Meta-Topolin as an Effective Benzyladenine Derivative to Improve the Multiplication Rate and Quality of In Vitro Axillary Shoots of Húsvéti Rozmaring Apple Scion
Abstract
:1. Introduction
2. Results
2.1. Effect of Different Cytokinins on In Vitro Shoot Development from Axillary Buds
2.2. Effect of Different Cytokinins on Morphology of In Vitro Shoots
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. In Vitro Propagation of Plant Materials
4.3. Transfer of the Shoots to Cytokinin-Free Medium
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatti, S.; Jha, G. Current trends and future prospects of biotechnological interventions through tissue culture in apple. Plant Cell Rep. 2010, 29, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qin, Y.; Liang, D.; Zou, Y.; Ma, F. Enhancement of in vitro shoot regeneration from leaf explants of apple rootstock G.41. In Vitro Cell. Dev. Biol.-Plant 2014, 50, 263–270. [Google Scholar] [CrossRef]
- Dobránszki, J.; Teixeira da Silva, J.A. Micropropagation of apple—A review. Biotechnol. Adv. 2010, 28, 462–488. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, D.P.; Kumar, P.; Sharma, G.; Suprun, I.I. Comprehensive insights on Apple (Malus × domestica Borkh.) bud sport mutations and epigenetic regulations. Sci. Hortic. 2022, 297, 110979. [Google Scholar] [CrossRef]
- Kunihisa, M.; Takita, Y.; Yamaguchi, N.; Okada, H.; Sato, M.; Komori, S.; Nishitani, C.; Terakami, S.; Yamamoto, T. The use of a fertile doubled haploid apple line for QTL analysis of fruit traits. Breed. Sci. 2019, 69, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.L.; Dong, Z.D.; Song, C.H.; Xie, B.Y.; Zheng, X.B.; Song, S.W.; Jiao, J.; Wang, M.M.; Bai, T.H. Establishment of an efficient micropropagation system in enhancing rooting efficiency via stem cuttings of apple rootstock M9T337. Hort. Sci. 2021, 48, 63–72. [Google Scholar] [CrossRef]
- Petri, J.L.; Hawerroth, F.J.; Fazio, G.; Francescatto, P.; Leite, G.B. Advances in fruit crop propagation in Brazil and worldwide—Apple trees. Rev. Bras. Frutic. Jaboticabal 2019, 41, E-004. [Google Scholar] [CrossRef]
- Wada, M.; Nishitani, C.; Komori, S. Stable and efficient transformation of apple. Plant Biotechnol. 2020, 37, 163–170. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Gulyás, A.; Magyar-Tábori, K.; Wang, M.R.; Wang, Q.C.; Dobránszki, J. In vitro tissue culture of apple and other Malus species: Recent advances and applications. Planta 2019, 249, 975–1006. [Google Scholar] [CrossRef]
- Jones, O.P. Effect of benzyladenine on isolated apple shoots. Nature 1967, 215, 1514–1515. [Google Scholar] [CrossRef]
- Kumar, A.; Bhuj, B.D.; Dhar, S.; Dixit, K.M.J.; Singh, S.P. Micropropagation of Fruit Crops: A Review. Adv. Crop Sci. Technol. 2023, 11, 595. [Google Scholar]
- Lizarraga, A.; Fraga, M.; Ascasbar, J.; Gonzalez, M.L. In vitro propagation and recovery of eight apple and two pear cultivars held in a germplasm bank. Am. J. Plant Sci. 2017, 8, 2238–2254. [Google Scholar] [CrossRef]
