- McDowell, A.; Thompson, S.; Stark, M.; Ou, Z.Q.; Gould, K.S. Antioxidant Activity of Puha (Sonchus oleraceus L.) as Assessed by the Cellular Antioxidant Activity (CAA) Assay. Phytother. Res. 2011, 25, 1876–1882. [Google Scholar] [CrossRef] [PubMed]
- Aissani, F.; Grara, N.; Bensouici, C.; Bousbia, A.; Ayed, H.; Idris, M.H.M.; Teh, L.K. Algerian Sonchus oleraceus L.: A Comparison of Different Extraction Solvent on Phytochemical Composition, Antioxidant Properties and Anti-Cholinesterase Activity. Adv. Tradit. Med. 2022, 22, 383–394. [Google Scholar] [CrossRef]
- Bryan, N.S.; van Grinsven, H. The Role of Nitrate in Human Health. In Advances in Agronomy; Academic Press Inc.: Cambridge, MA, USA, 2013; Volume 119, pp. 153–182. [Google Scholar]
- The European Commission. Commission Regulation (EU) No 1258/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuffs. Off. J. Eur. Union 2011, L320, 15–17. [Google Scholar]
- Rouphael, Y.; Kyriacou, M.C. Enhancing Quality of Fresh Vegetables through Salinity Eustress and Biofortification Applications Facilitated by Soilless Cultivation. Front. Plant Sci. 2018, 9, 1254. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, Y.; Zhang, X.; Li, T.; Grundy, S.; Yang, Q.; Cheng, R. A Review of Environment Effects on Nitrate Accumulation in Leafy Vegetables Grown in Controlled Environments. Foods 2020, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.J.; Negrão, S.; Tester, M. Salt Resistant Crop Plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar] [CrossRef]
- Sarker, U.; Hossain, M.N.; Oba, S.; Ercisli, S.; Marc, R.A.; Golokhvast, K.S. Salinity Stress Ameliorates Pigments, Minerals, Polyphenolic Profiles, and Antiradical Capacity in Lalshak. Antioxidants 2023, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Negrão, S.; Schmöckel, S.M.; Tester, M. Evaluating Physiological Responses of Plants to Salinity Stress. Ann. Bot. 2017, 119, 1–11. [Google Scholar] [CrossRef]
- Mahmud, T.M.M.; Atherton, J.G.; Wright, C.J.; Ramlan, M.F.; Ahmad, S.H. Pak Choi (Brassica rapa ssp Chinensis L.) Quality Response to Pre-Harvest Salinity and Temperature. J. Sci. Food Agric. 1999, 79, 1698–1702. [Google Scholar] [CrossRef]
- Niu, G.; Sun, Y.; Masabni, J.G. Impact of Low and Moderate Salinity Water on Plant Performance of Leafy Vegetables in a Recirculating NFT System. Horticulturae 2018, 4, 6. [Google Scholar] [CrossRef]
- Voutsinos-Frantzis, O.; Karavidas, I.; Petropoulos, D.; Zioviris, G.; Fortis, D.; Ntanasi, T.; Ropokis, A.; Karkanis, A.; Sabatino, L.; Savvas, D.; et al. Effects of NaCl and CaCl2 as Eustress Factors on Growth, Yield, and Mineral Composition of Hydroponically Grown Valerianella locusta. Plants 2023, 12, 1454. [Google Scholar] [CrossRef] [PubMed]
- Breś, W.; Kleiber, T.; Markiewicz, B.; Mieloszyk, E.; Mieloch, M. The Effect of NaCl Stress on the Response of Lettuce (Lactuca sativa L.). Agronomy 2022, 12, 244. [Google Scholar] [CrossRef]
- Maathuis, F.J.M.; Sanders, D. Regulation of K+ Absorption in Plant Root Cells by External K+: Interplay of Different Plasma Membrane K+ Transporters. J. Exp. Bot. 1997, 48, 451–458. [Google Scholar] [PubMed]
