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Abstract: An analysis of the current potential range of the Pleistocene relict plant species Schoenus
ferrugineus and modeling of changes in its future range under moderate (RCP4.5) and strong (RCP8.5)
climate change in the middle and second half of the 21st century were carried out. The MaxEnt
program was used for modeling. Climate variables from CHELSA Bioclim, the global digital soil
mapping system SoilGrids, and a digital elevation model were used as predictors. Modeling has
shown that climate change will lead to a significant reduction in the suitability of S. ferrugineus
habitat conditions by the mid-21st century. The predicted changes in the distribution of habitats
of S. ferrugineus, a diagnostic species of calcareous mires and an indicator of their ecological state,
indicate a possible strong transformation of wetland complexes in the Southern Urals region even
under moderate climate change. A reduction in the distribution of S. ferrugineus at the eastern limit
of its range will also be facilitated by more frequent extreme droughts. To maintain the distribution
of S. ferrugineus on the eastern border of its range, a number of measures are proposed to mitigate the
negative consequences of climate change, contributing to the preservation of the hydrological regime
of calcareous mires.

Keywords: Schoenus ferrugineus; relict species; MaxEnt; climate change; calcareous mires; habitat
suitability

1. Introduction

Schoenus ferrugineus L. (Cyperaceae Juss.) is a perennial plant species that grows
mainly on the calcareous fens [1–4]. Calcareous mires with this species are usually located
on gentle terraces in river valleys and lake basins. These mires are characterized by a
combination of tufa (travertine) deposition at the surface of the mire and peat formation
within it [5]. Travertine deposition prevents acidification of the mire and sustains popula-
tions of basiphilous species [6]. In these mires, the plants are deficient in plant-available
phosphorus due to its immobilization by iron and calcium complexes. Phosphorus avail-
ability appears to limit the productivity of plant communities in calcareous mires [7], but
in managed (mown) mires, the productivity appears to be co-limited by phosphorous and
nitrogen availability [8].

Schoenus ferrugineus shoots have a two-year growth cycle. New shoots appear in
autumn and reach a height of 3–7 cm [9,10]. This development represents an adaptation
strategy for infertile habitats because it allows nutrients (especially nitrogen and phos-
phorus) to move from old shoots to new ones [9]. S. ferrugineus is reproduced mainly by
seeds. The seed productivity of this species is low and usually does not exceed six seeds per
inflorescence [11]. Flowering occurs in mid-July, even in the northernmost populations. The
rate of fruiting is very low (10–32%), and the remaining seeds do not reach maturity [12,13].
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Most seeds are dormant in spikelets for over a year, and 20% of seeds may germinate
even in the third year [13]. However, germination in pot culture may reach 50%, with a
10–20% delay of up to two years [13]. The population size of this species can vary greatly
depending on weather conditions [3,13]. Population stability is achieved through uneven
seed germination rates [13], some of which germinate the following year, which ensures the
stabilization of the population in favorable years. The long-distance dispersal of seeds is
limited because most of them remain in the inflorescence for one year after flowering [10].
Preserved seeds germinate when they come into contact with a moist soil surface [13].

In Central Europe, S. ferrugineus and the plant communities dominated by this species
are widespread in the foothills of the Alps in Germany, Switzerland, and Italy [14–16].
This species is common in Scandinavia and is also found in Eastern Europe [17–19]. In
Europe, the northern border of its range is situated approximately 60 km north of the Arctic
Circle [3]. The eastern border of the main range of calcareous fens with this species is in
Finland, the Baltic States (Latvia, Lithuania, Estonia, Poland), Slovakia, and Ukraine [20,21].

