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Abstract: Pepper is a high-economic-value agricultural crop that faces diverse disease challenges
such as blight and anthracnose. These diseases not only reduce the yield of pepper but, in severe
cases, can also cause significant economic losses and threaten food security. The timely and accurate
identification of pepper diseases is crucial. Image recognition technology plays a key role in this
aspect by automating and efficiently identifying pepper diseases, helping agricultural workers to
adopt and implement effective control strategies, alleviating the impact of diseases, and being of great
importance for improving agricultural production efficiency and promoting sustainable agricultural
development. In response to issues such as edge-blurring and the extraction of minute features in
pepper disease image recognition, as well as the difficulty in determining the optimal learning rate
during the training process of traditional pepper disease identification networks, a new pepper disease
recognition model based on the TPSAO-AMWNet is proposed. First, an Adaptive Residual Pyramid
Convolution (ARPC) structure combined with a Squeeze-and-Excitation (SE) module is proposed to
solve the problem of edge-blurring by utilizing adaptivity and channel attention; secondly, to address
the issue of micro-feature extraction, Minor Triplet Disease Focus Attention (MTDFA) is proposed to
enhance the capture of local details of pepper leaf disease features while maintaining attention to
global features, reducing interference from irrelevant regions; then, a mixed loss function combining
Weighted Focal Loss and L2 regularization (WfrLoss) is introduced to refine the learning strategy
during dataset processing, enhancing the model’s performance and generalization capabilities while
preventing overfitting. Subsequently, to tackle the challenge of determining the optimal learning
rate, the tent particle snow ablation optimizer (TPSAO) is developed to accurately identify the most
effective learning rate. The TPSAO-AMWNet model, trained on our custom datasets, is evaluated
against other existing methods. The model attains an average accuracy of 93.52% and an F1 score
of 93.15%, demonstrating robust effectiveness and practicality in classifying pepper diseases. These
results also offer valuable insights for disease detection in various other crops.

Keywords: pepper disease identification; TPSAO-AMWNet; ARPC; MTDFA; WfrLoss; TPSAO

1. Introduction

Since the start of the 21st century, the global cultivation area and yield of pepper have
continued to grow, with China becoming one of the world’s largest pepper-producing
countries. As an indispensable crop, pepper is not only widely used in daily life but
also closely related to human health [1,2]. With the increasing global demand for pepper
production and quality, pepper diseases (such as anthracnose, blight, bacterial spot disease,
and viral disease) have become one of the main factors restricting their yield and quality [3].
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In the past, a number of pepper diseases have caused severe economic losses, such as the
pepper mild mottle virus (PMMoV), which can cause yield losses of up to 40% of peppers,
and may lead to yield losses of up to 90% when the disease incidence is as high as 100%
in places such as the state of Himachal Pradesh, India; pepper blight, which is caused by
pathogens that are capable of destroying an entire pepper crop, especially occurring in East
Asia, causing severe economic losses [4]; and chili brown spot, a serious disease caused by
a fungus that is capable of causing severe losses of an entire chili crop, especially in East
Asia, leading to high economic losses [5]. Pepper leaf diseases often directly reflect early
growth problems in crops; therefore, the accurate and rapid identification of these diseases
is crucial for detecting growth problems in time and taking accurate control measures.
Traditional disease identification methods mainly rely on manual observation, which has
the problems of a low accuracy of identification and low efficiency and is also susceptible
to subjective factors [6]. To cope with the limitations of traditional disease identification
methods, researchers have explored various techniques to improve the accuracy and
efficiency of pepper disease diagnosis. Early studies mostly relied on feature engineering
and machine learning algorithms, such as the use of digital image processing techniques
based on color, shape, and texture features combined with traditional classifiers such as
support vector machines (SVMs) for disease classification [7]. In recent years, research has
shifted to the use of image processing and artificial intelligence techniques for the rapid
and accurate diagnosis of pepper diseases. This is essential for the timely detection and
effective treatment of plant health problems.

With the significant improvement of computing technology and data processing capa-
bilities, traditional machine learning methods such as KNN [8], Random Forest (RF) [9],
and Artificial Neural Networks (ANNs) [10] have been widely used in the field of crop
disease recognition. Despite some success, these methods still have limitations, such as
the inability to process large amounts of data and a lack of generalization capabilities. In
recent years, with the rapid development of computer vision and artificial intelligence, deep
learning has emerged as a crucial tool for the rapid diagnosis of agricultural diseases [11,12].
Traditional artificial feature extraction methods have problems of insufficient representa-
tions and incompleteness. Through the ability of automatic learning features, deep learning
networks have achieved remarkable results in crop disease image classification, greatly
improving the accuracy and efficiency of disease recognition, especially convolutional
neural networks (CNNs) to automate disease detection [13]. Through deep learning net-
works, we can train models to automatically extract and learn features. Compared to
traditional manual feature extraction methods, deep learning is capable of capturing a
wider range of information in images and acquiring more distinguishable feature represen-
tations. This greatly improves the accuracy and efficiency of disease diagnosis. In addition,
AI technology enables automated disease detection and diagnosis through high-precision
image recognition, which has been reported to have an accuracy rate of more than 95%,
which is significantly better than that of traditional manual visual assessment methods. AI
technology can also predict the risk of disease outbreaks and real-time monitoring, among
other things, which demonstrates the potential of AI to enhance the process of disease
prevention and precision management decision-making [14]. The amount of crop disease
image data is huge, and cannot be processed effectively by traditional methods. With
parallel computing capabilities, deep learning models can quickly process a large number
of image samples, thus accelerating the process of disease recognition. By learning from
large-scale data, deep learning networks can better understand the differences between
different diseases and accurately classify them. Meanwhile, AI technology is becoming
a key tool for enhancing plant ecological health management. For example, Dai M et al.
proposed an enhanced lightweight model based on the GoogLeNet architecture, the cross-
validation results showed that the accuracy of the model is 97.87%, but this model only
greatly improves its calculation accuracy and performance. Although their model has
fewer parameters and a higher efficiency, it is not targeted. There are some shortcomings
in its recognition under relatively complex backgrounds [1]; Bhagat, M et al. proposed
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a method for the disease detection of pepper that combined Local Binary Pattern (LBP)
characteristics with visual geometry group network (VGG-16) characteristics and applied
only to bacterial spot disease. However, there are still some deficiencies in the recognition of
pepper bacterial spot disease with the characteristics of minor diseases [15]; KNuanmeesri,
S et al. established a pepper disease diagnosis model by applying filter and wrapper feature
selection methods and Multi-layer Perceptron Neural networks (MLPNNs). After selecting
key features, the diagnostic model was established by using the selected datasets and
applied to MLPNNs. Through cross-validation, the accuracy, precision, and recall of the
model reached 98.93%, 98.92%, and 98.89%, respectively. However, the key features of the
disease may not be selected by filtering and packaging feature selection methods, so there
may be a certain risk of overfitting the model [16]; the methods of Chen, W et al. were
conducive to processing pepper images in an HSV color space, enabling a convolutional
neural network (CNN) to extract additional features. Compared with the RGB color space,
this method improved its accuracy and other indicators, and it was more suitable for
diseases with prominent color features, such as viral diseases, but for diseases that do
not pay attention to color space, it has certain limitations [17]; Sharma, R et al. proposed
the detection of Pepper Leaf Blight Disease (PLBD) in pepper leaves based on the faster
region-based convolutional neural network, R-CNN, and a multi-classification method to
evaluate the model’s performance, the detection accuracy and multi-classification accuracy
were 99.39% and 98.38%, respectively, and the computational efficiency of the model was
evaluated. The average inference time of each image was 0.23 s, which was suitable for de-
ployment in high-throughput disease detection applications [18]; Shreyas, K et al. used the
Laplacian channel and unsharp covering method to process the image and used the Canny
edge method to segment the image, aiming to realize the identification of early diseases
and improve the agricultural output. This precise consideration of its local characteristics
is beneficial, because it may be the key feature. Thus, the combination of local and global
features makes its classification more accurate [19].

The above studies provide valuable insights into the agricultural identification of pep-
per diseases. However, there are still three major challenges in pepper disease identification
and classification:

(a) Blurred edge: Pepper leaf images often have the problem of blurred edge details,
which may be caused by a variety of factors such as lighting and image resolution.
Training directly with these images significantly reduces the ability of the network to
extract its disease features, resulting in a decrease in the accuracy of the detection, as
illustrated in Figure 1a.

(b) Characteristics of minor diseases: Minor spots or patches appear on pepper leaves,
which are often relatively minor and easy to ignore, resulting in the loss of minor but
critical feature information, resulting in the model ignoring those regions of disease,
so it is challenging to accurately classify them, as illustrated in Figure 1b.

(c) Get the best learning rate: Optimizing the learning rate of convolutional neural
networks is a challenging task, as the process is not only time and effort-consuming
but also often difficult to ensure the accuracy of the results. This can cause the model
to fail to reach its best performance.