- Asch, F.; Dingkuhn, M.; Dörffling, K.; Miezan, K. Leaf K/Na Ratio Predicts Salinity Induced Yield Loss in Irrigated Rice. Euphytica 2000, 113, 109–118. [Google Scholar] [CrossRef]
- Maathuis, F.J.M.; Amtmann, A. K+ Nutrition and Na+ Toxicity: The Basis of Cellular K+/Na+ Ratios. Ann. Bot. 1999, 84, 123–133. [Google Scholar] [CrossRef]
- Zurayk, R.A.; Baalbaki, R. Inula crithmoides: A Candidate Plant for Saline Agriculture. Arid Soil Res. Rehabil. 1996, 10, 213–223. [Google Scholar] [CrossRef]
- FAO. Global Symposium on Salt-Affected Soils: Outcome Document; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Das Shuvo, S.; Zahid, A.; Rahman, M.M.; Parvin, R. Exploring the Impact of Soil and Water Salinity on Dietary Behavior and Health Risk of Coastal Communities in Bangladesh. J. Water Health 2020, 18, 1110–1123. [Google Scholar] [CrossRef] [PubMed]
- Loupassaki, M.H.; Chartzoulakis, K.S.; Digalaki, N.B.; Androulakis, I.I. Effects of Salt Stress on Concentration of Nitrogen, Phosphorus, Potassium, Calcium, Magnesium, and Sodium in Leaves, Shoots, and Roots of Six Olive Cultivars. J. Plant Nutr. 2002, 25, 2457–2482. [Google Scholar] [CrossRef]
- Fisarakis, I.; Nikolaou, N.; Tsikalas, P.; Therios, I.; Stavrakas, D. Effect of Salinity and Rootstock on Concentration of Potassium, Calcium, Magnesium, Phosphorus, and Nitrate–Nitrogen in Thompson Seedless Grapevine. J. Plant Nutr. 2005, 27, 2117–2134. [Google Scholar] [CrossRef]
- Ntatsi, G.; Aliferis, K.A.; Rouphael, Y.; Napolitano, F.; Makris, K.; Kalala, G.; Katopodis, G.; Savvas, D. Salinity Source Alters Mineral Composition and Metabolism of Cichorium spinosum. Environ. Exp. Bot. 2017, 141, 113–123. [Google Scholar] [CrossRef]
- Smart, R.E.; Bingham, G.E. Rapid Estimates of Relative Water Content. Plant Physiol. 1974, 53, 258–260. [Google Scholar] [CrossRef]
- Mcguire, R.G. Reporting of Objective Color Measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- Singleton, V.L.; Joseph, A.R., Jr. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar] [CrossRef]
- Jones, A.; Pravadali-Cekic, S.; Dennis, G.R.; Bashir, R.; Mahon, P.J.; Shalliker, R.A. Ferric Reducing Antioxidant Potential (FRAP) of Antioxidants Using Reaction Flow Chromatography. Anal. Chim. Acta 2017, 967, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, D.; Maroon, M.; Schrader, L.; Youngs, V. Rapid Colorimetric Determination of Nitrate in Plant-Tissue by Nitration of Salicylic-Acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Kuo, S. Phosphorus. In Methods of Soil Analysis—Part 3—Chemical Methods; SSSA Book Series 5; Sparks, D.L., Ed.; Soil Science Society of America (SSSA) and American Society of Agronomy (ASA): Madison, WI, USA, 1996; pp. 869–919. [Google Scholar]
- Kjeldahl, J. A New Method for the Determination of Nitrogen in Organic Matter. J. Anal. Chem. 1883, 22, 366–382. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach; McGraw-Hill Series Inc.: New York, NY, USA, 1997. [Google Scholar]
- Toothaker, E.L. Multiple Comparison Procedures; SAGE Publications Inc.: New York, NY, USA, 1993. [Google Scholar]
Growth Parameters | Treatments * | ||||
---|---|---|---|---|---|
C | S4 | S6 | S8 | S10 | |
Rosette Diameter (cm) (n = 3) | 42.92 ± 1.59 a | 34.92 ± 3.36 ab | 32.58 ± 3.96 abc | 26.50 ± 1.46 bc | 22.83 ± 0.96 c |