- Alatar, A.A.; Qahtan, A.A.; Abdel-Salam, E.M.; Faisal, M.; El-Sheikh, M.A. Development of an Efficient and Rapid Micropropagation Protocol for in vitro Multiplication of Maerua crassifolia Forssk. Forests 2023, 14, 1160. [Google Scholar] [CrossRef]
- Tabalvandani, H.M.; Yadollahi, A.; Atashkar, D.; Kalatejari, S.; Eftekhari, M. Optimized Root Production during Micropropagation of New Iranian Apple Hybrid Rootstock (AZ X M9): Effects of Fe-EDDHA and Thiamin. Int. J. Adv. Biol. Biomed. Res. 2014, 2, 2659–2662. [Google Scholar]
- Podwyszyńska, M.; Sowik, I.; Machlańska, A.; Kruczyńska, D.; Dyki, B. In vitro tetraploid induction of Malus × domestica Borkh. using leaf or shoot explants. Sci. Hortic. 2017, 226, 379–388. [Google Scholar] [CrossRef]
- Kumari, N.; Kamlesh; Modgil, M. Development of high frequency in vitro shoot regeneration system from leaves of apple cultivar ‘Oregon Spur’ and optimization of antibiotics concentration. Indian J. Exp. Biol. 2023, 61, 463–472. [Google Scholar] [CrossRef]
- Schröpfer, S.; Lempe, J.; Emeriewen, O.F.; Flachowsky, H. Recent Developments and Strategies for the Application of Agrobacterium-Mediated Transformation of Apple Malus × domestica Borkh. Front. Plant Sci. 2022, 13, 928292. [Google Scholar] [CrossRef]
- Chen, J.; Tomes, S.; Gleave, A.P.; Hall, W.; Luo, Z.; Xu, J.; Yao, J.L. Significant improvement of apple (Malus domestica Borkh.) transgenic plant production by pre-transformation with a Baby boom transcription factor. Hortic. Res. 2022, 9, uhab014. [Google Scholar] [CrossRef]
- Wang, M.R.; Cui, Z.H.; Li, J.W.; Hao, X.Y.; Zhao, L.; Wang, Q.C. In vitro thermotherapy-based methods for plant virus eradication. Plant Methods 2018, 14, 87. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Fazio, G.; Carvalho Costa, L.; Hurtado-Gonzales, O.P.; Rwahnih, M.A.; Nedrow, A.; Volk, G.M. Thermotherapy Followed by Shoot Tip Cryotherapy Eradicates Latent Viruses and Apple Hammerhead Viroid from in vitro Apple Rootstocks. Plants 2022, 11, 582. [Google Scholar] [CrossRef]
- Hevesi, M.; Papp, J.; Jámbor-Benczúr, E.; Kaszáné Csizmár, K.; Pozsgai, I.; Gazdag, G.; Balla, I. Testing the virulence of some Hungarian Erwinia amylovora strains on in vitro cultured apple rootstocks. Int. J. Hortic. Sci. 2000, 6, 52–55. [Google Scholar] [CrossRef]
- Bahmani, R.; Gholami, M.; Mozafari, A.A.; Alivaisi, R. Effects of salinity on in vitro shoot proliferation and rooting of apple rootstock MM.106. World Appl. Sci. J. 2012, 17, 292–295. [Google Scholar]
- Dobránszki, J.; Abdul-Kader, A.; Magyar-Tábori, K.; Jámbor-Benczúr, E.; Bubán, T.; Szalai, J.; Lazányi, J. Single and dual effects of different cytokinins on shoot multiplication of different apple scions. Int. J. Hortic. Sci. 2000, 6, 76–78. [Google Scholar] [CrossRef]
- Dobránszki, J.; Magyar-Tábori, J.; Jámbor-Benczúr, E.; Lazányi, J.; Bubán, T.; Szalai, J. Influence of aromatic cytokinins on shoot multiplication and their after-effects on rooting of apple cv. Húsvéti rozmaring. Int. J. Hortic. Sci. 2000, 6, 84–87. [Google Scholar] [CrossRef]
