Forecast the Habitat Sustainability of Schoenus ferrugineus L. (Cyperaceae) in the Southern Urals under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Current Potential Range of Schoenus ferrugineus
3.2. Suitability of S. ferrugineus Habitat Conditions in Wetland Complexes at the Eastern Limit of Current Species Distribution
3.3. Changes of Habitat Suitability of S. ferrugineus in Wetland Complexes at the Eastern Border of Species Range under Future Climate Change
4. Discussion
4.1. Current Potential Range of Schoenus ferrugineus
4.2. Changes in Habitat Suitability of S. ferrugineus in Wetland Complexes at the Eastern Border of Species Range Underclimate Change
5. Conclusions
- Preservation of the hydrological regime of landscapes and vegetation in areas adjacent to calcareous mires.
- Preventing long-term flooding of S. ferrugineus habitats. In the Republic of Bashkortostan, an example of secondary flooding under climate change is the Arkaulovskoye mire, where the populations of 25 rare plant species, including S. ferrugineus, grow [104]. However, upon rewetting with alkaline-rich groundwater, control is necessary to avoid excessive groundwater levels where Typha latifolia overgrowth is possible, which may lead to S. ferrugineus extinction [127]. At the same time, the prevalence of Phragmites australis, which also displaces S. ferrugineus, may increase at low water tables [7].
- In wetland restoration, the removal of topsoil to restore low-nutrient conditions and the introduction of target species, such as by hay transplanting, can help restore S. ferrugineus populations [122,128,129]. Without continuous removal of phytomass, only limited success in restoring the characteristic species composition is possible [130]. In this respect, haymaking is the preferred method because it ensures regular removal of nutrients. Subsequent low phytomass production is an important prerequisite for the survival of light-loving, low-growing wetland species [131,132,133].
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tyler, C. Schoenus vegetation and environmental conditions in South and Southeast Sweden. Vegetatio 1979, 41, 155–170. [Google Scholar] [CrossRef]
- Tyler, C. Classification of Schoenus communities in south and southwest Sweden. Vegetatio 1979, 41, 69–84. [Google Scholar] [CrossRef]
- Blinova, I.V.; Uotila, P. Schoenus ferrugineus (Cyperaceae) in Murmansk Region (Russia). Memo. Soc. Fauna Flora Fenn. 2013, 89, 65–74. Available online: https://journal.fi/msff/article/view/40888 (accessed on 1 June 2024).
- Muldashev, A.A. Skhenus rzhavyy. In Red Book of the Republic of Bashkortostan: Vol. 1: Plants and mushrooms; Martynenko, V.B., Ed.; Studiya onlayn: Moscow, Russia, 2021; p. 82. [Google Scholar]
- Weeda, E.J.; de Mars, H.; Keulen, S.M. Kalkmoeras in Zuid-Limburg (Calcareous mires in Southern Limburg). Nat. Maandbl. 2011, 100, 233–242. [Google Scholar]
- Grootjans, A.P.; Adema, E.B.; Bleuten, W.; Joosten, H.; Madaras, M.; Janakova, M. Hydrological landscape settings of base-rich fen mires and fen meadows: An overview. Appl. Veg. Sci. 2006, 9, 175–184. [Google Scholar] [CrossRef]
- Boyer, M.L.H.; Wheeler, B.D. Vegetation patterns in spring-fed calcareous fens: Calcite precipitation and constraints on fertility. J. Ecol. 1989, 77, 597–609. [Google Scholar] [CrossRef]
- van Duren, I.C. Nutrient Limitation in Drained and Rewetted Fen Meadows. Ph.D. Thesis, University of Groningen: Groningen, The Netherlands, 2000; 122p. [Google Scholar]
- Ganzert, C.; Pfadenhauer, J. Seasonal dynamics of shoot nutrients in Schoenus ferrugineus (Cyperaceae). Holarct. Ecol. 1986, 9, 137–142. [Google Scholar] [CrossRef]
- Cowie, N.R.; Sydes, C. Status, distribution, ecology and management of Brown bog-rush Schoenus ferrugineus. Scott. Nat. Herit. Rev. 1995, 43, 1–16. [Google Scholar]
- Maas, D. Germinatiom characteristics of some plant species from calcareous fens in southern Germany and their implications for the seed bank. Holarct. Ecol. 1989, 12, 337–344. [Google Scholar]
- Wheeler, B.D.; Brookes, B.S.; Smith, R.A.H. An ecological study of Schoenus ferrugineus L. in Scotland. Watsonia 1983, 14, 249–256. [Google Scholar]
- Schopp-Guth, A.; Maas, D.; Pfadenhauer, J. Influence of management on the seed production and seed bank of calcareous fen species. J. Veg. Sci. 1994, 5, 569–578. [Google Scholar] [CrossRef]
