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Abstract: Safflower (Carthamus tinctorius L.) is a multipurpose minor crop consumed by developed
and developing nations around the world with limited research funding and genetic resources.
Genomic selection (GS) is an effective modern breeding tool that can help to fast-track the genetic
diversity preserved in genebank collections to facilitate rapid and efficient germplasm improvement
and variety development. In the present study, we simulated four GS strategies to compare genetic
gains and inbreeding during breeding cycles in a safflower recurrent selection breeding program
targeting grain yield (GY) and seed oil content (OL). We observed positive genetic gains over cycles in
all four GS strategies, where the first cycle delivered the largest genetic gain. Single-trait GS strategies
had the greatest gain for the target trait but had very limited genetic improvement for the other trait.
Simultaneous selection for GY and OL via indices indicated higher gains for both traits than crossing
between the two single-trait independent culling strategies. The multi-trait GS strategy with mating
relationship control (GS_GY + OL + Rel) resulted in a lower inbreeding coefficeint but a similar gain
compared to that of the GS_GY + OL (without inbreeding control) strategy after a few cycles. Our
findings lay the foundation for future safflower GS breeding.

Keywords: genetic gain; inbreeding coefficient; safflower; simulation; grain yield; seed oil content

1. Introduction

Genomic selection (GS) is a modern breeding tool that uses genome-wide molecular
marker information to predict the genomic estimated breeding values (GEBVs) of selection
candidates (test individuals) to facilitate selection. To perform GS, a training population
(TP), which has been genotyped and phenotyped, is used to predict the performance of the
test individuals, which has been genotyped but not phenotyped by a statistical model [1,2].

GS has been applied in animal breeding and has resulted in increased genetic gain (∆G)
in the dairy cattle, beef cattle, pig, and poultry industries [3]. In plant breeding, GS has been
increasingly incorporated into breeding programs to increase genetic gain [4]. Compared
to phenotypic selection (PS) or marker-assisted selection (MAS), GS could achieve higher
genetic gain by imposing higher selection intensity, achieving higher selection accuracy,
especially for difficult or expensive traits to measure and low heritable traits, and shortening
breeding cycles [5]. GS resulted in an extra 10–20% genetic gain over PS for drought
tolerance in a maize study [6]. By using simulation, Lin et al. (2016) [7] showed that
applying GS could double to triple the genetic gain by a 4-year reduction in cycle time
when incorporated into a ryegrass breeding program. To simultaneously select multiple
traits, GS with the selection index method was investigated and the choice of the selection
index strongly affects genetic gain for target traits [8]. Rapp et al. (2018) [9] reported that
the efficiency of selection largely depends on the weight of the trait in the index when
simultaneously improving grain yield and protein content in durum wheat.
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The increased selection intensity and higher selection accuracy of GS lead to greater
short-term gains from selection; however, GS may reduce long-term gains by decreasing
genetic variation and increasing the rate of inbreeding (∆F) [10,11]. Restricting relation-
ships between selected parents to control mating candidates (mating design), selecting
for favorable minor alleles or putting weight on within-family information in breeding
value estimation have been examined to control the inbreeding [12,13]. Allier et al. showed
that considering within-family variance was more efficient than optimal crossing selection
in converting genetic diversity into short- and long-term genetic gains in a simulated
recurrent breeding program [14]. Giving extra weight to the favorable alleles with low
frequency could increase long-term genetic gain by up to 30.8% compared to unweighted
methods [15]. Using a simulated perennial ryegrass breeding scheme, Lin et al. (2017) [16]
compared three types of inbreeding control strategies, and the use of a simultaneously
adjusted selection and mate allocation method was able to reduce inbreeding to one-third
of the original genomic selection scheme.

In GS, phenotyping calibrates prediction models instead of serving selection, which
profoundly impacts the breeding program structure. The scenarios in which GS is imple-
mented into breeding programs to allocate breeding resources efficiently and maximize
genetic gain have been discussed [17,18]. Computer simulation has been used in plant
breeding as a cost-effective tool to allow researchers to explore different scenarios without
conducting expensive field trials or laboratory experiments. It is also a valuable tool for
efficiently allocating resources and comparing breeding schemes, especially for finding the
optimal strategies to implement GS [19,20]. In wheat, the comparison of classical two-stage
PS with three GS breeding strategies for a fixed budget showed that the use of GS was
the most advantageous, especially when low GS prediction accuracy (0.3) was tested for
grain yield [21]. Lorenz (2013) [22] reported that the prediction accuracy (PA) in resource
allocation strategies differed between GS models when they simulated a single biparental
double haploid (DH) population to study the impact of resource allocation decisions, such
as population size and replications on GS. The number of parents, number of hybrids,
tester update, and genomic prediction of hybrids were simulated in a hybrid rice breeding
program, and the results indicated that genomic prediction of hybrid performance was
feasible and that the largest breeding size tested had the highest genetic gain [23]. Sev-
eral simulation software packages have been developed to facilitate the investigation of
different strategies for implementing GS in breeding programs [24–26].