Outside the main range, several small populations were found in Belarus [22], north-
western Russia (the Republic of Karelia, Murmansk, Leningrad, Pskov, Novgorod, Vologda
and Arkhangelsk regions) [3,23–25], in the central part of European Russia (Bryansk, Tula,
Moscow and Samara regions, the Republic of Tatarstan), and the Southern Urals (the Re-
public of Bashkortostan and Chelyabinsk region) [26–30]. Further eastwards in the river
valleys of Western Siberia, moderately calcium-rich sedge-moss fens have been found, but
S. ferrugineus is absent there [31]. Thus, in the Southern Urals, this species is located at
the eastern limit of its range [4,32,33]. Some habitat types of base-rich (calcareous) fens
were categorized as endangered, falling among 10% of the most threatened European
habitats [34]. The rarity of calcareous fens, as well as their disturbances due to drainage,
has led to the fact that S. ferrugineus becoming rare and is listed in the Red Data Books of
the Russian Federation [35], as well as some European countries, e.g., Finland, Norway,
Ukraine, etc. [36–40].

Calcareous fens formed along the perimeter of melting glaciers in the Late Pleistocene
or Early Holocene, making them refugia for a number of relict plant species, including
S. ferrugineus [12,41–44]. However, S. ferrugineus is not included in the IUCN Red List of
threatened species [45]. Calcareous fens are actively fed by carbonate groundwater [46,47]
and are among the most vulnerable ecosystems to climate change [48–50]. With increasing
summer drought conditions, groundwater levels may decline, and the wetland complexes
will degrade with the establishment of different plant communities.

S. ferrugineus is one of the diagnostic species of calcareous fens, which are listed in the
network of protected areas Natura 2000 covering Europe’s most valuable and threatened
species and habitats (EU-FFH 7230) [51,52]. In Europe, S. ferrugineus is largely restricted to
calcareous areas [53] and typically grows in soligenous (spring) fens in alpine and arctic
regions [54]. However, despite its apparent predilection for calcareous mire conditions,
S. ferrugineus is not exclusively associated with calcic habitats and can grow in less base-rich
environments. This is particularly noticeable in some Baltic mires, where it may occur
together with Andromeda polifolia L., Carex lasiocarpa Ehrh., C. limosa L., Myrica gale L.,
Rhynchospora alba (L.) Vahl, Salix rosmarinifolia L., Trichophorum cespitosum (L.) Hartm. and
Vaccinium oxycoccos L. [53,55]. It can also be found in open stony meadows and even in
crevices among wet rocks [56]. S. ferrugineus is most often found in the plant communities
belonging to the alliance Caricion davallianae Klika 1934 of the order Caricetalia davallianae
Br.-Bl. 1949 (the class Scheuchzerio-Caricetea fuscae Tx. 1937) [57]. The communities of
this alliance include mineral-rich fen vegetation on both calcareous tufa-forming springs
and peat substrates developed on limestone, calcareous sedimentary or metamorphic
rocks, and ultrabasic crystalline rocks. The herb layer of these communities consists
mainly of calciphilous graminoids (e.g., Carex davalliana Sm., C. hostiana DC., Eleocharis
quinqueflora (Hartmann) O. Schwarz, Eriophorum latifolium Hoppe, S. ferrugineus) and herbs
such as Parnassia palustris L., Pinguicula vulgaris L., Primula farinosa L. and Tofieldia calyculata
(L.) Wahlenb. The moss layer consists of Campylium stellatum (Hedw.) C.E.O.Jensen,
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Drepanocladus revolvens (Sw. ex anon.) Warnst., Palustriella commutata (Hedw.) Ochyra,
Philonotis calcarea (Bruch et al.) Schimp., etc. [57].

In the Murmansk region (Russian Federation) and the Republic of Karelia, S. ferrugi-
neus was found in the communities of the association Trichophoro-Schoenetum ferruginei Görs
1964 [58–60]. In the Republic of Bashkortostan (the Southern Urals), calcareous fens with
S. ferrugineus are very rare and belong to the associations Primulo–Schoenetum ferruginei
(Koch 1926) Oberdorfer 1957 and Caricetum paniceo–lepidocarpae Braun 1968 [20,26]. The
floristic composition of these communities is similar to that at the northern limit of the
S. ferrugineus distribution area, which is caused by carbonate-rich groundwater [26].