- Meusel, H.; Jager, E.; Weinert, E. Vergleichende Chorologie der zentral europiiischen Flora; Meusel, H., Jäger, E.J., Eds.; Gustav Fischer Verlag: Jena, Germany; Stuttgart, Germany; New York, NY, USA, 1965. [Google Scholar]
- Biondi, E.; Blasi, C.; Allegrezza, M.; Anzellotti, I.; Azzella, M.M.; Carli, E.; Casavecchia, S.; Copiz, R.; Del Vico, E.; Facioni, L.; et al. Plant communities of Italy: The Vegetation Prodrome. Plant Biosyst. 2014, 148, 728–814. [Google Scholar] [CrossRef]
- Scotti, I.; Mariani, A.; Verona, V.; Candolini, A.; Cenci, C.A.; Olivieriet, A.M. AFLP markers and cytotaxonomic analysis reveal hybridisation in the genus Schoenus (Cyperaceae). Genome 2002, 45, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Webb, D.A. Schoenus. In Flora Europaea; Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, MA, USA, 1980; Volume 5, p. 289. [Google Scholar]
- Hultén, E.; Fries, M. Atlas of North European Vascular Plants North of the Tropic of Cancer; Koeltz Scientific Books: Königstein, Germany, 1986; 1172p. [Google Scholar]
- Govaerts, R.; Simpson, D.A.; Bruhl, J.J.; Egorova, T.; Goetghebeur, P.; Wilson, K.L. World Checklist of Cyperaceae; Kew Publishing: Dallas, TX, USA, 2007; 765p. [Google Scholar]
- Jiménez-Alfaro, B.; Hájek, M.; Ejrnaes, R.; Rodwell, J.; Pawlikowski, P.; Weeda, E.J.; Laitinen, J.; Moen, A.; Bergamini, A.; Aunina, L.; et al. Biogeographic patterns of base-rich fen vegetation across Europe. Appl. Veg. Sci. 2014, 17, 367–380. [Google Scholar] [CrossRef]
- Joosten, H.; Tanneberger, F.; Moen, A. (Eds.) Mires and Peatlands of Europe: Status, Distribution and Conservation; Schweizerbart Science: Stuttgart, Germany, 2017; 780p. [Google Scholar]
- Pugachevskiy, A.V.; Vershitskaya, I.N.; Yermokhin, M.V.; Stepanovich, I.M.; Sozinov, O.V.; Sakovich, A.A.; Rudakovskiy, I.A.; Kulak, A.V.; Zhuravlev, D.V. Rare Biotopes of Belarus; Al’tiora-zhivye kraski: Minsk, Belarus, 2013; 236p. [Google Scholar]
- Smagin, V.A. Alliance Caricion davallianae in the north-western Russia. Bot. Zhurnal 2008, 93, 1029–1082. [Google Scholar]
- Smagin, V.A.; Denisenkov, V.P. Extremely rich fens of the northern coast of Vozhe Lake. Bot. Zhurnal 2013, 98, 867–885. [Google Scholar] [CrossRef]
- Smagin, V.A.; Noskova, M.G.; Denisenkov, V.P. Schoenus fens of the north-eastern coast of Vozhe lake. Bot. Zhurnal 2015, 100, 277–289. [Google Scholar] [CrossRef]
- Kulikov, P.V.; Philippov, E.G. On the relict character of calcareous fen communities in the South Urals and the distribution of some rare species characteristic to them. Byulleten’ Mosk. Obs. Ispyt. Prirody. Otd. Biol. 1997, 102, 54–57. [Google Scholar]
- Fedotov, Y.P. Flora of the Mires in Bryansk Region; OOO «Polygram-Plyus»: Bryansk, Russia, 2011; 153p. [Google Scholar]
- Ivchenko, T.G. Rare mire communities with Schoenus ferrugineus in the Southern Urals (Chelyabinsk Region). Bot. Zhurnal 2012, 97, 783–790. [Google Scholar]
- Bakin, O.V. On the plants of the minerotrophic fens of Tatarstan. Proc. Kazan Univ. Nat. Sci. Ser. 2014, 156, 68–75. [Google Scholar]
- Volkova, E.M. The Mires of the Pecпyблики Бaшкopтocтaн (Atlas of the Middle Russian Highlands: Genesis, Structural-Republic of Bashkortostan); GUP GRI Functional Features and Environmental “Bashkortostan”: Ufa, Russia, 2018; 420p. [Google Scholar]
- Lapshina, E.D.; Ganasevich, G.I.; Vasina, A.L. Rare plants and plant communities of rich fens of “Malaya Sosva” Nature Reserve (Western Siberia). Environ. Dyn. Clim. Change 2018, 9, 72–92. [Google Scholar] [CrossRef]
- Muldashev, A.A.; Martynenko, V.B. Towards the protection of rare species of bog plants in the Republic of Bashkortostan. Izv. Samara Sci. Cent. Russ. Acad. Sci. 2010, 12, 1417–1420. [Google Scholar]
- Ivchenko, T.G.; Kulikov, P.V. Findings of rare species of vascular plants in the bogs of the Southern Urals (Chelyabinsk region). Bot. J. 2013, 98, 371–382. [Google Scholar]
- Janssen, J.A.M.; Rodwell, J.S.; García Criado, M.; Gubbay, T.; Haynes, S.; Nieto, A.; Sanders, N.; Landucci, F.; Loidi, J.; Ssymank, A.; et al. European Red List of Habitats Part 2, Terrestrial and Freshwater Habitats; Publications Office of the European Union: Luxembourg, 2016; 44p. [Google Scholar] [CrossRef]
- Russian Federation: Red List of 2023 Year. Protected Vascular Plants, Mosses, Liverworts, Anthocerotes and Lichens. Available online: https://www.plantarium.ru/lang/en/page/redbook/id/326.html (accessed on 25 April 2024).