- Dobránszki, J.; Jámbor-Benczúr, E.; Reményi, M.L.; Magyar-Tábori, K.; Hudák, I.; Kiss, E.; Galli, Z. Effects of aromatic cytokinins on structural characteristics of leaves and their post-effects on subsequent shoot regeneration from in vitro apple leaves of ‘Royal Gala’. Int. J. Hortic. Sci. 2005, 11, 41–46. [Google Scholar] [CrossRef]
- Dobránszki, J.; Magyar-Tábori, K.; Tombácz, E. Comparison of the rheological and diffusion properties of some gelling agents and blends and their effects on shoot multiplication. Plant Biotechnol. Rep. 2011, 5, 345–352. [Google Scholar] [CrossRef]
- Modgil, M.; Handa, R.; Sharma, D.R.; Thakur, M. High efficiency shoot regeneration from leaf explants of in vitro grown shoots of apple. Acta Hortic. 2005, 696, 123–128. [Google Scholar] [CrossRef]
- Magyar-Tábori, K.; Dobránszki, J.; Teixeira da Silva, J.A.; Bulley, S.M.; Hudák, I. The role of cytokinins in shoot organogenesis in apple. Plant Cell Tissue Organ. Cult. 2010, 101, 251–267. [Google Scholar] [CrossRef]
- Keresa, S.; Barić, M.; Jerčić, I.H.; Sarcevic, H.; Biško, A. Efficient Axillary Shoot Proliferation and in vitro Rooting of Apple cv. ’Topaz’. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 113–118. [Google Scholar] [CrossRef]
- Mitić, N.; Stanišić, M.; Milojević, J.; Tubić, L.; Ćosić, T.; Nikolić, R.; Ninković, S.; Miletić, R. Optimization of in vitro Regeneration from Leaf Explants of Apple Cultivars Golden Delicious and Melrose. HortScience Horts 2012, 47, 1117–1122. [Google Scholar] [CrossRef]
- Dastjerd, Z.H.; Jabbarzadeh, Z.; Marandi, R.J. Interaction effects of chitosan, benzyladenine, and gibberellic acid on in vitro proliferation of M26 apple rootstock. Hortic. Environ. Biotechnol. 2013, 54, 538–547. [Google Scholar] [CrossRef]
- Li, B.Q.; Feng, C.H.; Hu, L.Y.; Wang, M.R.; Chen, L.; Wang, Q.C. Shoot regeneration and cryopreservation of shoot tips of apple (Malus) by encapsulation–dehydration. In Vitro Cell. Dev. Biol.-Plant 2014, 50, 357–368. [Google Scholar] [CrossRef]
- Zhang, Y.; Bozorov, T.A.; Li, D.X.; Zhou, P.; Wen, X.J.; Ding, Y.; Zhang, D.Y. An efficient in vitro regeneration system from different wild apple (Malus sieversii) explants. Plant Methods 2020, 16, 56. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, N.; Modgil, M.; Thakur, M.; Sharma, D.R. In vitro clonal multiplication of an apple rootstock by culture of shoot apices and axillary buds. Ind. J. Exp. Biol. 2005, 43, 561–565. [Google Scholar]
- Pereira-Netto, A.B.; Meneguin, R.G.; Biz, A.; Silveira, J.L. A galactomannan-driven enhancement of the in vitro multiplication rate for the Marubakaido apple rootstock (Malus prunifolia (Willd.) Borkh) is not related to the degradation of the exogenous galactomannan. Appl. Biochem. Biotechnol. 2012, 166, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Modgila, M.; Thakur, M. In vitro culture of clonal rootstocks of apple for their commercial exploitation. Acta Hortic. 2017, 1155. [Google Scholar] [CrossRef]