Fundamental genetic research and genetic improvement in safflower have been
achieved by using conventional PS and MAS in safflower breeding [27]. However, ef-
forts to achieve further genetic improvement in safflower have decreased due to the limited
market, small budget, competition with other oil seed crops, etc. [28]. Given the increasing
demand for biofuel and healthy edible oil, safflower breeding has regained interest in recent
years [29]. It is important to implement GS in breeding programs to take advantage of this
modern breeding tool to breed safflower efficiently and rapidly. In this study, we simulated
a safflower recurrent breeding program targeting grain yield (GY) and seed oil content (OL)
by directly exploiting the genetic diversity of a genebank collection via four GS strategies.
The aims were twofold: (1) to simulate different GS strategies in a safflower recurrent
breeding program targeting GY and OL; (2) to compare genetic gains and genetic diversity
losses during each breeding cycle to provide practical knowledge for the simultaneous
improvement of these two traits in future GS breeding efforts.

2. Materials and Methods
2.1. Simulation Outline

We simulated a safflower breeding program with a recurrent selection scheme. The
breeding cycle is illustrated in Figure 1. We applied GS to compare the genetic gains of
four GS implementation strategies (single-trait: GS_GY, GS_OL; multi-trait: GS_GY + OL;
multi-trait + inbreeding control: GS_GY + OL + Rel). The breeding cycle started with
randomly selecting 50 individuals out of the 349 diverse safflower accessions and breeding
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lines as the initial crossing parents for cycle 1. A total of 30 biparental crosses were made
within the 50 individuals by random crossing. We kept 10 F1 individuals per cross and
advanced them to F2, with 200 F2 plants per cross bulked. After F2 generation, we adopted
the single-seed descent method to advance F2 to F4 by generating 100 seeds per cross,
which resulted in a total of 3000 F4 individuals. Selection was conducted at F4 by selecting
a new set of 50 safflower individuals from the combination of the 3000 F4 and the 50 initial
crossing parents. The 50 newly selected individuals were used as the crossing parents for
cycle 2. We repeated the process up to cycle 5, and the genetic gains were calculated in
four GS selection strategies for GY and OL at each cycle. The simulation procedure was
repeated in 50 replicates, and we reported the averages.
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Figure 1. Workflow summary of the GS selection procedures used in the simulation for the develop-
ment of selection cycles.

2.2. Initial Phenotypes and Genotypes

The safflower diverse population sourced from the Australian Grain GenBank was
used as the initial population in the study. The accession information, field design, and
genotyping details of this diverse population have been described previously [30]. Briefly,
the safflower collection was evaluated in four field trials, which were conducted in 2017 and
2018 with two trials each year in Victoria, Australia. All field trials adopted a randomized
complete block design with 2–3 replications, and the plot size was 1 m × 5 m with five
rows in each plot. Grain yield (GY) was determined as kg/plot and converted to t/ha
with the width of 0.5 m between plots. Seed oil content (OL%) was determined by near-
infrared reflectance spectroscopy (NIR) calibrated by the Soxhlet extraction method with
an R-squared value of 0.95 and a standard error of prediction of 1.2%. We combined sites
with a mixed linear model mentioned in [31] to estimate the best linear unbiased estimates
(BLUEs) for GY (t/ha) and OL (%) for each individual. Narrow sense heritability (h2) was
estimated by a genomic best linear unbiased prediction model (GBLUP) with BLUEs fitted
as ‘phenotypes’, and it was 0.54 for GY and 0.8 for OL, and the genetic correlation between
these two traits’ BLUEs was around 0.19. The accessed safflower diverse population were
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all genotyped using a genotyping-by-sequencing (GBS) assay. After removing SNPs with
>50% missing and a minor allele frequency < 0.01, a total of 6911 SNPs remained, and
missing genotypes were imputed by LinkImpute [32]. The genomic relationship matrix
(GRM) was calculated according to VanRaden to reflect the relationship between accessions
and breeding lines [33].