- Danihelka, J.; Chrtek, J.; Kaplan, Z. Checklist of vascular plants of the Czech Republic. Preslia 2012, 84, 647–811. [Google Scholar]
- Grulich, V. The red list of vascular plants of the Czech Republic. Priroda 2017, 35, 75–132. (In Czech) [Google Scholar]
- Rassi, P.; Hyvärinen, E.; Juslén, A.; Mannerkoski, I. (Eds.) The 2010 Red List of Finnish Species; Ministry of the Environment, Finnish Environment Institute: Helsinki, Finland, 2010; 685p. [Google Scholar]
- Kålås, J.A.; Viken, Å.; Henriksen, S.; Skjelseth, S. (Eds.) The 2010 Norwegian Red List for Species; Artsdatabanken, Norwegian Biodiversity In-formation Centre: Trondheim, Norway, 2010; 480p. [Google Scholar]
- Red Book of Ukraine. Plant Kingdom; Didukh, Y. (Ed.) Globalconsulting: Kiev, Ukraine, 2009; 900p. [Google Scholar]
- Bradis, E.M. Peat Bogs of Bashkiria. Ph.D. Thesis, USSR (Union of Soviet Socialist Republics), Kiev, Ukraine, 1951; 31p. [Google Scholar]
- Dítě, D.; Hájek, M.; Svitková, I.; Košuthová, A.; Šoltés, R.; Kliment, J. Glacial-relict symptoms in the Western Carpathian flora. Folia Geobot. 2018, 53, 277–300. [Google Scholar] [CrossRef]
- Hájek, M.; Horsák, M.; Tichý, L.; Hájková, P.; Dítě, D.; Jamrichová, E. Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: A null model approach. J. Biogeogr. 2011, 38, 742–755. [Google Scholar] [CrossRef]
- Hájková, P.; Horsák, M.; Hájek, M.; Jankovská, V.; Jamrichová, E.; Moutelíková, J. Using multi-proxy palaeoecology to test a relict status of refugial populations of calcareous-fen species in the Western Carpathians. Holocene 2015, 25, 702–715. [Google Scholar] [CrossRef]
- Bilz, M.; Kell, S.P.; Maxted, N.; Lansdown, R.V. European Red List of Vascular Plants; Publications Office of the European Union: Luxembourg, 2011; 130p. [Google Scholar]
- Hájek, M.; Horsák, M.; Hajková, P.; Ditě, D. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardize fen terminology in ecological studies. Perspect. Plant Ecol. Evol. Syst. 2006, 8, 97–114. [Google Scholar] [CrossRef]
- Hájek, M.; Horsakova, V.; Hájková, P.; Horsák, M.; Coufal, R.; Dítě, D.; Němec, T. Habitat extremity and conservation management stabilise endangered calcareous fens in a changing world. Sci. Total Environ. 2020, 719, 134693. [Google Scholar] [CrossRef]
- Bragazza, L. A climatic threshold triggers the die-off of peat mosses during an extreme heat wave. Glob. Change Biol. 2008, 14, 2688–2695. [Google Scholar] [CrossRef]
- Vile, M.A.; Scott, K.D.; Brault, E.; Wieder, R.K.; Vitt, D.H. Living on the edge: The effects of drought on Canada’s western boreal peatlands. In Bryophyte Ecology and Climate Change; Tuba, Z., Slack, N.G., Stark, L.R., Eds.; Cambridge University Press: Cambridge, CA, USA; New York, NY, USA, 2011; pp. 277–298. [Google Scholar]
- Essl, F.; Dullinger, S.; Moser, D.; Rabitsch, W.; Kleinbauer, I. Vulnerability of mires under climate change: Implications for nature conservation and climate change adaptation. Biodivers. Conserv. 2012, 21, 655–669. [Google Scholar] [CrossRef]
- Sefferová, S.V.; Seffer, J.; Janák, M. Management of Natura 2000 Habitats. 7230 Alkaline Fens. Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora. European Commission 2008. Available online: https://www.researchgate.net/publication/360320734_MANAGEMENT_of_Natura_2000_habitats_Alpine_and_subalpine_calcareous_grasslands_6170_Directive_9243EEC_on_the_conservation_of_natural_habitats_and_of_wild_fauna_and_flora_httpeceuropaeuenvironmentnature (accessed on 25 April 2024).