To solve the problem of blurred image edges, the accuracy of image recognition is
improved; Chen, X et al. [20] used binary wavelet transform combined with Retinex (BWTR)
to de-noise and enhance images, remove noise points and edge points, and retain impor-
tant texture information. Then, the Both-channel Residual Attention Network model (B-
ARNet) was used to identify the image, and the overall detection accuracy was about 89%.
Zhang, Y et al. [21] used the Asymptotic Non-local Means algorithm (ANLM) to reduce
image noise interference and reduce the difficulty of tomato leaf disease feature extrac-
tion in the recognition network. Then, a Multi-channel Automatic Orientation Recurrent
Attention Network (M-AORANet) was proposed to extract rich disease features, extract
multi-scale fine features, and recycle them, and its recognition accuracy reached 96.47%.
Begum, S et al. [22] improved the contrast-limited adaptive histogram equalization (ICLAHE)
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technique to enhance image quality, and then used kernelized gravity-based density clus-
tering (KGDC) to segment the lesion area. Finally, gated self-attention convolutional
MobileNetV3 (GSAtt-CMNetV3) was used for feature extraction and classification, and the
recognition accuracy reached 97.87%. Yang, M et al. [23] extended the task set through a
data augmentation module to enhance the robustness to noise and perspective changes
and then mapped the samples to an embedding space with strong intra-class similarity
and inter-class divergence, constructed a multi-layer graph attention network (GAT), and
updated according to a new hybrid loss to obtain the classification results, and a higher
accuracy than that of the typical FSL method was obtained. Yang, W et al. [24] proposed a
DEGREE network, which enhanced the edge retention capability of the super-resolution
reconstruction process, in the recurrent recovery process, and LR images and their edge
mapping could collectively be used to infer the sharp edge details of HR images.

Figure 1. Challenges encountered. (a) Refers to the edge-blurring challenge; (b) Refers to the challenge
of tiny feature recognition.

To solve the problem of the loss of key feature information with minor disease fea-
tures, Zuo, X et al. [25] explored the modeling of semantic relations by pixel-level spatial
self-attention and then used block-level channel self-attention to enhance the feature dis-
crimination ability of different crop varieties. Finally, a spatial reasoning module was used
to conduct the sequential modeling of spatial geometric relations of image patches. The
classification accuracies of the three datasets were 88.32%, 89.95%, and 89.75%, respectively.
Luo, W et al. [26] learned fine-grained features by enhancing the sub-feature semantics of
global features, arranged the feature channels of a CNN into different groups to achieve
sub-feature semantics and enhance the distinguishability of sub-features, and guided
the groups to be activated at highly distinguishable target locations by using weighted
combination regularization. Du, R et al. [27] adopted a progressive training strategy to ef-
fectively integrate features of different granularities and select consistent block convolution
to encourage the network to learn features of the same category at a specific granularity.
Liu, H et al. [28] proposed the hierarchical stage feature aggregation (HSFA) module and
the feature abstraction (FFA) module, which were used to cascade multi-layer features to
aggregate the multi-scale information of bird images and extract invariant clues of birds
based on feature selection based on the differentiation score, respectively. The recognition
accuracy rates on the two datasets were 91.0% and 90.9%, respectively. Yang, G et al. [29]
proposed an attention mechanism that effectively utilized image information regions, and
used transfer learning to rapidly construct multiple fine-grained image classification models
for crop diseases, achieving good classification results with F1 values as high as 93.05%.

Addressing the challenge of identifying the optimal learning rate, Loizou, N et al. [30]
introduced a stochastic Polyak step-size (SPS) for setting the learning rate in stochastic
gradient descent (SGD), aiming to achieve a swiftly converging adaptive learning rate.
Meanwhile, Melinte, D et al. [31] implemented a periodic learning rate strategy, enabling the
learning rate to fluctuate within predefined upper and lower bounds. This technique allows
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for improved classification accuracy in training without the need for further adjustments.
Golovko, V et al. [32] incorporated the ReLU activation function utilized within the neural
network model to calculate an adaptive learning rate. This approach was specifically
designed to autonomously determine the optimal step size for reducing the objective
function of the neural network.

Recent research shows that deep-learning techniques have made significant progress
in pepper disease identification. Nonetheless, several challenges remain, especially in
dealing with fuzzy edges, subtle disease features, and enhancing model generalization to
avoid overfitting. In view of this, we propose a new method: a TPSAO-AMWNet model
based on enhanced ResNeXt-50 to identify pepper diseases. The contributions of this paper
are outlined as follows:

1. An AMWNet method is proposed to effectively address the issues of edge ambiguity
and minor disease characteristics:

(a) This paper proposes an Adaptive Residual Pyramid Convolution (ARPC) struc-
ture, which solves the problem of fixed scale limitation and insufficient feature
transfer in traditional pyramid convolution by combining residual connection
and adaptability; the Squeeze-and-Excitation (SE) module is also used to high-
light pepper disease feature image areas in order to more accurately highlight
the edges of pepper disease.

(b) This paper proposes Minor Triplet Disease Focus Attention (MTDFA), by
combining two-space and two-channel processing, it effectively balances the
extraction of global and local features, and solves the limitation of traditional
attention mechanisms in capturing features of minor diseases; this method
strengthens the local detail capture of pepper leaf disease characteristics, while
maintaining the attention to global characteristics, enhancing the feature ex-
pression, and reducing the interference of unrelated regions, thus improving
the accuracy and robustness of pepper disease classification.

(c) In this paper, we propose a hybrid loss function combining Weighted Focal Loss
and L2 regularization (WfrLoss), which can be optimized for multiple targets at
the same time, aiming to balance the model’s fitting ability and generalization
potential. By adjusting αt weights, WfrLoss effectively deals with the class im-
balance and difficult-to-classify samples and reduces the risk of overfitting by
introducing L2 regularization. Adjusted β values balance the weights between
Weighted Focal Loss and L2 regularization terms to adjust model training strate-
gies. This method not only improves the performance of the model on training
data but also enhances the generalization ability of the model.

2. A tent particle snow ablation optimizer (TPSAO) algorithm is proposed. The algo-
rithm is initialized with tent chaotic mapping to generate more diverse and uniformly
distributed initial solutions. The algorithm combines the advantages of particle
swarm optimization (PSO) and the snow ablation algorithm (SAO). By integrating the
strengths of these two algorithms, the particles are able to strike a balance between lo-
cal and global optimal solutions, thereby significantly enhancing the search capability
and convergence speed of the algorithm. Upon the application of this algorithm, it
becomes possible to more accurately determine the optimal learning rate, effectively
addressing issues in the learning rate optimization process, and greatly improving
overall model training efficiency.

3. In this study, our proposed the TPSAO-AMWNet model accurately determines the
optimal learning rate using the TPSAO optimization algorithm and achieves an
average accuracy of 93.52% and an F1 score of 93.15% on homemade datasets. This
method is effective in recognizing pepper leaf disease images with blurred edges
and efficiently extracting and identifying micro-disease features. In addition, this
technique not only classifies pepper disease images quickly and accurately but also
provides valuable insight into the application of deep learning in precision agriculture
and field disease classification.
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2. Materials and Methods
2.1. Data Acquisition and Expansion

In order to optimize, debug, and evaluate the performance of pepper disease image
recognition and classification algorithms, it is necessary to provide appropriate datasets. To
solve this problem, we collect data, mainly from the public data of the Pepper Disease and
insect pest Image Recognition Challenge on the Kaggle platform (https://www.kaggle.com
(accessed on 14 January 2024)) and public data PlantVillage sets (https://aistudio.baidu.
com/datasetdetail/224113 (accessed on 15 January 2024)), and we screen their images,
obtaining a total of 1876 images from PlantVillage and 2334 images from Kaggle to create
pepper disease datasets. The images in the public datasets have different dimensions,
including 1279 × 1706 pixels, 887 × 1920 pixels, 2736 × 3648 pixels, and 256 × 256 pixels.

To build adequate training datasets and avoid image duplication, we adopt a variety of
data augmentation techniques, including removing duplicate images, applying horizontal
and vertical flips, and random cropping, to improve the diversity of the gathered image
data. The datasets contain 6315 images with a training set to test set ratio of 8:2. Table 1
summarizes the number and proportion of pepper disease photos by category. The datasets
cover 5 types of pepper disease symptoms, including Anthracnose, Phytophthora blight,
Healthy, Bacterial spot, and Mosaic virus, as shown in Table 2, which reflects the appearance
and characteristics of pepper disease images. All are saved in a jpg format.

Table 1. Quantity and proportion of pepper leaf diseases.

Disease Category Number
(Before) Expanded Number

(After)
Proportion/%

(After)

Anthracnose 912 384 1296 21%
Phytophthora blight 687 457 1144 18%

Healthy 944 380 1324 21%
Bacterial spot 976 347 1323 21%
Mosaic virus 691 537 1228 19%

Total 4210 2065 6315 100%

Table 2. Picture characteristics of pepper leaf diseases.