Analysis of the composition of peat deposits within these communities has shown
that their floristic composition has not practically changed from the start of peat formation
to the present time. Only small changes in the proportion of species in the composition of
palaeo-communities have been observed [61]. Calcareous fens have been recognized as
local hotspots of biological diversity, but little is yet known about the effects of projected
climate change on the plant communities of these ecosystems [62]. Since the early 20th
century, these mires have been heavily influenced by anthropogenic activities—drainage
for peat extraction and use as agricultural land [63]. Even in the absence of drainage,
lowering water tables may increase the spread of Phragmites australis, negatively affecting
the biodiversity of light-loving wetland species. Grazing suppresses Phragmites australis
and can have a positive impact on relict species [64]. It is thought that being Pleistocene
relicts, communities with S. ferrugineus are likely to be threatened by winter warming [61].
This is especially true for species at the edge of their range [65]. The possible deterioration
of S. ferrugineus habitat conditions under climatic changes can, therefore, be considered
unfavorable changes in the hydrological regime of unique carbonate mires.

According to different climate change scenarios, the current potential and future
distribution can be determined through machine learning methods by means of the layers
created using the records of point areas where species are currently located and digital
bioclimatic data regarding these areas. There are various species distribution models,
such as CLIMEX, GARP, and MaxEnt, that estimate the impact of environmental and
climate change on species and ecosystems. Among these modeling approaches, MaxEnt
has advantages because it uses both presence data and categorical data as input. In addition,
it tests forecast precision, it is always stable and reliable, even in small sample sizes and
with gaps, and it directly produces a spatially open habitat suitability map and evaluates
the significance level of individual environmental variables using a built-in jackknife
test [66,67]. The aim of this work was to model the potential range of S. ferrugineus and
changes in its habitat conditions in calcareous mires located at the eastern limit of the
species’ range under moderate and strong climate change scenarios using the maximum
entropy method.

2. Materials and Methods

To model the potential range of S. ferrugineus in the Southern Urals, we used 51 known
geo-referenced locations in Russia based on herbarium collections (UFA) and literature
data [26,27,68], 34 of which were located on the eastern border of the range. In addition,
to better cover the environmental features of S. ferrugineus habitats, locations in Western,
Central, and Northern Europe were used. These locations were at least 10 km apart and
were randomly selected from the GBIF [69]. A total of 203 locations were sampled within
the core range using the spThin module in R [70]. Additionally, data from the Regional Red
Data Books were also used to interpret the results. The habitat locations of S. ferrugineus
used in the modeling are shown in Figure 1.
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Figure 1. Localization of Schaenus ferrugineus geo-referenced locations selected for modeling.

Maximum entropy modeling software (MaxEnt v3.4.4) was used to assess the changes
in S. ferrugineus habitat conditions under climatic changes [71]. The BIOCLIM CHELSA
(Climatologies at high resolution for the earth’s land surface areas) set was used in the
modeling as climatic variables [72,73]. In addition to climatic variables, characteristics of the
digital elevation model GMTED2010 were used in modeling [74]. In addition, Soil Organic
Carbon (SOC) layers in the 5–15 cm soil horizon and Organic Carbon Stocks in the 0–30 cm
soil horizon (OCS) taken from SoilGrids 2.0, which recognizes the species’ relationship
with the environment were used for ecological calibration [75]. The raster layers of the
environmental data were restricted to Eurasia. We generated a Pearson correlation matrix of
environmental predictors. In the case of a correlation coefficient greater than or equal to 0.7,
one of the variables was excluded to prevent multicollinearity and model overfitting [76]. At
the same time, preference for further use was given to variables with a greater contribution
to the model identified at the preliminary stage and, other things being equal, to parameters
reflecting quarterly rather than monthly characteristics of temperature and precipitation.
We used the following MaxEnt settings: maximum iterations—1000, replicates—5, and
output format—“cloglog”. The “cloglog” output gives a score between 0 (completely
unsuitable) and 1 (completely consistent with the species or community optimum) for
habitat suitability.