- Seer, F.K.; Schrautzer, J. Status, future prospects, and management recommendations for alkaline fens in an agricultural landscape: A comprehensive survey. J. Nat. Conserv. 2014, 22, 358–368. [Google Scholar] [CrossRef]
- Tyler, C. Geographical variation in Fennoscandian and Estonian Schoenus wetlands. Vegetatio 1981, 45, 165–182. [Google Scholar] [CrossRef]
- Koch, W. Die Vegetationseinheiten der Linthebene unter Berücksichtigung der Verhältnisse in der Nordostschweiz. Jahr. St. Gall. Naturwiss. Ges., St. Gallen 1926, 61, 1–46. [Google Scholar]
- Kloss, K. Schoenetum, luncetum subnodulosi und Betula pubescens-Gesellschaften der kalkreichen Moorniederung Nordost-Mecklenburgs. Repert. Specierum Nov. Regni Veg. Beih. 1965, 142, 65–117. [Google Scholar]
- Faegri, K. On some finds of Schoenus ferrugineus in western Norway. Bergen. Mus. Årsbok Nat. Rekke 1944, 6, 1–16. [Google Scholar]
- Peterka, T.; Hájek, M.; Jiroušek, M.; Jiménez-Alfaro, B.; Aunina, L.; Bergamini, A.; Dítě, D.; Felbaba-Klushyna, L.; Graf, U.; Hájková, P.; et al. Formalized classification of European fen vegetation at the alliance level. Appl. Veg. Sci. 2017, 20, 124–142. [Google Scholar] [CrossRef]
- Kuznetsov, O. Topological-ecological classification of mire vegetation in the Republic of Karelia (Russia). Finn. Environ. 2003, 485, 117–123. [Google Scholar]
- Kuznetsov, O.L. Basic methods of classification of bog vegetation. In Actual Problems of Geobotany: III All-Russian School-Conference. Lectures; KarRC RAS: Petrozavodsk, Russia, 2007; pp. 241–269. [Google Scholar]
- Kozhin, M.N. Rare species of vascular plants and plant communities of the minerotrophic bog between Kanda-laksha and Kolvitsa (Murmansk region). Proc. Karelian Sci. Cent. Russ. Acad. Sci. USA 2015, 4, 48–64. [Google Scholar]
- Denisenkov, V.P.; Ivchenko, T.G.; Kuzmina, E.Y. The mires of the northern forest-steppe of the West Siberian lowland in the Chelyabinsk region. Vestn. St. Petersburg Univ. Earth Sci. 2013, 4, 131–141. [Google Scholar]
- Grootjans, A.; Alserda, A.; Bekker, R.; Janáková, M.; Kemmers, R.H.; Madaras, M.; Stanova, V.; Ripka, J.; Delft, B.V.; Wolejko, L. Calcareous spring mires in Slovakia; jewels in the crown of the mire kingdom. Stapfia 2005, 85, 97–115. [Google Scholar]
- Gałka, M.; Aunina, L.; Tobolski, K.; Feurdean, A. Development of Rich Fen on the SE Baltic Coast, Latvia, during the Last 7500 Years, Using Paleoecological Proxies: Implications for Plant Community Development and Paleoclimatic Research. Wetlands 2016, 36, 689–703. [Google Scholar] [CrossRef]
- Hajkova, P.; Jamrichova, E.; Solcova, A.; Frodlova, J.; Petr, L.; Dite, D.; Hajek, M.; Horsak, M. Can relict-rich communities be of an anthropogenic origin? Palaeoecological insight into conservation strategy for endangered Carpathian travertine fens. Quat. Sci. Rev. 2020, 234, 106241. [Google Scholar] [CrossRef]
- Fedorov, N.; Kutueva, A.; Muldashev, A.; Verkhozina, A.; Lashchinskiy, N.; Martynenko, V. Analysis of the Potential Range of Anticlea sibirica L. (Kunth) and Its Changes under Moderate Climate Change in the 21st Century. Plants 2022, 23, 3270. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.T.; Papes, M.; Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 2007, 30, 550–560. [Google Scholar] [CrossRef]
- Byeon, D.; Jung, S.; Lee, W.-H. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. J. Asia-Pac. Biodivers. 2018, 11, 325–333. [Google Scholar] [CrossRef]
- Saxonov, S.V.; Vasyukov, V.M.; Novikova, L.A.; Senator, S.A. Additions to the flora of the Penza, Samara and Ulyanovsk regions. Bull. Mosc. Soc. Nat. Res. Biol. Dep. 2018, 123, 63–65. [Google Scholar]
- GBIF Occurrence Download. Available online: https://doi.org/10.15468/dl.jp4cth (accessed on 22 March 2024). [CrossRef]
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Phillips, J.; Dudík, M.; Schapire, E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 12 April 2024).