Disease Category Pepper Leaf Image

Anthracnose

Phytophthora blight

Healthy

https://www.kaggle.com
https://aistudio.baidu.com/datasetdetail/224113
https://aistudio.baidu.com/datasetdetail/224113
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Table 2. Cont.

Disease Category Pepper Leaf Image

Bacterial spot

Mosaic virus

In the training set’s data-processing stage, the given pepper leaf images are randomly
cut to different sizes and aspect ratios, then the cropped images are scaled to specified
dimensions, the given image is randomly rotated horizontally with a given probability
(default is 0.5) to further data enhancement, and finally the image is converted into a tensor
and normalized. In the validation set’s data-processing stage, the input pepper leaf image
is converted into an input feature map of 256 × 256 and then trimmed in the middle area
of the image to ensure the consistency and efficiency of data input. This procedure not only
enhances the model’s generalization capabilities but also lays solid groundwork for future
performance assessments.

2.2. TPSAO-AMWNet-Based Pepper Disease Recognition

In this study, we propose a novel TPSAO-AMWNet convolutional neural network
model based on ResNeXt-50, which aims to detect pepper diseases quickly and accurately
in natural environments. This model combines ARPC, MTDFA, and WfrLoss, and employs
the TPSAO optimization algorithm to fine-tune the learning rate, enhancing the training
outcomes. Through these improvements, the TPSAO-AMWNet improves the efficiency
of generalization and classification, ensures that the disease can be accurately identified
even in the presence of blurred edges or small disease features, and effectively avoids the
problem of overfitting.

The overall structure of the TPSAO-AMWNet model is illustrated in Figure 2. The
TPSAO-AMWNet model comprises a convolutional layer, ARPC, MTDFA, and multiple
bottleneck block modules. The first convolution layer of the model uses 7 × 7 convolution to
extract image features initially, and then uses ARPC for multi-scale and cross-level adaptive
feature extraction, and integrates SE, which helps to capture edge feature information and
solve edge-blurring problems. Then, MTDFA is used to strengthen the processing of input
feature map features. By applying the methods of an attention module, feature mapping,
and unfolding in multi-channel and multi-space, the model can deal with the extraction of
minor disease features, which can highlight the attention to a pepper disease with minor
disease feature areas, so the detection accuracy of the model is thereby improved. Follow-
ing that, there are four bottleneck blocks, which serve as the fundamental modules in the
TPSAO-AMWNet. Each bottleneck block consists of three convolutional layers, a corre-
sponding batch normalization layer, a ReLU activation function, and a residual connection.
The three convolutional layers process the input feature maps. The batch normalization
layer adjusts the mean of the data to 0 and the variance to 1, thus helping to stabilize the
training process. The ReLU activation function introduces nonlinear characteristics so that
the network can learn more complex feature representations. Finally, WfrLoss serves as the
loss function of the TPSAO-AMWNet and helps prevent overfitting while improving the
generalization ability of the model.
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Figure 2. A diagram of the structure of the TPSAO-AMWNet. (a) represents the backbone network;
(b) represents the APRC structure; (c) represents the MTDFA structure model; (d) represents the
components of the AttentionGate module; (e) represents the components of the Drsc convolution;
(f) shows the AMWNet model structure.

2.2.1. Adaptive Residual Pyramid Convolution (ARPC)

Convolution is a fundamental neural network operation that can filter the features
of the receptive field and extract the most prominent feature from this region [33]. In the
pepper disease image classification task, the convolution operation can extract various local
features of the image, such as the edge, texture, and color, which are crucial for disease clas-
sification [34]. However, images of pepper diseases are often characterized by multi-scale
features, and traditional single-scale convolution operations may not adequately capture
information at all scales. The advantage of pyramid convolution lies in the ability to per-
form convolution operations at different scales to generate feature maps with different
resolutions, so as to fully understand the image content. Therefore, opting for pyramid
convolution in the classification of pepper disease can effectively capture multi-multiscale
feature information and enhance the accuracy and robustness of the classification process.
Nonetheless, pyramid convolution also has some shortcomings: the first is the limitation of
its fixed scale, which may lead to the insufficient performance of the model in handling the
image features of different scales and complexities, especially in capturing edge and detail
information, and the second is its insufficient feature transmission, wherein the character-
istic information may gradually decay during the transmission process, resulting in the
model being unable to effectively use the shallow edge and detail information at a deeper
level. Therefore, to overcome these problems, an Adaptive Residual Pyramid Convolution
(ARPC) is proposed, and Figure 2b shows its structure. ARPC significantly improves the
performance and efficiency of the model in the task of pepper disease classification by
combining residual connection and adaptability; the introduction of residual connection
not only enhances feature transmission and extraction but also allows the network to
transmit feature information across layers, thus deepening the understanding of the image.
In addition, its adaptability enables the model to dynamically adjust the feature extraction
method according to different scales and complexities, reduces the requirements of manual
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parameter adjustment, helps to capture the details and edge information in the image, and
reduces edge blur. In ARPC, residual connectivity aids in capturing global features and
also allows for the integration and fusion of local features across various scales, thereby
boosting the ability to understand the overall structure and semantic content of the image.

We divide its input into four branches, each with a convolutional kernel of different
sizes for capturing information at different scales. First, feature information at different
scales is extracted by four convolutional kernels of different sizes, each of which is of size
3 × 3, 5 × 5, 7 × 7, and 9 × 9, so that local detail information, larger region information, and
the largest range of global information features can be captured. Each branch is composed
of a pyramid convolutional layer (PyConv) and a residual convolutional layer, where the
PyConv layer uses grouped convolution with different numbers of groups, 1, 4, 8, and 16,
respectively, for feature extraction at different scales. Then, an adaptive weight parameter
is introduced. After softmax normalization, the weight of each branch is automatically
adjusted according to the distribution of the data, as shown in Equation (1).

adaptive_weights = so f tmax(W) = [
eω1

∑4
i=1 eωi

,
eω2

∑4
i=1 eωi

,
eω3

∑4
i=1 eωi

,
eω4

∑4
i=1 eωi

] (1)

Next, the output features of each branch are adaptively multiplied and added with
the corresponding weights layer by layer to obtain the fused feature representation, and
then the output features of the output are obtained via residual connection with its residual
convolution layer, as shown in Equation (2).

output = [combined1, combined2, combined3, residual_conv(x)]
combined1 = ω1conv1(x) + ω2conv2(x) + ω3conv3(x) + ω4conv4(x)

combined2 = ω1conv2(x) + ω2conv3(x) + ω3conv4(x)
combined3 = ω1conv3(x) + ω2conv4(x)

(2)

where ωi refers to the adaptive weight vector, i ∈ 1, 2, 3, 4, which determines the importance
of each convolution branch, and softmax is able to convert each element of the vector to
non-negative values and the sum of the normalized elements to 1.

In addition, we introduce the SE module [35] to enhance the network’s attention to
key features, highlight the edge, and detail information of the image to improve the clarity
and contrast of the edges and reduce edge blur. The SE module consists of two main parts:
Squeeze and Excitation; in the Squeeze part, the feature map of each channel is compressed
into a scalar to capture the global information of each channel. In the Excitation section,
the feed-forward neural network is utilized to acquire the importance weights of each
channel and to subsequently apply these weights to the original feature map to improve the
attention given to important features; eventually, these weights are normalized to the range
of 0 to 1 by the Sigmoid function to ensure that they can be considered as valid attention
weights, as shown in Equation (3). Finally, the channels are compressed and reduced via
1 × 1 convolution to adjust the number of feature channels to 64 to ensure the consistency
of the output features.

SE(X) = σ(W2 · ReLU(W1 · AdaptiveAvgPool(X))) (3)

where X represents the feature graph of the adapted residual pyramid convolution output,
W1 and W2 represent the weight matrix of the two convolutional layers, respectively.

In summary, this model combines feature information at different scales and is repre-
sented by adaptive weights and SE to optimize feature fusion to improve model perfor-
mance. In Section 3.4.1 of this paper, we provide a detailed analysis of the experimental
evaluation of ARPC and the experimental data for module comparison.
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2.2.2. Minor Triplet Disease Focus Attention (MTDFA)

Some pepper leaves have characteristics of minor diseases, for which the traditional
model is less efficient, as this feature is more difficult to extract, so the ability to more
accurately identify and extract these subtle features is crucial for pepper disease iden-
tification. The attention mechanism, inspired by human visual processes, is central to
more accurately extracting specific features in neural networks using a series of attention-
weight assignment coefficients [36]. Attention mechanisms have been widely integrated
into a variety of neural network architectures, including graph convolutional neural net-
works (GCNs) [37], generative adversarial networks (GANs) [38], and convolutional neural
networks (CNNs) [39].

With the continuous update and iteration of the attention mechanism, the traditional
attention mechanism faces certain limitations. These conventional mechanisms usually
focus on the entire feature map or larger regions, thus ignoring some important details,
especially when performing poorly when dealing with minor disease features. To overcome
these limitations, we propose a novel attention module, the MTDFA module. This module
has significant advantages in handling minor features, diversified features, and balancing
global and local features. It can not only effectively extract minor disease features, but also
has high adaptability and robustness; its structure diagram is shown in Figure 2c.