2.3. Simulation of the Proposed GS

Four GS selection strategies based on GEBVs or indices were compared. GS_GY and
GS_OL are two single-trait selection strategies, and selection was based on the independent
culling method by selecting the top 50 individuals with high GEBVs estimated by the single-
trait GBLUP model, as detailed in [31]. In GS_GY + OL, a selection index was constructed
to simultaneously select for GY and OL by combining both traits’ standardized GEBVs
with equal weights, and the top individuals with the highest index were selected [31]. The
GS_GY + OL + Rel strategy was similar to the GS_GY + OL, but the selected candidates
had low relationships, which was achieved by simultaneously controlling crossing parent
selection and mate allocation. In brief, a fitness matrix was generated by the mid-parent
GEBVs of all candidature combinations minus the co-ancestry values of the corresponding
pairs in GRM, and it was then fitted in the Genetic Algorithm (GA) to search for the
optimized set of crosses (in our study, the set of 50 parents) with maximized fitness, as
detailed in [16]. λ was used as a scalar with λ = 0.5 in the study to penalize genomic
relationships. The 30 parents used for initial crosses in cycle one were randomly chosen,
and a stochastic simulation in-house script was used to generate the crossing and the
progeny genotypes with the recombination rate following a Poisson distribution.

GEBVs of safflower individuals were estimated in two steps. First, the allele effects
(β) for each SNP were estimated by using BLUEs as phenotypes in BayesR [34], which
assumes a mixture of four normal distributions N~(0, 0|0.0001|0.001|0.01) for GY and
OL, respectively. Second, the GEBVs (ĝ) in the selection candidates were calculated by
multiplying genotypes by the estimated marker effects:

ĝ = X′β

where X′ is the matrix of simulated genotypes (0, 1, and 2) for crossing progeny, and β is a
vector of allele effects estimated for each trait.

2.4. Genetic Gain and Inbreeding

Genetic gain was the genetic improvement expressed in genetic standard deviation
unit (σG), to be able to compare the gain in GY and OL:

∆G =(mean(GEBVi )− mean
(
GEBV j ))/ σGEBVcycle 1

where GEBVi and GEBVj are the average breeding values estimated for parents in cycles i
and j (cycle i + 1), respectively. We used σGEBVcycle 1 in the formula to be able to attain a fair
comparison of genetic gains across cycles.

The inbreeding coefficient (F) was estimated as the mean of diagonal elements of GRM
minus 1. Generally, low average F in the population indicates low inbreeding and high
genetic diversity. The rates of inbreeding were calculated as [35]

∆Fij = Fj − Fi,

where Fi and Fj are the mean inbreeding coefficients in cycles i and j (cycle i + 1), respectively.
The average genetic gain and inbreeding was plotted against each cycle for comparison.
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3. Results
3.1. Initial Phenotypes and Genotypes

The distributions of BLUEs for GY and OL in the diverse safflower panel are shown in
Figure 2a. The average BLUEs were around 2–4 t/ha for GY, and the highest yield exceeded
5.1 t/ha. OL ranged from 29 to 34% with few individuals exhibiting a percentage less
than 25% and more than 40%. The highest OL was 42.4%. The GRM constructed from
6911 SNPs revealed that the 349 safflowers could be grouped into a few subgroups with a
few safflower accessions or lines closely related to each other (Figure 2b). Selection based
on the performance of the 349 safflower accessions or lines could be impacted by selecting
the individuals within the same subgroups.
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3.2. Genetic Gains

We randomly selected 50 out of 349 safflower accessions or lines to initiate the first
crossing cycle and a total of five cycles were simulated. The mean GEBVs of each cycle
for GY and OL are shown in Figure 3, which indicated a positive genetic improvement for
target traits across cycles in different GS methods. The GS_GY selection strategy showed
the GY, whereas GS_OL showed the highest genetic improvement for OL at all cycles. The
single-trait strategies indicated the highest genetic improvement (mean GEBVs) for the
target traits. After five cycles, the mean GEBVs for GY and OL improved substantially and
were about 1 and 0.7 greater than the first cycle, respectively. However, the average GEBVs
were poor for the trait not under selection in the single-trait GS method. With simultaneous
selection of GY and OL, the GS_GY + OL showed slightly higher genetic improvement in
both GY and OL at the early cycles (c2 and c3) compared to the GS_GY + OL + Rel strategy.
However, the difference was completely diminished for GY and became negligible for OL
in cycles four and five. The variation in GEBVs was large at the initial cross for both traits.
As the cycle number increased, the variation decreased, but the rate of reduction in genetic
variation differed between GS selection methods.
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We calculated the genetic gain for each cycle (Table 1) and observed that the greatest
gain was achieved at cycle one for all the GS methods. The gains were higher for the
single-trait GS strategy than for multi-trait GS selection strategies. Within the single-trait
GS methods, the gain for OL in the GS_OL method was higher than the gain for GY in
GS_GY in the first cycle; however, the gain for GY was slightly greater after cycle one.
After five cycles, single-trait selection resulted in gains of 2.609 and 2.777 in GY and OL,
respectively, via two distinct breeding strategies. When simultaneously selecting for GY
and OL, the GS_GY + OL strategy showed larger gain than did the GS_GY + OL + Rel
in the first cycle. After five cycles, the sum of gains was close for the two multi-trait GS
selection methods at about 1.8 for GY and 2.2 for OL.