The RCP4.5 and RCP8.5 scenarios corresponding to moderate and strong atmospheric
greenhouse gas concentrations for two time periods, 2041–2060 (2050) and 2061–2080 (2070),
respectively, were used to project changes in S. ferrugineus habitat suitability under climate
change. The future potential range was modeled using an ensemble of four climate change
models: CCSM, NorESM1-M, MIROC-ESM, and INMCM4 [77–81]. The selection of climate
change models was carried out in accordance with the recommendations of C.F. McSweeney
and B.M. Sanderson [82,83]. To assess the resistance of S. ferrugineus habitats to extreme
droughts, the frequency of which may increase under climatic changes, we analyzed the
change in the NDVI in from July to early August in the drought year of 2010 in comparison
with that in 2009 [84].

The AUC indicator was used for the statistical evaluation of the model [85]. We
applied the «10 percentile training presence» threshold as the lowest limit for habitat
suitability [86,87]. In the final models, the habitat suitability with values above the lowest
limit for habitat suitability was divided into three equal groups: low, medium, and high.
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3. Results
3.1. The Current Potential Range of Schoenus ferrugineus

The resulting model of the current potential range of S. ferrugineus on the eastern
border of the species range has an AUC of 0.97, which corresponds to the high quality
of the model [85]. Table 1 shows the contribution of the variables to the model of the
current potential range of S. ferrugineus. The following four environmental variables had
the greatest contributions: precipitation amount of the driest month (Bio14), mean daily
minimum air temperature of the coldest month (Bio6), soil organic carbon content (SOC),
and mean daily air temperature of the warmest quarter (Bio10).

Table 1. Contribution of environmental variables to the model of the potential range
Schoenus ferrugineus.

Code Environmental Variables Percent
Contribution

Permutation
Importance

Bio14 Precipitation amount of the driest month 49.4 7.7
Bio6 Mean daily minimum air temperature of the coldest month 22.4 51.3
SOC Soil organic carbon content in the fine earth fraction in the 5–15 cm soil layer 12.3 10.1
Bio10 Mean daily air temperatures of the warmest quarter 6.3 18.9
Bio2 Annual average daily temperature amplitude 3.7 3.9
hmax Maximum elevation above sea level 2.5 2
hmax-min Difference between maximum and minimum elevation, m 2.3 3.5
OCS Organic carbon stocks 0.7 0.4
Bio15 Seasonality of precipitation 0.4 0.2
Bio3 Isothermality 0.2 1.6

Figure 2 shows the model of the modern potential range of S. ferrugineus on the
eastern border of its distribution area and adjacent territories. The potential range map
shows habitats of low suitability (0.36–0.57), medium suitability (0.58–0.79), and high
suitability (0.80–1.00). Calcareous fens are unevenly distributed from the Volga Upland to
the Southern Urals.
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In the Southern Urals, highly and moderately suitable habitat conditions for S. ferrug-
ineus are confined to the Mesyagutovskaya forest steppe area in the Republic of Bashko-
rtostan and the adjacent territory of the Sverdlovsk Region (Figures 2 and 3). The same
conditions were also revealed in the Chelyabinsk Region, i.e., the zone of contact between
the forest steppe of the northeastern foothills of the Southern Urals and mountain forests
bordering the Republic of Bashkortostan.
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ferrugineus at the eastern border of its range; (c)—photo of Schoenus ferrugineus.

In the Cis-Urals, the locations of the S. ferrugineus habitats with high and moderate
suitability are confined to the forest steppe of the Bugulma-Belebey Upland located in the
parts of the Republic of Bashkortostan, the Republic of Tatarstan, the Samara and Orenburg
Regions. In addition, S. ferrugineus is sporadically distributed in the broad-leaved forests
of the western slope of the Southern Urals. A small number of habitats with moderately
suitable conditions is located in the northeastern foothills of the Southern Urals in the
contact zone between the forest steppe and mountain forests, namely in the depression
between the Uraltau and Irendyk ridges. The habitats with low suitability conditions are
located on the southern spurs of the Southern Urals, as well as in the northern and southern
parts of the Bugulma-Belebey Upland.