MTDFA is composed of deep residual separable convolution (Drsc), AttentionGate,
MinorAttention, S-Pool layer, and the softmax function, among others. Through the syn-
ergistic action of these components, the modules can improve the feature expression of
disease images, helping the model to obtain more accurate and comprehensive disease
feature information, while reducing the interference of unrelated regions. Specifically,
Drsc enhances feature representation reduces information loss, and reduces computational
complexity; the S-Pool layer combines max pooling and soft pooling to extract richer feature
information and enhance the ability of the model to capture features of different scales.
With the AttentionGate module, by applying attention weights, the important features
are highlighted and the unimportant information is suppressed to improve the model’s
attention to disease features. The MinorAttention module captures the locally important
features in the input feature map through the steps of feature mapping, expansion, atten-
tion map generation, weighted feature aggregation, reconstruction, and output projection,
which strengthens the spatial perception ability and local detail capture of pepper leaf
disease features of the model, thereby improving the accuracy and robustness of pepper
disease classification. The softmax function ensures that the input and output are smooth
and continuous, thus improving the classification performance of the model.

MTDFA is considered from the channel and space perspective, in terms of the channel,
focusing on the Channel–Width direction (CW) and the Height–Channel direction (HC) of
the input feature map, respectively; by applying the AttentionGate module on the channel
dimension, models are able to more effectively discriminate between important features in
different channels, and thus, to better capture the disease-associated features. This focus on
the channel helps the model when processing images with complex channel correlations,
such as the pepper leaves under different disease states, improving its recognition ability.
In terms of space, by applying the AttentionGate module on the HW, the model can more
effectively focus on the disease-related spatial area in the image; applying the MinorAtten-
tion on a local window captures the local spatial information in the input feature graph,
and this local attention helps the model focus on minor areas of the image associated with
the disease; it combines the attention output from the channel and space, taking advantage
of attentional mechanisms in different directions. Through this fusion, the model enables
a more comprehensive understanding of the input feature graph, considering both inter-
channel relationships and focusing on spatial details, thus improving the identification and
classification performance of the model for pepper diseases.
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The input feature size of MTDFA is 112 × 112 × 64 (input tensor, x ∈ RB×H×W×C).
Then, dual channel and dual space are used to process the input feature map to focus on the
regions associated with the disease; specifically, dual channel refers to the direction of the
input feature through two different channels, CW and HC. Before applying AttentionGate,
the input feature map is first permuted to adapt to the different attention directions.

In the CW direction, the input feature graph is first permuted from (B, C, H, W) to
(B, H, W, C), focusing on the features of the channel and width direction, and is then passed
into the respective AttentionGate for processing the output as shown in Equation (4).

XCW = AttentionGate(xperm1) (4)

In the HC direction, the input feature graph is permuted from (B, C, H, W) to (B, W,
H, C) to focus on the features of height and channel direction, and the displaced feature
graph is then passed to the respective AttentionGate for processing the output as shown in
Equation (5).

XHC = AttentionGate(xperm2) (5)

where xperm1 and xperm2 represent the permutation transformation of x in different dimensions.
In the AttentionGate module, the input feature graph is first compressed by the S-Pool

layer, which combines maximum pooling and soft-weighted pooling to capture key features
and retain certain spatial information, as shown in Equation (6); then, the compressed
feature map uses Drsc to further extract the compression features, as shown in Equation
(7), and at the same time, to keep the computational efficiency. Then, again, it uses Drsc to
process the compressed features and generate the attention weight but does not use the
activation function, to maintain the linear characteristics of the attention weight. Finally,
the generated attention weights are normalized by the softmax function to ensure that the
weight and 1, the normalized attention weights with the original input features and the
weighted input feature diagram, allow the network to concentrate on the task-relevant
critical areas. This process makes the AttentionGate module able to effectively focus on the
input features, highlight the important features related to the task, the generate the overall
output expression as shown in Equation (8).

S-Pool = Concat(max(x), ∑
i∈R

eai

∑j∈R eaj
∗ ai) (6)

where max represents the maximum pooling, with ∑ representing the soft pooling.
Deep residual separable convolution (Drsc):

Drsc = Convpoint(Convdepth(x)) + Shortcut(x) (7)

Shortcut represents a shortcut connection, used to match the dimensions, which is a
convolution and BN normalization composition.

AttentionGate:

AttentionGate = x ⊙ so f tmax(Drsc(S-pool(x))) (8)

where ⊙ means the element-by-element multiplication.
Specifically, dual-space processing refers to applying the AttentionGate module in the

Height–Width (HW) direction of the input feature map to concentrate on the global spatial
details, and implementing the MinorAttention module on the local window of the input
feature map to gather intricate local features. The expression of the AttentionGate module
applied in the HW direction is shown in Equation (9).

XHW = AttentionGate(x) (9)

In the MinorAttention module, the input feature graph x is the first feature mapping
through a linear layer v_pj, through the permute operation to generate a new feature
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representation v(v ∈ RB×W×H×C), that improves the expression ability of the feature,
whose expression is as shown in Equation (10); then, the Unfold operation is used to expand
the features of v, to obtain a feature representation of the local region, with a local window
size of 3 × 3, which is equivalent to a local window scan on the feature map to capture the
local features.

VUn f old = Un f old(v_pj(x)), Vun f old ∈ RB×num_heads×(h×w)×(kernel_size2)×head_dim (10)

where Unfold represents the operation to expand the feature map v into local region features,
H and W are the height and width of the feature map after the Unfold operation, num_heads
is the number of attention heads and is 4, head_dim is the dimension of each attention head,
and kernel_size×kernel_size is the size of the local window.

Next, the pooling operation of the input feature graph x is performed to reduce the spa-
tial dimension, and the Attention map is generated by mapping the pooled features through
the linear layer attn. As shown in Equation (11), its size is RB×num_heads×(h×w)×(kernel_size2) ×
(kernel_size2), where kernel_size×kernel_size is the local window size. Then, the Attention
map is scaled and softmax is operated to obtain normalized attention weights, whose
expressions are shown in Equation (12). These weights are weighted to aggregate local
information on local features v, highlighting important features and suppressing unim-
portant features. Finally, the Fold operation is utilized to reconstruct the original spatial
dimensions. The final output feature expression is obtained through the linear layer proj on
the reconstructed features, and random discarding using Dropout is employed to enhance
generalization ability. This process enables the MinorAttention module to effectively cap-
ture and focus on the locally important features of the input feature map, improving the
performance of the model in processing visual tasks.

Attention map = attn(Pool(x)) (11)

Attention map = so f tmax(scale × Attention map) (12)

Y = proj(Flod(Attention map ⊗ VUn f old)), Y ∈ RB×C×H×W (13)

where Fold represents the operation of recombining the weighted local regional features
into a feature graph, ⊗ represents the weighted aggregation, x ∈ RB×H×W×C, the scale is a
scaling factor, softmax is used to normalize the weights, and proj represents the final feature
mapping performed through a linear layer.

Finally, the attention output from the channel and space is fused to utilize the advan-
tages of attention mechanisms in different directions. Specifically, the module first uses
three AttentionGates (focusing on Channel–Width, Height–Channel, and Height–Width
direction, respectively) and one MinorAttention (focusing on features in the local window)
to process the input feature map, so as to obtain four groups of attention-weighted feature
maps. Then, the feature maps from CW and HC are fused to obtain x_fusion1, whose
expression is shown in Equation (14); at the same time, the feature maps from HW and
MinorAttention are fused to obtain x_fusion2, whose expression is shown in Equation
(15). Following this, x_fusion1 and x_fusion2 cascade and form a comprehensive feature
representation called x_fused, considered to be different from spatial direction and local
window attention, then x_fused, feature fusion, and dimension reduction by convolution
to get the final output features. The feature can be used for pepper disease classification
and subsequent tasks, with its expression shown in Equation (16). Through this process of
fusion and cascading, the MTDFA can provide a rich and discriminative feature representa-
tion, considering both the relationship between channels and focusing on the local detail
features in space, to balance global and local features and further improve the identification
and classification performance of the model for pepper diseases.
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X f usion1 = 0.5 × (Xcw + Xhc) (14)

X f usion2 = 0.5 × (Xhw + Y) (15)

y = Conv(Concat(X f usion1, X f usion2)) (16)

where Concat represents the characteristic cascade, and Conv represents the convolution
operation.

In the above process, using AttentionGate and MinorAttention, the model considers
both the relationship between channels and the spatial features, which pays special attention
to the extraction of minor features of pepper diseases; this makes the feature extraction
of minor disease images more accurate and improves the detection and identification
accuracy of the model. In Section 3.4.2 of this paper, we provide a detailed analysis of the
experimental evaluation of MTDFA and experimental data for its module comparison.