Table 1. Genetic gains for grain yield and oil content at different cycles of four selection strategies.

Trait Cycles
GS Model

GY OL GY + OL GY + OL + Rel

GY c1 1.609 0.499 1.175 0.995
c2 0.454 0.013 0.256 0.373
c3 0.308 0.01 0.206 0.233
c4 0.238 −0.003 0.145 0.188

Sum 2.609 0.519 1.782 1.789

OL c1 0.204 1.939 1.632 1.112
c2 −0.125 0.365 0.305 0.618
c3 −0.029 0.254 0.166 0.279
c4 −0.025 0.219 0.140 0.163

Sum 0.025 2.777 2.243 2.172

3.3. Inbreeding Coefficient

The inbreeding coefficient (F) showed an increasing trend for all GS strategies (Figure 4).
A sharp increase was seen from the initial cycle to cycle two, followed by a gradual increase
in average F, indicating a huge loss in genetic diversity in the first breeding cycle. GS_GY
had a higher inbreeding coefficient than GS_OL. Compared with single-trait GS strategies,
GS_GY + OL and GS_GY + OL + Rel had lower inbreeding coefficients. GS_GY + OL + Rel
had lower inbreeding than GS_GY + OL did at cycle two; however, the difference between
the two multi-trait strategies was minimal after cycle two, which could indicate that the
small population size makes inbreeding inevitable to a great extent.
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4. Discussion

GS is a modern breeding tool used in plant breeding programs for germplasm improve-
ment and variety development. The recurrent GS scheme can lead to a rapid increase in the
frequency of favorable alleles in the breeding system to improve the germplasm and create
new variations. Simulation of the recurrent GS scheme before practical implementation
would allow the comparison of different GS strategies and facilitate optimization of the
breeding program.

4.1. Genetic Gain and Inbreeding at the Early Cycle

Genetic gain is used to measure genetic improvement or genetic progress in breeding
programs, and breeders are expected to keep long-term genetic gains within breeding pro-
grams to meet increasing demands. Factors affecting genetic gain include genetic variation
within the breeding germplasm, selection intensity, accuracy of genetic predictions, and
length of the breeding cycle [35]. In our study, we observed a sharp increase in genetic
gains in the first GS selection cycle with all GS methods, which indicated that GS selection
was effective, especially at the early breeding stage. This was in line with another recurrent
selection simulation study, which demonstrated that GBLUP-based GS showed greater
genetic gains than PS under the additive model, particularly in early selection cycles [36].
In a sorghum GS simulation study, a 12–88% gain advantage for traits controlled by major
genes and a 26–165% gain increase for polygenic traits in the first few breeding cycles
compared to conventional breeding methods were indicated [37].

The large standard deviation of the mean GEBVs in the first cycle indicated large
genetic variation in the initial crossing parents, which could be the reason for the higher
gain at the first cycle. The sharply dropped variation at cycle two, especially for single-trait
GS strategies could be due to the selection of closely related individuals who carry QTL
underlying GY and OL, as reported in a previous GWAS [38]. This assumption that the
selected individuals were closely related was confirmed by the large increase in the average
inbreeding coefficients calculated from the diagonal GRM after the first cycle. Hence, the
genetic gain is achieved by reducing genetic variation within the selected population which
makes continuous high genetic gain across cycles challenging [39]. Simultaneous selection
for GY and OL in the GS_GY + OL strategy also showed the same trend that it had higher
gain in the first cycle than GS_GY + OL + Rel did, but the gains and inbreeding coefficient
after five cycles were quite close for the two methods. This indicated that controlling
inbreeding in GS schemes to maintain long-term genetic gain is essential. Restricting
parents’ level of co-ancestry to maximize ∆G by using GRM could effectively reduce
average progeny inbreeding [40,41]. Our study confirmed that parental selection combined
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with mate allocation effectively reduced the inbreeding. Furthermore, the cost of reduced
genetic gain while controlling for inbreeding in the first cycle could be compensated for by
higher gain in subsequent breeding cycles [42].