In the neighboring territories of the Volga Upland, Penza, Ulyanovsk, and Samara
Regions, where S. ferrugineus is listed in the regional Red Data Books [88–90], there are
predominantly low habitat conditions, which are confined mainly to the forest steppe zone.

It should be noted that the potential range of S. ferrugineus distribution is wider than
the current range at the eastern border. According to the model, low habitat conditions are
observed in the territories of the Nizhny Novgorod, Kirov, and Sverdlovsk Regions, in the
Republics of Mordovia, Mari-El, and Chuvash, as well as in the Perm Krai. S. ferrugineus
was not found in these areas. Still, other species typical of calcareous mires (Carex panicea,
Dactylorhiza incarnata, Eriophorum latifolium, etc.) are listed in the Red Data Books of these
regions [91–97].
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3.2. Suitability of S. ferrugineus Habitat Conditions in Wetland Complexes at the Eastern Limit of
Current Species Distribution

At the eastern limit of S. ferrugineus range, 44 calcareous mires have been identified,
of which S. ferrugineus occurs in only 30 localities. Figure 4 shows the results of habitat
suitability modeling in calcareous mires with and without the presence of S. ferrugineus.
Highly suitable habitat conditions for this species were identified only in two wetland
complexes in the Mesyagutovskaya forest steppe. Moderately suitable habitat conditions
were found in 12 mires in the Mesyagutovskaya forest steppe and in four fens in the area
of mountain light coniferous forests on the northeastern slope of the Southern Urals. The
only locality with moderately suitable habitat conditions (Uskyurt Mire) is located on the
Bugulma-Belebey Upland in the Bashkir Cis-Urals. Low habitat conditions are observed in
11 mires, most of which are located in the Bashkir Cis-Urals. According to the modeling,
unsuitable habitat conditions in which S. ferrugineus nevertheless was found were observed
in two mires in the Bashkir Cis-Urals and in one fen in the western part of the Bugulma-
Belebey Upland. In addition, unsuitable habitat conditions are noted in one site located on
the Volga Upland, which is 400 km away from the mires of the Bugulma-Belebey Upland
(Figure 3).
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In the Bashkir Cis-Urals, 13 of 14 calcareous mires with the absence of S. ferrugineus are
located (Figure 4), of which only three mires have moderately suitable habitat conditions
for this species. These mires are small (with areas of 2.5 to 5 hectares) and are located on
the Bugulma-Belebey Upland on gentle southern and southwestern slopes.
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3.3. Changes of Habitat Suitability of S. ferrugineus in Wetland Complexes at the Eastern Border of
Species Range under Future Climate Change

Under moderate climate change (RCP4.5), by the middle of the 21st century, highly
suitable habitats of S. ferrugineus will disappear at the eastern border of the species range
(Figure 4). No great changes in the suitability of S. ferrugineus habitat conditions are
predicted in the mires of the Mesyagutovskaya forest steppe and in the northeastern
slope of the Southern Urals. Moderately suitable habitat conditions will be maintained in
11 mires in the Mesyagutovskaya forest steppe and in four mires in the zone of mountain
light coniferous forests of the eastern slope of the Southern Urals. In the rest of the study
area, a sharp decline in habitat suitability was predicted (Figure 5a). On the Bugulma-
Belebey Upland, low-suitability habitat conditions will persist in only two mires (Figure 5a).
Under moderate climate change (RCP4.5), by the middle of the 21st century, in calcareous
mires where S. ferrugineus is not found, low habitat suitability is predicted in four localities
of the Bugulma-Belebey Upland and in one locality in the Mesyagutovskaya forest steppe
(Figure 5a).
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Figure 5. Predictions of the habitat suitability of the locations of Schoenus ferrugineus in the calcareous
mires by 2050 and 2070 under the moderate (RCP4.5) (a,b) and the strong (RCP8.5) (c,d) climate
change scenarios. Notes: Habitat conditions: blue circles—with low suitability (0.36–0.57), yellow
circles—with medium suitability (0.58–0.79), and wite circles—unsuitable habitats (less than 0.36).
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In the second half of the 21st century, the habitats with moderate suitability will be
preserved only in four localities in the Mesyagutovskaya forest steppe and in one locality
in the zone of the mountain light coniferous forests of the eastern slope of the Southern
Urals. On all other calcareous mires, habitat conditions will decline to low suitability. On
the Bugulma-Belebey Upland, only two mires will retain low habitat conditions (Figure 5b).