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [PubMed]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); US Department of the Interior, US Geological Survey: Washington, DC, USA, 2011; p. 26. [Google Scholar]
- Poggio, L.; De Sousa, L.M.; Batjes, N.H.; Heuvelink, G.; Kempen, B.; Ribeiro, E.; Rossiter, D.G. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; García Marquéz, J.R.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The community climate system model version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef]
- Volodin, E.M.; Dianskii, N.A.; Gusev, A.V. Simulating present-day climate with the INMCM4. 0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Ocean. Phys. 2010, 46, 414–431. [Google Scholar] [CrossRef]
- Watanabe, S.; Hajima, T.; Sudo, K.; Nagashima, T.; Takemura, T.; Okajima, H.; Nozawa, T.; Kawase, H.; Abe, M.; Yokohata, T.; et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011, 4, 845–872. [Google Scholar] [CrossRef]
- Bentsen, M.; Bethke, I.; Debernard, J.B.; Iversen, T.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Seierstad, I.A.; Hoose, C.; Kristjansson, J.E. The Norwegian Earth System Model, NorESM1-M–Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev. 2013, 6, 687–720. [Google Scholar] [CrossRef]
- Flato, G. Evaluation of climate models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, CA, USA, 2014; pp. 741–866. [Google Scholar]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 2015, 44, 3237–3260. [Google Scholar] [CrossRef]
- Sanderson, B.M.; Knutti, R.; Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 2015, 28, 5171–5194. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1998, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Vale, C.G.; Tarroso, P.; Brito, J.C. Predicting species distribution at range margins: Testing the effects of study area extent, resolution and threshold selection in the Sahara–Sahel transition zone. Divers. Distrib. 2014, 20, 20–33. [Google Scholar] [CrossRef]
- Liu, C.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 2016, 6, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Red Book of the Penza Region. Vol. 1. Fungi, Lichens, Mosses, Vascular Plants, 2nd ed.; Ivanon, A.I. (Ed.) Penzenskaya Pravda: Penza, Russia, 2013; 193p. [Google Scholar]
- Red Book of the Ulyanovsk Region; Buki Vedi: Moskow, Russia, 2015; 550p.
- Red Book of the Samara Region. Vol. 1. Rare Species of Plants, Lichens and Fungi; Togliatti: Samara State Regional Academy: Samara, Russia, 2017; 384p.
- Red Book of the Nizhny Novgorod Region. Vol. 2: Vascular Plants, Mosses, Algae, Lichens, Fungi; Chkalov, A.V. (Ed.) ROST-DOAFC: Kaliningrad, Russia, 2017; 304p. [Google Scholar]
- Baranova, O.G.; Lachokhi, E.P.; Ryabov, V.M.; Sotnikov, V.N.; Tarasova, E.M.; Tselishcheva, L.G. (Eds.) Red Book of Kirov Region: Animals, Plants, Fungi; Kirov regional printing house: Kirov, Russia, 2014; 336p. [Google Scholar]
- Korytin, N.S. (Ed.) Red Data Book of the Sverdlovsk Region: Animals, Plants, Fungi; MIR: Ekaterinburg, Russia, 2018; 450p. [Google Scholar]
- Baklanov, M.A. (Ed.) Red Data Book of the Perm Krai; Aldari: Perm, Russia, 2018; 230p. [Google Scholar]
- Red Book of the Republic of Mordovia. Т. 2. Rare Species of Plants, Lichens and Fungi; Silaeva, T.B. (Ed.) Mordovian Book Publishing House: Saransk, Russia, 2003; 288p. [Google Scholar]
- Red Book of the Republic of Mari El. Plants. Fungi; Bogdanov, G.A.; Abramov, N.V.; Urbanavicius, G.P.; Bogdanova, L.G. (Eds.) Mari State University: Yoshkar-Ola, Russia, 2013; 324p. [Google Scholar]
- Red Book of the Chuvash Republic. Vol. 1. Rare and Endangered Plants and Fungi; Ivanov, L.N.; Dimitriev, A.V. (Eds.) Chuvashia: Cheboksary, Chuvash Republic, 2001; 275p. [Google Scholar]