Leaf FW ** (g) (n = 14) | 25.62 ± 2.08 a | 18.57 ± 1.71 b | 18.84 ± 1.46 ab | 12.70 ± 0.78 c | 11.63 ± 0.83 c |
Leaf DMC ** (%) (n = 3) | 9.99 ± 0.20 a | 9.57 ± 0.25 ab | 8.98 ± 0.11 b | 10.03 ± 0.14 a | 9.72 ± 0.02 ab |
Leaf Number (n = 6) | 17 ± 1.45 a | 18 ± 1.43 a | 16 ± 2.49 a | 13 ± 0.31 a | 13 ± 0.56 a |
Leaf RWC ** (%) (n = 3) | 80.80 ± 1.14 a | 76.17 ± 0.78 a | 79.47 ± 3.19 a | 76.27 ± 2.58 a | 76.39 ± 0.69 a |
EL ** (%) (n = 3) | 19.59 ± 0.73 a | 20.77 ± 0.94 a | 21.52 ± 0.25 a | 21.57 ± 1.08 a | 24.34 ± 1.34 a |
Root FW (g) (n = 14) | 9.27 ± 0.39 a | 6.37 ± 0.23 a | 6.14 ± 1.45 a | 3.50 ± 0.60 b | 2.95 ± 1.07 b |
Root DMC (%) (n = 3) | 5.68 ± 0.37 c | 5.96 ± 0.30 bc | 5.65 ± 0.47 c | 7.34 ± 0.11 ab | 8.29 ± 0.35 a |
Root SA ** (cm2) (n = 3) | 682.86 ± 81.2 a | 368.74 ± 52.9 b | 321.39 ± 41.2 b | 241.25 ± 11.7 b | 239.44 ± 32.2 b |
Root Tip Number (n = 3) | 4747 ± 822 a | 3777 ± 399 a | 3025 ± 443 a | 2706 ± 175 a | 2884 ± 159 a |
Root Length (m) (n = 3) | 30.35 ± 3.75 a | 22.40 ± 2.76 ab | 19.84 ± 2.19 ab | 16.25 ± 0.52 b | 16.38 ± 2.20 b |
Treatment * | N | P | K | Na | K/Na | |
---|---|---|---|---|---|---|
Leaves | (%) | (mg g−1 Leaf DW **) | - | |||
C | 4.32 ± 0.18 a | 2.91 ± 0.33 c | 48.47 ± 1.66 a | 8.57 ± 0.42 d | 5.69 ± 0.40 a | |
S4 | 4.12 ± 0.07 a | 3.84 ± 0.03 ab | 43.80 ± 1.30 ab | 35.82 ± 2.17 c | 1.24 ± 0.11 b | |
S6 | 4.46 ± 0.21 a | 3.68 ± 0.14 abc | 40.33 ± 2.74 ab | 42.28 ± 3.93 bc | 0.98 ± 0.15 b | |
S8 | 4.17 ± 0.16 a | 4.15 ± 0.13 a | 38.36 ± 1.79 bc | 52.24 ± 1.69 ab | 0.74 ± 0.06 b | |
S10 | 4.19 ± 0.10 a | 3.05 ± 0.14 bc | 29.74 ± 1.96 c | 62.12 ± 1.12 a | 0.48 ± 0.03 b | |
Roots | (%) | (mg g−1 Root DW) | - | |||
C | 3.80 ± 0.21 a | 3.73 ± 0.21 a | 23.84 ± 1.17 a | 14.83 ± 1.2 b | 1.63 ± 0.17 a | |
S4 | 3.32 ± 0.02 a | 3.30 ± 0.39 a | 23.86 ± 1.19 a | 31.14 ± 2.37 a | 0.77 ± 0.06 b | |
S6 | 3.43 ± 0.08 a | 3.31 ± 0.26 a | 28.47 ± 3.54 a | 37.05 ± 1.68 a | 0.78 ± 0.13 b | |
S8 | 3.25 ± 0.17 a | 3.92 ± 0.63 a | 20.53 ± 2.37 a | 40.11 ± 0.83 a | 0.51 ± 0.06 b | |
S10 | 3.23 ± 0.22 a | 4.28 ± 0.70 a | 21.76 ± 0.71 a | 33.02 ± 3.82 a | 0.67 ± 0.05 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkotzamani, A.; Ipsilantis, I.; Menexes, G.; Katsiotis, A.; Mattas, K.; Koukounaras, A. The Impact of Salinity in the Irrigation of a Wild Underutilized Leafy Vegetable, Sonchus oleraceus L. Plants 2024, 13, 1552. https://doi.org/10.3390/plants13111552
Gkotzamani A, Ipsilantis I, Menexes G, Katsiotis A, Mattas K, Koukounaras A. The Impact of Salinity in the Irrigation of a Wild Underutilized Leafy Vegetable, Sonchus oleraceus L. Plants. 2024; 13(11):1552. https://doi.org/10.3390/plants13111552
Chicago/Turabian StyleGkotzamani, Anna, Ioannis Ipsilantis, George Menexes, Andreas Katsiotis, Konstadinos Mattas, and Athanasios Koukounaras. 2024. "The Impact of Salinity in the Irrigation of a Wild Underutilized Leafy Vegetable, Sonchus oleraceus L." Plants 13, no. 11: 1552. https://doi.org/10.3390/plants13111552
APA StyleGkotzamani, A., Ipsilantis, I., Menexes, G., Katsiotis, A., Mattas, K., & Koukounaras, A. (2024). The Impact of Salinity in the Irrigation of a Wild Underutilized Leafy Vegetable, Sonchus oleraceus L. Plants, 13(11), 1552. https://doi.org/10.3390/plants13111552