Under a strong climate change scenario (RCP 8.5) in the mid-21st century, in the mires
with S. ferrugineus populations, changes in habitat suitability are projected to be similar to
those under a moderate climate change scenario in the second half of the 21st century. Mod-
erately suitable habitats will completely disappear by the second half of the 21st century.
Low suitable habitat conditions will remain only in three mires in the Mesyagutovskaya
forest steppe and one mire in the zone of the mountain light coniferous forests of the eastern
slope of the Southern Urals.

Under the scenario of strong climate change (RCP 8.5), in calcareous mires where
S. ferrugineus was not found, only two mires of the Bugulma-Belebey Upland are predicted
to retain low habitat conditions by the middle of the 21st century. By the second half of the
21st century, suitable habitat conditions will disappear in all these mires.

4. Discussion
4.1. Current Potential Range of Schoenus ferrugineus

Currently, the main range of S. ferrugineus and the plant communities with this species
are located in Central Europe [14] (Figure 3). Outside this area, small populations of
S. ferrugineus are found in the European part of Russia, reaching the Mesyagutovskaya
forest steppe and the northeastern foothills of the Southern Urals (Figure 3) [3,22–30].
Several reasons for the fragmentation of the S. ferrugineus range can be identified. First,
calcareous mires are a very rare and vulnerable habitat type confined mainly to carbonate
areas [53]. In Russia, calcareous mires do not have a continuous distribution throughout
the country.

Secondly, the fragmentation of the S. ferrugineus range was caused by climate change
during the Holocene, when the increase in temperature and decrease in precipitation
resulted in the expansion of steppes and forest steppes in European Russia [98].

The third and, perhaps, the main reason for the reduction and fragmentation of the
S. ferrugineus range is human impact, i.e., the drainage of mires and deforestation in the
catchment areas, which affects the water supply of wetland complexes. The maintenance of
a constant high level of groundwater is the most important condition for the preservation
of calcareous mires. Even moderate drainage leads to a significant increase in the biomass
of mesophytic herbs and a decrease or even disappearance of typical basiphilous mire
species [7]. At the eastern border of the S. ferrugineus range, the distribution of this species
is limited by the rarity of calcareous mires, a significant part of which is degraded as a
result of human impact. The same reason for the decrease in the area of spring mires is also
indicated for the mountainous regions of the Czech Republic [99,100].

According to the modeling, the habitats with low suitability were identified in most
of the territories of the Republic of Tatarstan, Ulyanovsk, and Samara regions of Russia.
However, S. ferrugineus was not found there. This is likely due to the extensive drainage of
mires in this area during the 20th century [101].

The fourth reason is the overgrowth of mires with woody vegetation due to the
natural dynamics of wetland complexes in the forest zone. For instance, the calcareous
mire Lagernoe in the Republic of Bashkortostan is currently overgrown with pine (Pinus
sylvestris L.), and the population of S. ferrugineus survives only in the open central part
of this mire. In addition, the lowering of groundwater level may increase the abundance
of Phragmites australis (Cav.) Trin. ex Steud., which negatively affects the biodiversity of
light-demanding mire species such as S. ferrugineus [64]. The low seed productivity of S.
ferrugineus [3,10,13] may cause other species with a wider ecological range and competitive
advantages to replace it under unfavorable conditions [102].