- Dobránszki, J.; Teixeira da Silva, J.A. Adventitious shoot regeneration from leaf thin cell layers in apple. Sci. Hortic. 2011, 127, 460–463. [Google Scholar] [CrossRef]
- Dobránszki, J.; Teixeira Da Silva, J.A. In vitro shoot regeneration from transverse thin cell layers of apple leaves in response to various factors. J. Hortic. Sci. Biotechnol. 2013, 88, 60–66. [Google Scholar] [CrossRef]
- Mir, J.I.; Ahmed, N.; Singh, D.B.; Rashid, R.; Shafi, W.; Zaffer, S.; Sheikh, M.A.; Noor, U.; Khan, M.H.; Rather, I. Fast and Efficient In-vitro Multiplication of Apple Clonal Root Stock MM-106. Int. J. Plant Res. 2013, 26, 198. [Google Scholar]
- Noormohamadi, Z.; Farahani, F.; Safarzadeh, M. Study of morphological traits changes in different media culture of two apple rootstocks (M26 and MM106). Malays. Appl. Biol. 2013, 42, 25–33. [Google Scholar]
- Ghanbari, A. Impacts of plant growth regulators and culture media on in vitro propagation of three apple (Malus domestica Borkh.) rootstocks. Iranian J. Gen. Plant Breed. 2014, 3, 11–20. [Google Scholar]
- Karimpour, S.; Davarynejad, G.; ZakiAghl, M.; Safarnejad, M.R. Optimization of plant growth regulators for in vitro shoot proliferation of apple cv. ‘Abbasi’ using response surface method. J. Plant Physiol. Breed. 2020, 10, 111–125. [Google Scholar] [CrossRef]
- Pereira-Netto, A.B. Stigmasterol-driven enhancement of the in vitro multiplication rate for the marubakaido apple rootstock. Trees 2012, 26, 581–586. [Google Scholar] [CrossRef]
- Dobránszki, J.; Mendler-Drienyovszki, N. Cytokinin-induced changes in the chlorophyll content and fluorescence of in vitro apple leaves. J. Plant Physiol. 2014, 171, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Aremu, A.O.; Fawole, O.A.; Makunga, N.P.; Masondo, N.A.; Moyo, M.; Buthelezi, N.M.D.; Amoo, S.O.; Spíchal, L.; Doležal, K. Applications of Cytokinins in Horticultural Fruit Crops: Trends and Future Prospects. Biomolecules 2020, 10, 1222. [Google Scholar] [CrossRef] [PubMed]
- Raspor, M.; Motyka, V.; Kaleri, A.R.; Ninković, S.; Tubić, L.; Cingel, A.; Ćosić, T. Integrating the Roles for Cytokinin and Auxin in De Novo Shoot Organogenesis: From Hormone Uptake to Signaling Outputs. Int. J. Mol. Sci. 2021, 22, 8554. [Google Scholar] [CrossRef] [PubMed]
- Mehbub, H.; Akter, A.; Akter, M.A.; Mandal, M.S.H.; Hoque, M.A.; Tuleja, M.; Mehraj, H. Tissue Culture in Ornamentals: Cultivation Factors, Propagation Techniques, and Its Application. Plants 2022, 11, 3208. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, N.; El-Ramady, H.; Seliem, M.K.; El-Mahrouk, M.E.; Taha, N.; Bayoumi, Y.; Shalaby, T.A.; Dobránszki, J. An Academic and Technical Overview on Plant Micropropagation Challenges. Horticulturae 2022, 8, 677. [Google Scholar] [CrossRef]
- SFFB. Húsvéti Rozmaring Apple. Available online: https://www.fondazioneslowfood.com/en/ark-of-taste-slow-food/husveti-rozmaring-apple/ (accessed on 27 May 2024).