2.2.3. Weighted Focal and L2-Regularized Mixed Loss Function (WfrLoss)

In the field of deep learning, the loss function plays a crucial role in quantifying the
disparity between the model’s predicted outcomes and the actual labels. As a result, it
guides the adjustment of network parameters and facilitates optimization [40]. Particularly
in image classification tasks, the loss function is vital as it determines how well the model
conforms to the training data and represents a primary goal in optimizing the model [41].
Therefore, the loss function is an integral component in the training process of neural
network models. According to its experimental data characteristics and experimental tasks,
Weighted Focal Loss (WFL) is selected, which can handle the category imbalance and the
difficult-to-classify sample [42] well. We designed a mixed loss function composed of
Weighted Focal Loss and L2 regularization, simply called WfrLoss. Relative to conventional
loss functions, WfrLoss boosts the model’s learning efficiency with datasets by including L2
regularization. This method effectively moderates the balance between the model’s fitting
prowess and its generalization skills by adjusting its weight parameters, thereby reducing
overfitting and enhancing its effectiveness on new data. Moreover, precise adjustments to
the weight of the L2 regularization term refine the model’s learning approach for superior
performance. Adjusting the weight β balance to the combination of the Weighted Focal
Loss and the L2 regularization allows for the adjustment and control of the model training
tactics based on complexity. Finally, the Weighted Focal Loss and the L2 regularization term
loss are combined to obtain the overall loss value, as shown in Equation (19). This approach
successfully enhances the model’s generalization capacity by balancing prediction accuracy
with model complexity, thereby efficiently preventing the issue of overfitting.

WFL(pt) = −αt(1 − pt)
γ log(pt) (17)

L2 = β ∗ ∥Inputs∥_2 (18)

Loss = LossWFL(pt) + L2 (19)

pt represents the probability that the model predicts that the sample belongs to the
true class. αt is a weight term used to adjust the importance of difficult and easy samples.
γ is an adjustable parameter used to adjust the loss scaling of hard and easy samples. Since
it is a multiclass classification task, t denotes the category.

As shown in Equation (19), the WfrLoss consists of the Weighted Focal Loss and L2
regularization functions. The Weighted Focal Loss is a commonly used loss function for
classification problems. It is utilized to quantify the discrepancy between predicted values
and actual labels, effectively addressing issues such as class imbalance and difficult-to-
classify samples. Therefore, we introduce the weight αt of each category according to the
data characteristics. In this experiment, we set the following according to the proportion
of the category data: the weight of 20% is set to 1, the weight of 18% is set to 1.3, and the
weight of 19% is set to 1.2. Such settings can better handle class imbalance and difficult-
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to-classify samples. The γ is the loss scaling for the difficult adjustment sample, which
is set to 2. If the γ is 0, the loss function represents the cross-entropy loss function. L2
regularization helps alleviate the overfitting problem of the model and prevents it from
overfitting the training data. By limiting the size of the model parameters, L2 regularization
reduces model complexity and thus improves its generalization ability. In WfrLoss, L2
regularization is used to impose constraints on the norm of the model input via the β that
regulates the degree of regularization.

WfrLoss, more suitable for classification and identification tasks than for dealing
with category imbalance and difficult-to-classify samples, can optimize multiple targets
simultaneously. Section 3.4.3 of this paper specifically analyzes WfrLoss to further verify
its superiority in the multi-task scenario.

2.2.4. Tent Particle Snow Ablation Optimizer (TPSAO)

In general, determining the appropriate learning rate can improve the convergence
speed of the model and improve its precision and ability to generalize. The traditional
practice usually involves manually tuning parameters and conducting multiple training
sessions to find the best learning rate, which is time-consuming and may lack precision. To
address these challenges, optimization algorithms are introduced to automatically identify
the most suitable learning rate, thereby avoiding tedious manual trials and adjustments.
This automated technique significantly reduces both time and labor while also decreasing
the chances of errors associated with the manual adjustment of parameters.

In 2023, the snow ablation optimizer (SAO) was proposed as an innovative intelligent
optimization algorithm, inspired by the sublimation and melting process of snow. During
melting, snow could be converted into liquid water, and by sublimation, snow was con-
verted directly into steam [43]. In addition, liquid water could also be converted into steam
through evaporation; these two physical processes, melting and sublimation, give the SAO
a strong optimization ability, fast convergence rate, and high accuracy. Meanwhile, the SAO
overcomes problems such as group diversity and convergence non-equilibrium. However,
although the SAO performs well in the search for local optimal solutions, there are defi-
ciencies in finding globally optimal locations. The problem of its being easy to fall into the
local optimal solution may affect the effectiveness of the model’s training. To address this
problem, we propose a combinatorial approach for the particle snow ablation optimizer
(PSAO). Meanwhile, we note that the SAO adopts the traditional random initialization
method in the initialization stage, which may lead to an uneven distribution of the initial
solutions, limiting the extensive exploration of the algorithm in the search space. Therefore,
we introduce the tent chaotic mapping as an improvement measure for the initialization
phase. The tent chaotic map generates more diverse and uniformly distributed initial
solutions that aid the algorithm in a more extensive search. The unpredictability and er-
godic properties of the chaotic maps effectively prevent the algorithm from falling into the
local optimal solution in the early stage and improve its global search capability [44]. This
approach not only enhances the robustness of the algorithm but also improves its ability
to tackle complex multi-spike problems. It addresses the issue that traditional random
initialization methods may lead to inefficient search and limited exploration capabilities.
In conclusion, we propose an innovative intelligent optimization algorithm for the tent
particle snow ablation optimizer (TPSAO), the problem of the local optimal solution, and
the uneven distribution of the initial solution.

Like the SAO, the TPSAO also uses mathematical modeling to simulate two physical
processes that achieve its academic ablation—melting and sublimation. This includes
random initialization, exploration, development, and the two-population mechanism.
However, unlike the SAO, the TPSAO first improves in the random initialization stage
to the tent chaotic map initialization stage, so as to generate a more diverse and evenly
distributed initial solution; in addition, PSO technology is adopted in the position update
strategy in the development stage to enhance the global search ability of the algorithm,
thereby reducing the likelihood of the situation of falling into the local optimum and
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ensuring the effective retrieval of the global optimum. The position update in the TPSAO
algorithm can be explained by Equations (20) and (21).

xi(t + 1) =
{

Elite(t) + RBi(t)⊗ (r1 × (Gi(t)− Xi(t)) + (1 − r1)× (X − Xi(t))), i ∈ indexa
M × Gi(t) + RBi(t)⊗ (r2 × (Gi(t)− Xi(t)) + (1 − r2)× (X − Xi(t))), i ∈ indexb

(20)

Xi(t + 1) = xi(t + 1) + Vi(t + 1) (21)

Elite(t) includes randomly selected individuals from several elite groups in the group,
as shown in Equation (22); G(t) represents the current optimal solution, Xsec ond(t) and
Xthird(t) represent the second best and the third best individuals in the current population,
respectively; Xc(t) represents the position of the centroid of the fitness values ranked in the
top 50% of the individuals, for whose mathematical expressions, as shown in Equation (23),
N1 indicates the number of leaders, that is, N1 is equal to half the size of the whole swarm,
and Xi(t) represents the ith best leader; M is the melting rate, which is a key parameter to
simulate the melting behavior in the development stage, as shown in Equation (24); tmax is
the termination condition; T(t) is the average daily temperature; RB(t) represents a vector
containing random numbers, based on a Gaussian distribution, representing the Brownian
motion, as shown in Equation (25); the sign ⊗ represents entry-wise multiplications; r1
represents the randomly chosen numbers from the [0, 1]; r2 represents a randomly selected
number from [−1, 1]; X represents the centroid position of the whole population, with the
corresponding mathematical expression, as shown in Equation (26); and due to the dual-
population mechanism, we denote the whole population and these two subpopulations
as N, Na, and Nb, respectively. Among them, Na is responsible for the exploration, and is
assigned to perform the exploitation. Then, in subsequent iterations, the size of Nb gradually
declines and the size of Na is accordingly increased. indexa and indexb denote a set of
indexes including line numbers of individuals in Na and Nb in the entire position matrix.

Elite(t) ∈ [G(t), Xsec ond(t), Xthird(t), Xc(t)] (22)

Xc(t) =
1

N1

N1

∑
i=1

Xi(t) (23)

M = (0.35 + 0.25 × e
t

tmax − 1
e − 1

)× T(t), T(t) = e
−t

tmax (24)

fRB(x; 0, 1) =
1√
2π

× exp(− x2

2
) (25)

X(t) =
1
N

N

∑
i=1

Xi(t) (26)

In the TPSAO, the iterative process first starts with randomly generated populations,
as shown in Equation (27), which produces a matrix of size N × dim. Then, based on the
initial solution of its population, the tent chaotic map is combined to generate the initial
population solution, as shown in Equation (28). Finally, the initial population solution
based on the tent chaotic map is obtained, as shown in Equation (29). Then, there is
the initialization of the swarm positions, velocities, best fitness, Objective_values, Elite,
Global_Best_Position, best position, and Global_Best_Fitness.

x = Lb + rand(N, dim). ∗ (Ub − Lb) (27)

f (x, α) =

{
2x
α 0 ≤ x < α

2(1−x)
1−α α ≤ x ≤ 1

(28)
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xi+1,j = f (xi,j, a), i = 1, 2, · · · , N
X = xi+1,j ∗ Ub

(29)

N is the population size, α is the parameter of the tent chaos map, j and dim are the
representative dimensional size, Lb is the lower bound representing the population, and Ub
is the upper bound representing the population.