Plants 2024, 13, 1563 10 of 17

A study of environmental factors influencing the distribution of S. ferrugineus in cal-
careous mires of the Southern Urals region revealed a significant influence of altitude
and a small influence on summer precipitation [103]. However, the results of our mod-
eling showed that three climate variables had the greatest contribution to the model:
Bio14—precipitation amount of the driest month, Bio6—mean daily minimum air tempera-
ture of the coldest month, and Bio10—mean daily air temperatures of the warmest quarter.
In the study area, the driest months are winter ones. Snow accumulation in winter affects
the groundwater level and water saturation of streams feeding wetland complexes. Thus,
the winter precipitation has a positive effect on the habitat suitability of S. ferrugineus. The
contribution of winter temperatures to the model of the potential range of S. ferrugineus
is not fully understood. However, it can be assumed that the ecological optimum of this
species on the eastern border of its range is associated with colder habitat conditions, which
are found in the Mesyagutovskaya forest steppe and on the eastern slope of the Southern
Urals. This is consistent with the literature data, which show that this species prefers
mountainous and cold habitats [54]. The contribution of the summer month temperature
to the model can be related to evapotranspiration, which affects the water supply of the
mires, as well as the pH and carbonate concentration of the mire water. A significant
contribution to the model of Soil Organic Carbon content (SOC 5-15) is likely due to the
species’ preference for carbon-rich peat soils.

4.2. Changes in Habitat Suitability of S. ferrugineus in Wetland Complexes at the Eastern Border of
Species Range Underclimate Change

With climate change, much of the study area is expected to experience lower summer
precipitation and higher temperatures, which will inevitably lead to lower wetland water
levels [104–106]. Under moderate climate change (RCP4.5), modeling results do not predict
a strong decrease in habitat suitability for S. ferrugineus in the Mesyagutovskaya forest
steppe and in the northeastern part of the Southern Urals by the middle and to the end of
the 21st century. In the other parts of the study area (Bugulma-Belebey Upland, the Bashkir
Cis-Urals), a sharp decline in habitat suitability is predicted as early as in the first half of
the 21st century. This finding is consistent with literature data on the strongest changes
in habitat conditions of rare species in the first half of the 21st century [65,107]. Under
the RCP4.5 scenario, in the second half of the 21st century, suitable habitat conditions for
S. ferrugineus will remain only in some calcareous mires of the Mesyagutovskaya forest
steppe and on the eastern slope of the Southern Urals. According to the strong climate
change scenario (RCP8.5), already in the middle of the 21st century, habitat suitability
for this species will be strongly reduced in the Mesyagutovskaya forest steppe and will
completely disappear in the Southern Urals but will persist in two habitats where the
species is not currently found. In the second half of the 21st century, only habitats with low
suitability will persist in the Mesyagutovskaya forest steppe and on the eastern slope of the
Southern Urals.

Our results are consistent with the literature data on the impact of climate change
on calcareous mires in Spain and Slovakia [108], in which it was shown that the main
threat to wetland conservation is changes in precipitation rather than temperature. It is
also noted that decreasing precipitation is the greatest threat to the existence of spring-fed
wetland ecosystems because they depend on groundwater supplies [43,109,110]. Cur-
rently, severe reduction and substantial transformation of calcareous mires have been
reported in the UK [111], in the German and Dutch lowlands [50,112,113], in the Swiss
Alps foothills [114,115], in the Czech Republic [116] and even in Scandinavia [117,118].
However, modeling the effects of climate change on carbonate mires in Austria and the
Western Carpathians revealed that they would lose small areas [47,50].