- Howell, S.H.; Lall, S.; Che, P. Cytokinins and shoot development. Trends Plant Sci. 2003, 8, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Tashmatova, L.V.; Matsneva, O.V.; Khromova, T.M.; Shakhov, V.V. Influence of different concentrations of 6-benzylaminopurine and thidiazuron on the proliferative activity of apple varieties in in vitro culture. BIO Web Conf. 2021, 36, 03012. [Google Scholar] [CrossRef]
- Gantait, S.; Mitra, M. Role of Meta-topolin on in vitro Shoot Regeneration: An Insight. In Metatopolin: A Growth Regulator for Plant Biotechnology and Agriculture; Ahmad, N., Strnad, M., Eds.; Springer Nature Singapore Private Ltd.: Singapore, 2021; pp. 143–168. [Google Scholar] [CrossRef]
- Amoo, S.; Finnie, J.F.; Van Staden, J. The role of meta-topolins in alleviating micropropagation problems. Plant Growth Regul. 2011, 63, 197–206. [Google Scholar] [CrossRef]
- Aremu, A.O.; Bairu, M.W.; Doležal, K.; Finnie, J.F.; Van Staden, J. Topolins: A panacea to plant tissue culture challenges? Plant Cell Tissue Organ. Cult. 2012, 108, 1–16. [Google Scholar] [CrossRef]
- Dobránszki, J.; Magyar-Tábori, K.; Jámbor-Benczúr, E.; Al, E. Effect of conditioning apple shoots with meta-topolin on the morphogenic activity of in vitro leaves. Acta Agron. Hung. 2002, 50, 117–126. [Google Scholar] [CrossRef]
- Dobránszki, J.; Hudak, I.; Magyar-Tábori, K.; Jámbor-Benczúr, E.; Galli, Z.; Kiss, E. Effects of different cytokinins on the shoot regeneration from apple leaves of ‘Royal Gala’ and ‘M.26’. Int. J. Hortic. Sci. 2004, 10, 69–75. [Google Scholar] [CrossRef]
- Dobránszki, J.; Hudak, I.; Magyar-Tábori, K.; Jámbor-Benczúr, E.; Galli, Z.; Kiss, E. How can different cytokinins influence the process of shoot regeneration from apple leaves in ‘Royal Gala’ and ‘M.26’. Acta Hortic. 2006, 725, 191–196. [Google Scholar]
- Dalal, A.M.; Das, B.; Sharma, K.A.; Mir, A.M.; Sounduri, S.A. In vitro cloning of apple (Malus domestica Borkh.) employing forced shoot tip cultures on M9 rootstock. Ind. J. Biot. 2006, 5, 543–550. [Google Scholar]
- Dobránszki, J.; Abdul-Kader, A.; Magyar-Tábori, K.; Jámbor-Benczúr, E.; Bubán, T.; Szalai, J.; Lazányi, J. In vitro shoot multiplication of apple: Comparative response of three rootstocks to cytokinins and auxin. Int. J. Hortic. Sci. 2000, 6, 36–39. [Google Scholar] [CrossRef]
- Malá, J.; Máchová, P.; Cvrčková, H.; Karady, M.; Novák, O.; Mikulík, J.; Dostál, J.; Strnad, M.; Doležal, K. The role of cytokinins during micropropagation of wych elm. Biol. Plant 2013, 57, 174–178. [Google Scholar] [CrossRef]
- Mukherjee, E.; Sarkar, S.; Bhattacharyya, S.; Gantait, S. Ameliorated reserpine production via in vitro direct and indirect regeneration system in Rauvolfia serpentina (L.) Benth. ex Kurz. 3 Biotech 2020, 10, 294. [Google Scholar] [CrossRef] [PubMed]
- Bogaert, I.; Van Cauter, S.; Werbrouck, S.P.O.; Doležal, K. New aromatic cytokinins can make the difference. Acta Hortic. 2006, 725, 265–270. [Google Scholar] [CrossRef]
- Podwyszyńska, M.; Cieślińska, M. Rooting shoots of apple varieties and their tetraploids obtained by the in vitro technique. Acta Sci. Pol. Hortor Cultus 2018, 17, 49–62. [Google Scholar] [CrossRef]