The algorithm enters the loop iteration phase, during which the following operations
are performed on each particle in turn:

(a): Calculate the individual optimal position for each particle: c1r1(pi(t)− yi(t)), where
c1 is the weight of the individual’s best position.

(b): Calculate the global best position: c2r2(Gi(t)− yi(t)), where c2 is the weight of the
global best position.

(c): Update the speed, as shown in Equation (30), where w is the inertial weight, c1 is
the individual learning factor and c2 is the influence of the social learning factor, the
inertial weight determines the degree of the inertia of the particle in the search space,
the higher value is conducive to jumping out of the local optimal solution but may
lead to search instability, and the lower value is conducive to the convergence to the
global optimal solution. The individual and social learning factors control the degree
of particle updates according to the individual and group optimal solution, balancing
local and global search. At the same time, skip the optimal solution by using the
maximum speed limit to prevent particles from moving too fast, limiting the range as
shown in Equation (31).

Vi(t + 1) = wVi(t) + c1r1(pi(t)− yi(t)) + c2r2(Gi(t)− yi(t)) (30)

Vi = clip[Vi, Lb − Xi, Ub − Xi] (31)

(d): Update the location, Xi(t) = xi(t) + Vi(t), achieved by constantly adjusting the
velocity and position of each particle. In each iteration, the velocity vector of the
particle is updated according to parameters such as the individual and population
optimal solutions and inertial weights, and then the position of the new velocity
vector. In this way, the particles constantly move in the search space to find the
optimal solution.

(e): At each iteration, the current position of each particle is verified to determine if a new
individual optimum has been reached. If the position is better than the previously
recorded optimal position, it is updated. In addition, it also checks whether this
position is the current global optimum, and updates the global best record after
confirmation. This process helps to optimize the learning and decision efficiency of
the whole network.

The TPSAO algorithm enhances its global search function by making the particles guided
by both the individual and the global best position, thus improving the efficiency of finding
the best learning rate. In order to enhance the repeatability of the TPSAO algorithm, we have
written the pseudocode of the algorithm in detail and made the corresponding execution
flow chart, which is shown in Algorithm 1 and Figure 3, respectively. This combination of a
pseudocode and a flowchart not only improves the clarity of the description, but also enables
the reader to understand the specific details of the implementation more accurately, thus
effectively improving the transparency and operability of the algorithm. In Section 3.4.4 of
this paper, we further validate the effectiveness of this algorithm by conducting a detailed
analysis of the TPSAO’s performance through module comparison experiments.
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Algorithm 1: The pseudocode for the TPSAO (Tent Particle Snow Ablation Optimizer).

Input: t, tmax = Maxiter, N, Na = Nb = N
2 , c1, c2, w, dim, upper_bound, lower_bound, α

Output: Global_Best_Position, Global_Best_Fitness
Begin

Initialization of the swarm positions, velocities, best fitness, Objective_values, Elite,
Global_Best_Position, best position, Global_Best_Fitness

Fitness evaluation
Record the current G(t) and Update Elite, Objective_values
while (t < tmax ) do

Calculate the snow melt rate M, Xc(t)
Randomly divide the whole population N into two subpopulations Na and Nb
for each individual do

Calculate each individual’s position
Update position and velocities

end for
Fitness evaluation
Update Global_Best_Position, Global_Best_Fitness
t = t + 1

end while
Return Global_Best_Position, Global_Best_Fitness

end

Figure 3. A flowchart of the TPSAO’s execution.
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3. Experimentation and Analysis
3.1. Experimental Environment

The datasets for the experiment are categorized into five groups: Anthracnose, Phy-
tophthora blight, Healthy, Bacterial spot, and Mosaic virus, totaling 4210 images. The
pepper disease images are all standardized to a size of 256 × 256 to ensure consistency.
After data augmentation, there are 6315 pictures of pepper disease, which are divided
into training and test sets at an 8:2 ratio. The experiments are conducted on a Northwest
Area B/421 machine provided by the AutoDL platform’s cloud server. Comprehensive
details of the experimental configuration are presented in Table 3. The experiments in this
work are all conducted on the same hardware and software platform, and Table 3 shows
the hardware and software configurations being tested. Because the optimal combina-
tion of hyperparameters depends not only on the model but also on the hardware and
software environment, the hyperparameters of each network are uniformly designed to
avoid the influence of hyperparameters on the experimental results. Table 4 presents the
hyperparameter settings.

Table 3. The software and hardware environments.

Hardware environment

GPUs RTX 3080×2(20 GB) × 1

RAM 30 GB

CPU 7 vCPU Intel(R) Xeon(R) CPU
E5-2680 v4 @ 2.40 GHz

Hard disk System disk: 30 GB Data disk:
50 GB

Software environment

OS Windows 10

PyTorch 1.11.0

Python 3.8 (ubuntu20.04)

Cuda 11.3

Table 4. The experimental settings.

Hyperparameters Value

Size of input images 256 × 256
Batch_size 32

Epoch 200
Initial learning rate 0.001

Optimizer Adam

3.2. Experimental Indicators

To accurately evaluate the performance of the model, we use several key metrics:
the F1 score, precision, recall, and average accuracy. The relevant evaluation metrics are
calculated as follows:

Precisioni =
TPi

TPi + FPi
(32)

Recalli =
TPi

TPi + FNi
(33)

F1-scorei = 2 × precisioni·Recalli
precisioni + Recalli

(34)

Prec =
∑nc1

i=1 Precisioni

nc1
(35)

Rec =
∑nc1

i=1 Recalli
nc1

(36)
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F1 =
∑nc1

i=1 F1 − scorei

nc1
(37)

AAC =
1

nc1

nc1

∑
i=1

nij

ni
(38)

where Prec represents precision, AAC stands for the average accuracy and Rec indicates
recall. The parameter i donates the class index, nc1 signifies the total number of instances,
with n being the number of distinct classes. The variable nij denotes the count of correctly
predicted initial classes, where j refers to the prediction outcome and i represents the class
index. The variable ni signifies the number of initial classes that are accurately predicted.

3.3. Experimental Performance Analysis

In this paper, the TPSAO-AMWNet model is trained on pepper disease datasets, and
Figure 4 shows the loss and accuracy during the training process. The graph clearly shows
a steady improvement in the accuracy of the model. After finding the best learning rate
via the TPSAO method, we run 200 training runs and achieve the test set average accuracy
of 93.52%. To evaluate the performance of the model more comprehensively, we apply
the K-fold cross-validation technique to divide the original data into 10 groups. Each
set of data is used as the validation set, the rest of the data is used for training, and the
process was repeated 10 times. We record and maintain the best result from each cross-
validation, and then calculate the average of these results from 10 runs to determine the
overall classification accuracy of the network model. Throughout this process, we have
kept other hyperparameters fixed, including the batch size of 32 and the learning rate of
0.001, and we have used the Adam optimizer. Finally, we obtain the performance results of
the model using a 10-fold cross-validation, as shown in Figure 5.

Figure 4. The training loss and accuracy curves.

Figure 5. The results of the fold-crossover experiment.
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3.4. Effectiveness Analysis of Individual Modules

In this paper, four modules are proposed: ARPC, MTDFA, WfrLoss, and the TPSAO. To
verify the effectiveness of these four methods, first, we compare the ARPC module with Pyra-
mid convolution and the TPSAO module. Then, we compare MTDFA with different attention
mechanisms such as HaloAttention, CBMA, and Polarized Self-Attention. In addition, we
compare the WfrLoss with varying functions of loss, Cross Entropy, and Poly Loss and other
optimization algorithms such as SAO and RIME. With the same parameters, we verify the
feasibility of this method by adding different modules to the ResNeXt-50 model.

3.4.1. Effectiveness of ARPC

In this paper, ARPC is proposed to finely adjust the feature map, dynamically extract
the disease in different scale images, and integrate SE to emphasize the feature image area
of pepper diseases, solving the problem of edge blur in pepper diseases. In order to verify
its effectiveness, we choose to compare it with this module, without this module, and with
pyramid convolution [45]. The experiments are shown in Table 5. The results show that
after the ARPC module and the pyramid convolution module are, respectively, added to
the ResNeXt-50 network, excellent results are achieved in pepper disease classification.
The pyramid convolutional module is appreciated for its straightforwardness, adaptability,
and efficient computation. However, it faces challenges such as gradient vanishing or
inadequate feature propagation, limiting its effectiveness in addressing edge-blurring
issues in pepper disease images. Therefore, it is insufficient compared with ARPC. If the
ARPC module is not added, more features are easily lost, resulting in insufficient feature
extraction. Therefore, adding the ARPC module is far better than not adding this module.
In conclusion, our proposed ARPC module is superior to the pyramid convolutional
module. Thus, we choose to add the ARPC module to the input after the first convolution
processing, thereby improving the performance and efficiency of the model in the pepper
disease classification task.