4.2. Multi-Trait Genomic Selection

As a potential oil seed crop, safflower GY and OL are two major breeding targets in
breeding programs [43,44]. Without the availability of economic values for these traits, we
gave them equal economic importance in our simulation. The genetic correlation between
the two, GY and OL, ranged from negative to low positive in different environments [31].
We considered a low positive genetic correlation of 0.19 between GY and OL, which resulted
in a small favorable correlated response in the single-trait GS methods although negative
correlations imply an unfavorable response in one trait when selecting for another trait.
Compared to the expected gains based on the progenies resulting from the crossing of two
independent culling breeding schemes, GS_GY and GS_OL, referred to as the reciprocal
recurrent GS [45], the GS index GS_GY + OL method revealed higher gains for GY (1.782)
and OL (2.243) than 1.564 for GY ((2.609 + 0.519)/2) and 1.401 for OL ((0.025 + 2.777)/2).
Hence, we confirmed that index selection for multiple-trait selection was more efficient
than independent culling [46]. Additionally, with mate allocation and parental selection
(GS_GY + OL + Rel), multi-trait GS with indices could maintain a low inbreeding while
achieving long-term genetic gain. This finding is consistent with a wheat grain yield and
heat stress tolerance (HST) breeding study, which revealed that GS index selection with
mating constraints resulted in long-term genetic gains in grain yield with adaptable HST
whereas truncation selection caused a rapid loss in genetic diversity and a decrease in long-
term genetic gains [47]. Our results demonstrated that aggregating favorable high-fatty-acid
and high-yield alleles via the GS index method will potentially be the optimum strategy to
develop new varieties which have both a high yield and a high oil content. However, index
selection is less flexible for selecting certain primary traits while keeping other traits within
a desirable range [48]. In safflower, breeding schemes which can maintain high genetic
gain for yield but with increasing gain for the oil component need further study.

4.3. Optimization of the Breeding Program

When GS and PS are applied to the same breeding population, GS can achieve higher
genetic gains by increasing selection accuracy in selection candidates and shortening the
breeding interval. In the recurrent selection schemes, selection conducted in F4 is aimed
at increasing the favorite allele frequencies to maximize homozygosity in the inbred lines,
which could be used as parents in the next breeding cycle. However, with GS, selection
could be conducted at the F1 generation to choose the best cross instead of the best lines [49].
Our simulation study showed that shortening recurrent GS breeding intervals could be
achieved by applying early generation selection. Gaynor et al. compared a rapid recurrent
selection scheme in which selection occurred at the F1 stage for population improvement
via two-part breeding strategies and reported that 1.31 and 1.46 times greater genetic gains
were achieved than under the standard GS recurrent selection [50]. In a lentil simulation
study, GS selection was suggested for F2 instead of F4 to shorten cycle time, which could
further increase genetic gains [51]. Furthermore, the greater gain achieved at the early
breeding cycles in the recurrent scheme in our study indicated that shortening the cycle time
could also be used to optimize the breeding program. Corjanc et al. [52] studied the impact
of cycle numbers in a recurrent scheme on genetic gain and found that four cycles per year
could achieve 15% higher long-term gains than truncation selection. A shortened cycle time
combined with the shortest line fixation time was suggested to expedite the rapid recycling
of parents in the breeding program through recurrent selection to enhance and accelerate
the genetic improvement rate in developing irrigated rice [53]. Hence, to optimize the
safflower breeding program, shorter recurrent GS breeding intervals could be achieved
by applying early generation selection and fewer breeding cycles. In addition, shortening
breeding intervals will dramatically improve the cost effectiveness of the breeding program,
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thus mitigating the challenges of limited resources and funding faced by safflower or other
orphan crop breeding.

5. Conclusions

Safflower is an “orphan” crop and applying GS in its breeding program could help to
fast-track the genetic diversity preserved in the genebank collection to facilitate rapid and
efficient germplasm improvement and variety development. Using computer simulation
to compare different GS strategies to optimize breeding programs, we found that a GS
strategy with inbreeding control and simultaneous selection for GY and OL could achieve
long-term genetic gains for both traits while decreasing the loss in genetic diversity in
safflower. Early generation selection and shortened breeding cycles could further enhance
genetic gains and maintain genetic diversity within breeding programs.
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