- Novenko, E.Y.; Tsyganov, A.N.; Rudenko, O.V.; Volkova, E.V.; Zuyganova, I.S.; Babeshko, K.V.; Olchev, A.V.; Losbenev, N.I.; Payne, R.J.; Mazei, Y.A. Mid- and late-Holocene vegetation history, climate and human impact in the forest-steppe ecotone of European Russia: New data and a regional synthesis. Biodivers. Conserv. 2016, 25, 2453–2472. [Google Scholar] [CrossRef]
- Rybničková, E.; Hájková, P.; Rybniček, K. The origin and development of spring fen vegetation and ecosystems-palaeobotanical results. In Ecology and Palaeoecology of Spring Fens in the Western Part of the Carpathians; Pouličková, A., Hájek, M., Rybniček, K., Eds.; Palacky University: Olomouc, Czech Republic, 2005; pp. 63–68. [Google Scholar]
- Hájková, P.; Horsák, M.; Hájek, M.; Lacina, A.; Buchtová, H.; Pelánková, B. Origin and contrasting succession pathways of the Western Carpathian calcareous ens revealed by plant and mollusc macrofossils. Boreas 2012, 41, 690–706. [Google Scholar] [CrossRef]
- Gulenok, G.E.; Ilyicheva, V.P.; Kislova, V.G.; Kuzmicheva, E.K.; Serova, G.E. Peat Deposits of the BASHKIR ASSR; Reference Book; Ministry of Geology of the USSR: Мoskow, Russia, 1989; 321p. [Google Scholar]
- Horsák, M.; Hajek, M. Composition and species richness of molluscan communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: The poor–rich gradient. J. Molluscan Stud. 2003, 69, 349–357. [Google Scholar] [CrossRef]
- Jiménez-Alfaro, B.; Aunina, L.; Carbognani, M.; Dítě, D.; Fernández- Pascual, E.; Garbolino, E.; Hájek, O.; Hájková, P.; Ivchenko, T.G.; Jandt, U.; et al. Habitat-based biodiversity responses to macroclimate and edaphic factors in European fen ecosystems. Glob. Change Biol. 2023, 29, 6756–6771. [Google Scholar] [CrossRef] [PubMed]
- Baisheva, E.Z.; Muldashev, A.A.; Martynenko, V.B.; Fedorov, N.I.; Bikbaev, I.G.; Minayeva, T.Y.; Sirin, A.A. Plant diversity and spatial vegetation structure of the calcareous spring fen in the “Arkaulovskoye Mire” Protected Area (Southern Urals, Russia). Mires Peat 2020, 26, 1–17. [Google Scholar] [CrossRef]
- Blaus, A.; Reitalu, T.; Amon, L.; Vassiljev, J.; Alliksaar, T.; Veski, S. From bog to fen: Palaeoecological reconstruction of the development of a calcareous spring fen on Saaremaa, Estonia. Veg. Hist. Archaeobot. 2020, 29, 373–391. [Google Scholar] [CrossRef]
- Pakalne, M.; Etzold, J.; Ilomets, M.; Jarašius, L.; Pawlaczyk, P.; Bociag, K.; Chlost, I.; Cieśliński, R.; Gos, K.; Libauers, K.; et al. Best Practice Book for Peatland Restoration and Climate Change Mitigation. Experiences from LIFE Peat Restore Project; University of Latvia: Riga, Latvia, 2021; 184p. [Google Scholar]
- Puchałka, R.; Klisz, M.; Koniakin, S.; Czortek, P.; Dylewski, Ł.; Paz-Dyderska, S.; Vítková, M.; Sádlo, J.; Rašomavicius, V. Citizen science helps predictions of climate change impact on flowering phenology: A study on Anemone nemorosa. Agric. For. Meteorol. 2022, 325, 109133. [Google Scholar] [CrossRef]
- Fernández-Pascual, E.; Jiménez-Alfaro, B.; Hájek, M.; Díaz, T.E.; Pritchard, H.W. Soil thermal buffer and regeneration niche may favour calcareous fen resilience to climate change. Folia Geobot. 2015, 50, 293–301. [Google Scholar] [CrossRef]
- Hájková, P.; Hájek, M.; Horsák, M.; Jamrichová, E. Our knowledge of the history of calcareous fens in the Western Carpathians. Zprávy České Bot. Společnosti Praha 2015, 50, 267–282. [Google Scholar]
- Blinkova, O.I.; Pashkevych, N.A.; Vasilieva, T.A. Peculiarities of adaptation of the rare species Schoenus ferrugineus L. to the transformed environmental conditions. Biol. Syst. 2017, 9, 278–289. [Google Scholar] [CrossRef]