MaxEnt modeling accounts for climate change but does not account for the increased
frequency of extreme events, such as drought, which may contribute significantly to the
decline of the S. ferrugineus distribution. The spring-summer drought of 2010 was the
worst in the Southern Urals in recent decades. Figure 6 shows that in July 2010, during
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the drought period, the NDVI of the herb layer in most wetland communities of the
Bugulma-Belebey Upland decreased to the level of 0.29, which corresponds to almost dried
vegetation. This makes it possible to explain the absence of S. ferrugineus in the calcareous
mires with medium and low habitat suitability in the southeastern part of the Bugulma-
Belebey Upland by the high frequency of droughts (Figure 5). In addition, seed survival
in the soil is thought to be improved under moist conditions [119,120], while frequent
drying of the upper soil layer increases germination and reduces the seed bank [121].
Consequently, recurrent droughts will deplete the seed bank of S. ferrugineus. Thus, the
increasing frequency of droughts will greatly affect the future distribution of this species.
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Thus, the predicted changes in the distribution of habitats of S. ferrugineus, which
is a diagnostic species of calcareous mires, may be used as an indicator of the ecological
condition of these ecosystems, pointing to a possible strong transformation of the wetland
vegetation in the Southern Urals region even under moderate climate change in the future.
Projected future higher temperatures and lower summer precipitation could threaten
these ecosystems by reducing the active flow of groundwater enriched with dissolved
carbon dioxide [122]. The development of effective management strategies to protect or
restore these widely threatened habitats requires knowledge not only of recent ecological
functioning but also of their long-term history [105,123].
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5. Conclusions

The spontaneous occurrence of new S. ferrugineus localities in secondary wetlands
was recorded in Ukraine [124,125]. At the same time, populations of this species were
restored at the expense of nearby mires. However, such processes cannot occur in modern
agricultural or industrial landscapes, where calcareous mires have a scattered island-like
distribution, making them prone to extinction [126]. Our study showed that S. ferrugineus
habitats are unstable under climate change. Despite some limitations of the method, which
does not take into account the frequency of extreme droughts, the modeling showed a
decrease in the number of mires with suitable habitat conditions for the S. ferrugineus.
Therefore, in order to conserve this species at the eastern border of its range, it is necessary
to develop a strategy to mitigate the negative effects of climate change, including the
following measures:

1. Preservation of the hydrological regime of landscapes and vegetation in areas adjacent
to calcareous mires.

2. Preventing long-term flooding of S. ferrugineus habitats. In the Republic of Bashkortostan,
an example of secondary flooding under climate change is the Arkaulovskoye mire,
where the populations of 25 rare plant species, including S. ferrugineus, grow [104].
However, upon rewetting with alkaline-rich groundwater, control is necessary to
avoid excessive groundwater levels where Typha latifolia overgrowth is possible,
which may lead to S. ferrugineus extinction [127]. At the same time, the prevalence
of Phragmites australis, which also displaces S. ferrugineus, may increase at low water
tables [7].

3. In wetland restoration, the removal of topsoil to restore low-nutrient conditions and
the introduction of target species, such as by hay transplanting, can help restore
S. ferrugineus populations [122,128,129]. Without continuous removal of phytomass,
only limited success in restoring the characteristic species composition is possible [130].
In this respect, haymaking is the preferred method because it ensures regular removal
of nutrients. Subsequent low phytomass production is an important prerequisite for
the survival of light-loving, low-growing wetland species [131–133].

The integrated use of these measures will contribute to the conservation of S. ferrug-
ineus habitats. The promise of this research may be to establish a system for monitoring
calcareous mires and changes in their floristic composition in response to future climate
change, as well as to develop measures for the conservation of S. ferrugineus at the eastern
limit of its range. Particular attention should be given to the study of groundwater level
fluctuations in extreme dry years.
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46. Hájek, M.; Horsák, M.; Hajková, P.; Ditě, D. Habitat diversity of central European fens in relation to environmental gradients and

an effort to standardize fen terminology in ecological studies. Perspect. Plant Ecol. Evol. Syst. 2006, 8, 97–114. [CrossRef]
47. Hájek, M.; Horsakova, V.; Hájková, P.; Horsák, M.; Coufal, R.; Dítě, D.; Němec, T. Habitat extremity and conservation management
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