Table 5. The experimental results on the effectiveness of ARPC.

Methods Precision Recall F1 Accuracy

None 86.86 86.29 86.57 86.47
Pyramid convolution 87.23 87.41 87.32 87.27

APRC 88.55 88.36 88.46 88.62

3.4.2. Effectiveness of MTDFA

In this study, we propose a novel attention module, MTDFA, designed to enhance the
feature expression of pepper disease images and improve the performance of the model in
extracting minor disease features, thus significantly improving its identification accuracy. To
verify the effectiveness of MTDFA, we compare it with three existing attention mechanisms:
HaloAttention [46], the CBAM [47], and Polarized Self-Attention [48], and the experimental
results are shown in Table 6. Specifically, HaloAttention effectively improves the efficiency
of processing large-sized images by focusing on the local “halo” area and processing
images through overlapping block structures; however, this method is sensitive to the
adjustment of hyperparameters (such as the block size and halo size), and optimizing these
parameters needs to be done with higher precision; compared with MTDFA, HaloAttention
involves more hyperparameters and the adjustment process is more complicated. By
combining spatial and channel attention mechanisms, the CBAM effectively enhances
the expression of features and increases the focus of the model on critical information;
although CBAM has the advantage of emphasizing local features, it sometimes excessively
ignores the importance of the global context. Compared with MTDFA, the CBAM has
shortcomings in balancing the processing of local and global information, which may lead
to a decrease in its recognition accuracy. Polarized Self-Attention emphasizes a clearer
discrimination between key features and background noise by learning extreme (extremely
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important or unimportant) features; this approach performs well in handling complex
scenarios with distinct features; however, its poor performance and may over-highlight
certain features while ignoring other equally important details. Polarized Self-Attention
has more limitations in adaptability and detail capture compared to MTDFA. According to
the experimental results in Table 6, MTDFA outperforms HaloAttention, the CBAM, and
Polarized Self-Attention in all indexes. Therefore, we choose MTDFA as the core attention
mechanism of the TPSAO-AMWNet to ensure the high efficiency of the model in handling
the pepper disease classification task.

Table 6. The experimental results on the effectiveness of MTDFA.

Methods Precision Recall F1 Accuracy

None 86.86 86.29 86.57 86.47
HaloAttention 88.24 88.72 88.48 88.38

CBMA 88.03 88.28 88.16 88.14
Polarized Self-Attention 88.74 88.53 88.64 88.54

MTDFA 90.24 90.18 90.21 90.12

3.4.3. Effectiveness of Wfrloss

In this study, the proposed loss function Wfrloss combines the Weighted Focal Loss
and L2 regularization functions, which allows us to balance the focus on classification
accuracy and model complexity. By adjusting αt, the model cannot affect the classification
accuracy of the imbalance of the datasets, and at the same time, by adjusting the β value,
it not only helps to balance the classification accuracy and model complexity but also
effectively prevents the model from problems caused by overfitting, thereby enhancing
the model’s ability to generalize. To verify its validity, we compare it with Poly Loss [49]
and Cross Entropy. The experimental results are shown in Table 7, and the changes in the
loss values are shown in Figure 6. The experimental results show that Wfrloss is better
than Poly Loss and Cross Entropy, and the loss value is lower and more stable, which is
very good for the identification of pepper diseases. In bulk, although Poly Loss has an
advantage in dealing with class imbalance, its excessive focus on difficult samples may
lead to the model overfitting on the training data. Although Cross Entropy Loss helps
to directly optimize the probability distribution to improve the classification accuracy of
multi-class problems, it is very sensitive to the problem of class imbalance and prone to
overfitting when the model is too complex, which may reduce the generalization ability
of the model. By contrast, Wfrloss has a clear advantage in preventing overfitting due to
its introduced regularization term, as shown by the loss value curve in Figure 6. In view
of the above analysis and experimental results, we decided to adopt Wfrloss as the loss
function of the TPSAO-AMWNet model. This choice aims to obtain a better training effect
and stronger generalization performance to improve the application effect of the model to
the pepper disease datasets.

Table 7. The experimental results on the effectiveness of WfrLoss.

Methods Precision Recall F1 Accuracy

Ploy Loss 86.65 86.37 86.51 86.26
Cross Entropy 86.86 86.29 86.57 86.47

WfrLoss 87.09 87.15 87.12 87.11
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Figure 6. The loss value comparison results. The OX axis represents the number of training rounds,
and the OY axis represents the loss value.

3.4.4. Experiments on the Effectiveness of the TPSAO

The study highlights the main task of determining the optimal learning rate for the
training effect and performance of the TPSAO-AMWNet model. Selecting an appropriate
learning rate is crucial for achieving the best training results. If the learning rate is too low,
it may slow down the training process and fail to reach the global optimum. Conversely,
a too-high learning rate may disrupt training stability and negatively impact model ef-
fectiveness. Therefore, the accurate calibration of the learning rate is essential to enhance
model convergence, ensure stability, and quickly attain optimal solutions, particularly
for complex challenges such as pepper disease detection. The TPSAO algorithm is pro-
posed with a tent chaotic map used for initialization, and particle swarm optimization
combined with a snow ablation algorithm to rapidly determine the optimal learning rate in
the model training process. The initial solutions generated by this method are more diverse
and evenly distributed, improving the balance between the individual optimum and the
global optimum which significantly enhances the searchability and convergence speed of
the algorithm. Unlike traditional adaptive algorithms, the TPSAO not only expands the
search scope but also effectively avoids approximate optimal solution traps to identify true
optimal learning rates for better model training results. In order to verify the effectiveness
of the TPSAO, we conduct a comparison experiment by choosing a common learning rate
of 0.001 and comparing it with the learning rate obtained from the original SAO. In this
experiment, the parameters of the SAO, the RIME [50], and the TPSAO are set with the
number of particles N = 50, the maximum number of iterations Maxiter = 100, the upper
limit of the learning rate upper_bound = 0.01, and the lower limit of the learning rate
lower_bound = 0.0001, and the specific experimental results are shown in Table 8. In our
tests, we maintain uniform parameter settings and discover that the TPSAO significantly
outperforms the traditional learning rate of 0.001 in identifying the optimal learning rate
for diagnosing pepper diseases. While the SAO and the RIME also have some success in
this area, the SAO’s iterative process tends to focus on discovering the next learning rate
close to the optimal solution, and although the RIME does not exhibit this behavior, its
outcomes are still not as favorable as those achieved by the TPSAO. The unique benefit of
the TPSAO method compared to other approaches is its implementation of tent chaotic
mapping for initialization, which guarantees a more uniform distribution of initial solutions
while incorporating both the position and the velocity update features from the PSO. This
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dual mechanism enables particles to react to both the immediate optimal and the overall
optimal positions, efficiently avoiding the dilemma of accepting suboptimal solutions and
facilitating the discovery of the truly optimal learning rate. Despite the TPSAO’s limitations
in computational efficiency and adaptability, these points offer valuable insights for future
enhancements to further improve the algorithm’s utility and effectiveness.

Table 8. The results of the TPSAO effectiveness experiments.

Methods Precision Recall F1 Accuracy Learning Rate

None 86.86 86.29 86.57 86.47 0.001
SAO 88.05 87.93 87.99 87.91 0.003902
RIME 87.41 87.67 87.54 87.59 0.004424

TPSAO 88.56 88.20 88.38 88.22 0.003206

3.5. Ablation Experiment

To validate the effectiveness of the proposed method, we conduct ablation exper-
iments on the TPSAO-AMWNet. We utilize the control variable method to systemati-
cally incorporate the ARPC, MTDFA, and WfrLoss modules and explore different com-
binations of these modules. The findings demonstrate that under identical conditions
(Batch_size = 32, learning rate = 0.001, Epoch = 200, Optimizer = Adam), the accuracy
incrementally improves with the integration of additional modules. Notably, the config-
urations combining ARPC + WfrLoss and MTDFA + WfrLoss yield better results than
using individual modules separately, underscoring the efficiency and necessity of the
integrated approach.

Moreover, we confirm the efficacy of the TPSAO algorithm by employing the control
variable method, progressively incorporating the ARPC, MTDFA, and WfrLoss modules in
various configuration combinations. The experimental parameters are set as the number
of particles N = 50, the maximum number of iterations Maxiter = 100, the upper limit of
learning rate upper_bound = 0.01, the lower limit of learning rate lower_bound = 0.0001,
the Batch_size = 32, Epoch = 200, and the Optimizer = Adam. The experimental findings
indicate that the TPSAO effectively identifies the optimal learning rate for each model.
When compared to the fixed learning rate approach, the TPSAO demonstrates clear benefits
in pinpointing the ideal learning rate, significantly enhancing both the performance and
the accuracy of the model. The specific experimental results are shown in Table 9.

Table 9. The results of the ablation experiments.