- Menichino, N.M.; Fenner, N.; Pullin, A.S.; Jones, P.S.; Guest, J.; Jones, L. Contrasting response to mowing in two abandoned rich fen plant communities. Ecol. Eng. 2016, 86, 210–222. [Google Scholar] [CrossRef]
- van Belle, J.; Barendregt, A.; Schot, P.; Wassen, M.J. The effects of groundwater discharge, mowing and eutrophication on fen vegetation evaluated over half a century. Appl. Veg. Sci. 2006, 9, 195–204. [Google Scholar] [CrossRef]
- Koch, M.; Jurasinski, G. Four decades of vegetation development in a percolation mire complex following intensive drainage and abandonment. Plant Ecol. Divers. 2015, 8, 49–60. [Google Scholar] [CrossRef]
- Bergamini, A.; Peintinger, M.; Fakheran, S.; Moradi, H.; Schmid, B.; Joshi, J. Loss of habitat specialists despite conservation managementin wetland remnants 1995–2006. Perspect. Plant Ecol. Evol. Syst. 2009, 11, 65–79. [Google Scholar] [CrossRef]
- Moradi, H.; Fakheran, S.; Peintinger, M.; Bergamini, A.; Schmid, B.; Joshi, J. Profiteers of environmental change in the Swiss Alps: Increase of thermophilous and generalist plants in wetland ecosystems within the last 10 years. Alp. Bot. 2012, 122, 45–56. [Google Scholar] [CrossRef]
- Navrátilová, J.; Hájek, M.; Navrátil, J.; Hájková, P.; Frazier, R.J. Convergence and impoverishment of fen communities in a eutrophicated agricultural landscape of the Czech Republic. Appl. Veg. Sci. 2017, 20, 225–235. [Google Scholar] [CrossRef]
- Kapfer, J.; Grytnes, J.A.; Gunnarsson, U.; Birks, H.J. Fine-scale changes in vegetation composition in a boreal mire over 50 years. J. Ecol. 2011, 99, 1179–1189. [Google Scholar] [CrossRef]
- Pedrotti, E.; Rydin, H.; Ingmar, T.; Hytteborn, H.; Turunen, P.; Granath, G. Fine-scale dynamics and community stability in boreal peatlands: Revisiting a fen and a bog in Sweden after 50 years. Ecosphere 2014, 5, 1–24. [Google Scholar] [CrossRef]
- Bewley, J.D.; Black, M. Physiology and Biochemistry of Seeds. Vol. 2: Viability, Dormancy and Environmental Control; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Pareja, M.R.; Staniforth, D.W. Seed-soil microsite characteristics in relation to weed seed germination. Weed Sci. 1985, 33, 190–195. [Google Scholar] [CrossRef]
- Cavers, P.B.; Benoit, D.L. Seed Banks in arable Land. In Ecology of Soil Seed Banks; Leck, M.A., Parker, V.T., Simpson, R.L., Eds.; Academic Press: San Diego, CA, USA, 1989; pp. 309–328. [Google Scholar]
- Gałka, M.; Feurdean, A.; Sim, T.; Tobolski, K.; Aunina, L.; Apolinarska, K. A multi-proxy long-term ecological investigation into the development of a late Holocene calcareous spring-fed fen ecosystem (Raganu Mire) and boreal forest at the SE Baltic coast (Latvia). Ecol. Indic. 2021, 126, 107673. [Google Scholar] [CrossRef]
- Osadowski, Z.; Drzymulska, D.; Dobrowolski, R.; Mazurek, M. Current state and vegetation history of spring-fed fens in Western Pomerania (Northern Poland): A case study of the Chociel River Valley. Wetl. Ecol. Manag. 2018, 27, 23–38. [Google Scholar] [CrossRef]
- Kozinyatko, T.A. Vitality structure of Schoenus ferrugineus L. price populations under anthropogenic load. Sci. Bull. Natl. Tech. Univ. Ukr. 2014, 24, 117–123. [Google Scholar]
- Pashkevych, N.A.; Blinkova, O.I.; Kozyniatko, T.A. Ecological and cenotic features of the population of Schoenus ferrugineus L. in the territory of Dermansko-Ostroh National Nature Park. Nat. Conserv. Ukr. 2013, 19, 86–88. [Google Scholar]
- Horsák, M.; Polášková, V.; Zhai, M.; Bojková, J.; Syrovátka, V.; Šorfová, V.; Schenková, J.; Polášek, M.; Peterka, T.; Hájek, M. Spring-fen habitat islands in a warming climate: Partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota. Sci. Total Environ. 2018, 634, 355–365. [Google Scholar] [CrossRef]