- Magyar-Tábori, K.; Dobránszki, J.; Jámbor-Benczúr, E.; Bubán, T.; Lazányi, J.; Szalai, J.; Ferenczy, A. Post-effects of cytokinins and auxin levels of proliferation media on rooting ability of in vitro apple shoots (Malus domestica Borkh.) ‘Red Fuji’. Int. J. Hortic. Sci. 2001, 7, 26–29. [Google Scholar] [CrossRef]
- Magyar-Tábori, K.; Dobránszki, J.; Jámbor-Benczúr, E. High in vitro shoot proliferation in the apple cultivar Jonagold induced by benzyladenine analogues. Acta Agron. Hung. 2002, 50, 191–195. [Google Scholar] [CrossRef]
- Ahmad, A.; Anis, M. Meta-topolin improves in vitro morphogenesis, rhizogenesis and biochemical analysis in Pterocarpus marsupium Roxb.: A potential drug-yielding tree. J. Plant Growth Regul. 2019, 38, 1007–1016. [Google Scholar] [CrossRef]
- Zaytseva, Y.G.; Ambros, E.V.; Novikova, T.I. Meta-topolin: Advantages and Disadvantages for in vitro Propagation. In Meta-topolin: A Growth Regulator for Plant Biotechnology and Agriculture; Ahmad, N., Strnad, M., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Poisson, A.S.; Berthelot, P.; Le Bras, C.; Grapin, A.; Vergne, E.; Chevreau, E. A droplet-vitrification protocol enabled cryopreservation of doubled haploid explants of Malus × domestica Borkh. ‘Golden Delicious’. Sci. Hortic. 2016, 209, 187–191. [Google Scholar] [CrossRef]
- Gentile, A.; Jáquez Gutiérrez, M.; Martinez, J.; Frattarelli, A.; Nota, P.; Caboni, E. Effect of meta-Topolin on micropropagation and adventitious shoot regeneration in Prunus rootstocks. Plant Cell Tissue Organ. Cult. 2014, 118, 373–381. [Google Scholar] [CrossRef]
- Monticelli, S.; Gentile, A.; Frattarelli, A.; Caboni, E. Effects of the natural cytokinin meta-Topolin on in vitro shoot proliferation and acclimatization of Prunus spp. Acta Hortic. 2017, 1155, 349–354. [Google Scholar]
- Dimitrova, N.; Nacheva, L.; Berova, M. Effect of meta-topolin on the shoot multiplication of pear rootstock OHF-333 (Pyrus communis L.). Acta Sci. Pol. Hortorum Cultus 2016, 15, 43–53. [Google Scholar]
- Vujović, T.; Ružić, D.; Cerović, R. In vitro shoot multiplication as influenced by repeated subculturing of shoots of contemporary fruit rootstocks. Hort. Sci. 2012, 39, 101–107. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth & bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar]
Shoot Fresh Weight (mg) | |||||
---|---|---|---|---|---|
Main effect of different factors | |||||
Cytokinin *** Concentration *** Cytokinin × Concentration interaction *** | |||||
Cytokinins | |||||
TDZ | BA | BAR | mT | ||
8647.7 ± 337.9 a | 7285.8 ± 439.8 b | 6595.8 ± 534.0 b | 6339.1 ± 641.9 b | ||
Concentrations (μM) | |||||
Ø | 2 | 4 | 6 | 8 | |
2768.6 ± 191.8 d | 5601.5 ± 487.2 c | 7113.1 ± 415.1 ab | 6309.8 ± 459.8 bc | 7875.5 ± 410.9 a | |
Treatments | |||||
μM | TDZ | BA | BAR | mT | |
Ø | 2768.6 ±191.8 g | ||||
2 | 9670.1 ± 721.6 a | 4965.4 ± 370.8 c | 3876.0 ± 545.8 fg | 4805.6 ± 378.5 defg | |
4 | 7176.1 ± 331.3 abcde | 7635.1 ± 846.5 abc | 6171.2 ± 698.2 bcdef | 9258.5 ± 1246.8 a | |