- Janyszek, M. The extinction of the calcitrophic flora of the cyperaceae in the “Miranowo” nature reserve. Rocz. Akad. Rol. Poznaniu. Bot.-Steciana 2005, 9, 97–101. [Google Scholar]
- Klimkowska, A.; Van Diggelen, R.; Grootjans, A.P.; Kotowski, W. Prospects for fen meadow restoration on severely degraded fens. Perspect. Plant Ecol. Evol. Syst. 2010, 12, 245–255. [Google Scholar] [CrossRef]
- Lamers, L.P.M.; Vile, M.A.; Grootjans, A.; Acreman, M.C.; van Diggelen, R.; Evans, M.G.; Richardson, C.J.; Rochfort, L.; Kooijman, A.; Roelofs, J.G.M.; et al. Ecological restoration of rich fens in Europe and North America: From trial and error to an evidence-based approach. Biol. Rev. 2015, 90, 182–203. [Google Scholar] [CrossRef]
- Rasran, L.; Vogt, K.; Jensen, K. Effects of topsoil removal, seed transfer with plant material and moderate grazing on restoration of riparian fen grassland. Appl. Veg. Sci. 2007, 10, 451–460. [Google Scholar] [CrossRef]
- Kotowski, W.; Van Diggelen, R. Light as an environmental filter in fen vegetation. J. Veg. Sci. 2004, 15, 583–594. [Google Scholar] [CrossRef]
- Kotowski, W.; Werner, T.; Van Diggelen, R.; Wassen, M.J. Competition as a factor structuring species zonation in riparian fens—A transplantation experiment. Appl. Veg. Sci. 2006, 9, 231–240. [Google Scholar] [CrossRef]
- Schrautzer, J.; Jensen, K. Relationship between light availability and species richness during fen grassland succession. Nord. J. Bot. 2006, 24, 341–353. [Google Scholar] [CrossRef]
Code | Environmental Variables | Percent Contribution | Permutation Importance |
---|---|---|---|
Bio14 | Precipitation amount of the driest month | 49.4 | 7.7 |
Bio6 | Mean daily minimum air temperature of the coldest month | 22.4 | 51.3 |
SOC | Soil organic carbon content in the fine earth fraction in the 5–15 cm soil layer | 12.3 | 10.1 |
Bio10 | Mean daily air temperatures of the warmest quarter | 6.3 | 18.9 |
Bio2 | Annual average daily temperature amplitude | 3.7 | 3.9 |
hmax | Maximum elevation above sea level | 2.5 | 2 |
hmax-min | Difference between maximum and minimum elevation, m | 2.3 | 3.5 |
OCS | Organic carbon stocks | 0.7 | 0.4 |
Bio15 | Seasonality of precipitation | 0.4 | 0.2 |
Bio3 | Isothermality | 0.2 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorov, N.; Muldashev, A.; Mikhaylenko, O.; Zhigunova, S.; Baisheva, E.; Shirokikh, P.; Bikbaev, I.; Martynenko, V. Forecast the Habitat Sustainability of Schoenus ferrugineus L. (Cyperaceae) in the Southern Urals under Climate Change. Plants 2024, 13, 1563. https://doi.org/10.3390/plants13111563
Fedorov N, Muldashev A, Mikhaylenko O, Zhigunova S, Baisheva E, Shirokikh P, Bikbaev I, Martynenko V. Forecast the Habitat Sustainability of Schoenus ferrugineus L. (Cyperaceae) in the Southern Urals under Climate Change. Plants. 2024; 13(11):1563. https://doi.org/10.3390/plants13111563
Chicago/Turabian StyleFedorov, Nikolay, Albert Muldashev, Oksana Mikhaylenko, Svetlana Zhigunova, Elvira Baisheva, Pavel Shirokikh, Ilnur Bikbaev, and Vasiliy Martynenko. 2024. "Forecast the Habitat Sustainability of Schoenus ferrugineus L. (Cyperaceae) in the Southern Urals under Climate Change" Plants 13, no. 11: 1563. https://doi.org/10.3390/plants13111563
APA StyleFedorov, N., Muldashev, A., Mikhaylenko, O., Zhigunova, S., Baisheva, E., Shirokikh, P., Bikbaev, I., & Martynenko, V. (2024). Forecast the Habitat Sustainability of Schoenus ferrugineus L. (Cyperaceae) in the Southern Urals under Climate Change. Plants, 13(11), 1563. https://doi.org/10.3390/plants13111563