6 | 8385.2 ± 591.5 ab | 7472.4 ± 611.2 abcd | 7632.8 ± 988.1 abc | 3716.4 ± 228.9 fg | |
8 | 9359.3 ± 493.3 a | 9070.2 ± 515.9 a | 8703.3 ± 618.8 ab | 7269.4 ± 903.5 abcde |
Number of Newly Developed Microshoots/Explant | |||||
---|---|---|---|---|---|
Main effect of different factors | |||||
Cytokinin *** Concentration *** Cytokinin × Concentration interaction *** | |||||
Cytokinins | |||||
TDZ | BA | BAR | mT | KIN | |
4.76 ± 0.154 a | 3.96 ± 0.177 b | 3.47 ± 0.205 c | 1.73 ± 0.177 d | 0.02 ± 0.014 e | |
Concentrations (μM) | |||||
Ø | 2 | 4 | 6 | 8 | |
0.26 ± 0.066 c | 2.29 ± 0.208 b | 3.05 ± 0.189 a | 2.89 ± 0.218 a | 3.11 ± 0.221 a | |
Treatments | |||||
μM | TDZ | BA | BAR | mT | KIN |
Ø | 0.26 ± 0.066 h | ||||
2 | 5.40 ± 0.321 a | 2.84 ± 0.263 ef | 2.16 ± 0.309 fg | 0.55 ± 0.198 h | 0.04 ± 0.042 h |
4 | 4.28 ± 0.286 abcd | 4.20 ± 0.374 abcd | 3.12 ± 0.318 def | 3.28 ± 0.319 cdef | 0.00 ± 0.000 h |
6 | 4.92 ± 0.282 ab | 4.16 ± 0.340 abcd | 3.84 ± 0.411 bcde | 1.10 ± 0.275 gh | 0.04 ± 0.042 h |
8 | 4.44 ± 0.311 abc | 4.64 ± 0.346 ab | 4.76 ± 0.421 ab | 1.67 ± 0.299 g | 0.00 ± 0.000 h |
Shoot Length (cm) | |||||
---|---|---|---|---|---|
Main effect of different factors | |||||
Cytokinin *** Concentration *** Cytokinin × Concentration interaction *** | |||||
Cytokinins | |||||
TDZ | BA | BAR | mT | KIN | |
0.48 ± 0.01 c | 1.56 ± 0.034 a | 1.50 ± 0.035 a | 1.29 ± 0.07 b | 0.01 ± 0.01 d | |
Concentrations (μM) | |||||
Ø | 2 | 4 | 6 | 8 | |
0.15 ± 0.02 d | 0.93 ± 0.045 c | 1.13 ± 0.043 b | 0.96 ± 0.035 c | 1.22 ± 0.039 a | |
Treatments | |||||
μM | TDZ | BA | BAR | mT | KIN |
Ø | 0.15 ± 0.02 fgh | ||||
2 | 0.51 ± 0.01 e | 1.80 ± 0.08 a | 1.45 ± 0.09 abc | 0.47 ± 0.14 ef | 0.02 ± 0.02 h |
4 | 0.35 ± 0.01 efg | 1.51 ± 0.06 abc | 1.64 ± 0.07 ab | 1.46 ± 0.09 abc | 0.00 ± 0.00 h |
6 | 0.48 ± 0.01 e | 1.24 ± 0.06 c | 1.51 ± 0.05 abc | 0.91 ± 0.15 d | 0.05 ± 0.05 gh |
8 | 0.54 ± 0.01 e | 1.74 ± 0.05 ab | 1.43 ± 0.06 bc | 1.70 ± 0.13 ab | 0.00 ± 0.00 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, N.; Dobránszki, J. Meta-Topolin as an Effective Benzyladenine Derivative to Improve the Multiplication Rate and Quality of In Vitro Axillary Shoots of Húsvéti Rozmaring Apple Scion. Plants 2024, 13, 1568. https://doi.org/10.3390/plants13111568
Abdalla N, Dobránszki J. Meta-Topolin as an Effective Benzyladenine Derivative to Improve the Multiplication Rate and Quality of In Vitro Axillary Shoots of Húsvéti Rozmaring Apple Scion. Plants. 2024; 13(11):1568. https://doi.org/10.3390/plants13111568
Chicago/Turabian StyleAbdalla, Neama, and Judit Dobránszki. 2024. "Meta-Topolin as an Effective Benzyladenine Derivative to Improve the Multiplication Rate and Quality of In Vitro Axillary Shoots of Húsvéti Rozmaring Apple Scion" Plants 13, no. 11: 1568. https://doi.org/10.3390/plants13111568
APA StyleAbdalla, N., & Dobránszki, J. (2024). Meta-Topolin as an Effective Benzyladenine Derivative to Improve the Multiplication Rate and Quality of In Vitro Axillary Shoots of Húsvéti Rozmaring Apple Scion. Plants, 13(11), 1568. https://doi.org/10.3390/plants13111568