Methods Precision Recall F1 Accuracy Learning Rate

ARPC 88.55 88.36 88.46 88.62 0.001
MTDFA 90.24 90.18 90.21 90.12 0.001
WfrLoss 87.09 87.15 87.12 87.11 0.001
TPSAO 88.56 88.20 88.38 88.22 0.003206

ARPC + MTDFA 91.27 91.31 91.29 91.23 0.001
ARPC + WfrLoss 90.02 89.96 89.99 89.72 0.001

MTDFA + WfrLoss 90.47 90.43 90.45 90.51 0.001
ARPC + MTDFA + WfrLoss 91.64 91.50 91.57 91.62 0.001

APRC + TPSAO 90.12 90.05 90.09 90.04 0.003116
MTDFA + TPSAO 91.10 91.06 91.08 91.15 0.002798

APRC + WfrLoss + TPSAO 90.85 90.63 90.74 90.83 0.004036
MTDFA + WfrLoss + TPSAO 91.69 91.61 91.65 91.70 0.003665
ARPC + MTDFA + TPSAO 92.07 92.30 92.19 92.17 0.002249

ARPC + MTDFA + WfrLoss + TPSAO 93.34 93.48 93.41 93.52 0.001914

3.6. Comparison with State-of-the-Art Methods

We compare the TPSAO-AMWNet model with classical convolutional neural networks
and state-of-the-art networks such as ResNet-50 [51], DenseNet121 [52], MobileNetV1 [53],
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ShuffleNetV2 [54], ResNeXt-50 [55], EfficientNet-B0 [56], RegNetX-200MF [57], and
CMT [58]. In order to ensure the consistency of the experiment, the TPSAO is not used
to adjust the optimal learning rate of the TPSAO-AMWNet. Instead, we uniformly set
the hyperparameters to be a Batch_size = 32, a Learning rate = 0.001, an Epoch = 200,
and an Optimizer = Adam, and we perform the experimental comparison. The confusion
matrix, seen in Figure 7, demonstrates the performance of each model in disease recog-
nition, with a high level of accurate recognition for each class. Table 10 shows that the
TPSAO-AMWNet has higher recall metrics than Anthracnose and the Phytophthora blight
on Healthy, Bacterial spot, and Mosaic virus diseases. This is due to the introduction of
the MTDFA module into the basic network of the TPSAO-AMWNet, which can effectively
balance the extraction of global and local information and is conducive to the feature
extraction of minor diseases, thereby improving its recognition accuracy. Furthermore, the
average accuracy of the TPSAO-AMWNet is 92.43%, the highest record among all network
models, thereby thoroughly demonstrating the viability of the TPSAO-AMWNet. Figure 7
also shows that the TPSAO-AMWNet has the highest recognition accuracy and the highest
number of recognitions.

Figure 7. Confusion matrix.
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Table 10. A comparison of the experimental results.

Methods Index
Pepper Disease

Anthracnose Phytophthora Blight Healthy Bacterial Spot Mosaic Virus

ResNet-50

Precision (%) 80.86 78.01 93.31 85.21 83.48
F1 (%) 80.24 77.87 93.94 84.99 82.58

Recall (%) 79.62 77.73 94.57 84.78 81.70
Accuracy (%) 83.35%

DenseNet-121

Precision (%) 82.52 78.21 94.65 86.68 84.03
F1 (%) 81.71 78.58 94.57 85.53 83.27

Recall (%) 80.92 78.96 94.48 84.40 82.52
Accuracy (%) 84.83%

MobileNetV1

Precision (%) 79.46 78.60 95.62 86.80 85.96
F1 (%) 79.15 79.38 95.80 86.28 85.65

Recall (%) 78.85 80.18 95.98 85.76 85.34
Accuracy (%) 84.94%

ShuffleNetV2

Precision (%) 78.08 80.48 94.85 86.50 84.79
F1 (%) 78.38 80.03 95.40 86.83 84.47

Recall (%) 78.68 79.59 95.95 87.17 84.15
Accuracy (%) 85.72%

ResNeXt-50

Precision (%) 82.52 81.52 96.03 87.80 86.42
F1 (%) 81.60 82.07 96.20 87.11 85.89

Recall (%) 80.69 82.63 96.36 86.42 85.37
Accuracy (%) 86.47%

EfficientNet-B0

Precision (%) 83.21 82.85 96.60 87.31 87.10
F1 (%) 83.53 83.35 96.82 87.61 87.45

Recall (%) 83.85 83.86 97.05 87.92 87.80
Accuracy (%) 87.90%

RegNetX-
200MF

Precision (%) 84.29 83.41 96.74 88.40 88.20
F1 (%) 84.46 83.98 96.99 88.74 88.02

Recall (%) 84.62 84.55 97.24 89.08 87.84
Accuracy (%) 88.86%

CMT

Precision (%) 85.46 85.39 97.29 89.48 90.13
F1 (%) 85.24 86.12 97.67 89.88 89.44

Recall (%) 85.03 86.86 98.05 90.29 88.76
Accuracy (%) 89.52%

TPSAO-
AMWNet

Precision (%) 89.71 91.08 97.85 93.27 92.09
F1 (%) 90.12 91.42 97.95 93.45 92.82

Recall (%) 90.54 91.76 97.62 93.62 93.57
Accuracy (%) 92.43%

3.7. Generalization Experiments

The generalization experiment serves as a crucial indicator for evaluating model
performance. It demonstrates the model’s performance across multiple datasets and
reflects its ability to generalize and withstand variations in classification methods. These
experiments thoroughly examine the adaptability of the model in handling diverse image
qualities, resolutions, and lighting conditions, as well as complex backgrounds of plant
leaves and non-plant leaves. This comprehensive evaluation helps us to better understand
the applicability and reliability of the model.

Consequently, to more thoroughly assess the effectiveness of the TPSAO-AMWNet, we
carry out experiments on widely recognized generalization validation benchmark datasets
(such as Flower, PlantVillage grape, Stanford dogs, PlantVillage tomato, and animals).
The hyperparameters are configured as follows: Batch_size = 32, Learning rate = 0.001,
Epoch = 200, Optimizer = Adam, set = 1, γ = 0 in WfrLoss, which transforms into a binary
cross-entropy loss function with L2 regularization added. Table 11 offers comprehensive
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statistical data information, including the category, data volume, and data source, with
all input images being 256 × 256, and the ratio of training to test sets is 8:2. The specific
experimental results are shown in Table 12. The TPSAO-AMWNet is weakly identified
on the Stanford dog datasets because the datasets have more taxonomic categories and
fewer image data in each category. The amount of data cannot meet the requirements of the
complex network structure of the TPSAO-AMWNet for image feature learning, resulting in
the low recognition accuracy of the TPSAO-AMWNet for these datasets. Since the images
in Plantvillage (Grape), Plantvillage (Tomato), and animals have less interference, more
obvious target features, and larger data volumes, which can provide good training for
the TPSAO-AMWNet, the recognition accuracy of the TPSAO-AMWNet in Plantvillage
(Grape), Plantvillage (Tomato), and animals is higher than the remaining two datasets. The
identification of the TPSAO-AMWNet is relatively lower than Plantvillage (Grape) and
Plantvillage (Tomato) on the Flower datasets because the datasets have many taxonomic
categories, and there may be some similarity problems in the categories, resulting in the
relatively low identification accuracy of the TPSAO-AMWNet on these datasets. In future
studies, we should address the challenge of the similarity between categories, simplify
the network structure, and achieve ahigher identification accuracy with smaller amounts
of data.

Table 11. The details of the public datasets.

Dataset Total Category Available (accessed on 10 April 2024)

Flower 13,740 14 https://www.kaggle.com/datasets/marquis03/flower-classification
PlantVillage Grape 4062 4 https://www.kaggle.com/datasets/hiyash99/plantvillage

Stanford dogs 20,580 120 https://www.kaggle.com/datasets/jutrera/stanford-car-dataset-by-classes-folder
PlantVillage Tomato 18,160 10 https://www.kaggle.com/datasets/hiyash99/plantvillage

animals 26,179 10 https://www.kaggle.com/datasets/alessiocorrado99/animals10

Table 12. The results of the generalizability experiments.

Dataset F1 (%) Accuracy (%)

Flower 96.07 96.56
PlantVillage grape 98.28 98.40

Stanford dogs 90.78 91.14
PlantVillage tomato 96.94 97.49

animals 96.60 97.15

4. Discussion

The effectiveness of the TPSAO-AMWNet in the identification of pepper diseases is
evaluated and compared with that of ResNet-50 [51], DenseNet-121 [52], MobileNetV1 [53],
ShuffleNetV2 [54], ResNeXt-50 [55], EfficientNet-B0 [56], RegNetX-200MF [57], and
CMT [58]. We utilize a confusion matrix to more effectively evaluate the recognition
capabilities of these various networks, and Figure 7 displays the classification outcomes for
the nine networks. From Table 10, we can see that the TPSAO-AMWNet better identifies the
five pepper diseases in the datasets than the traditional mainstream networks. ResNet-50
solves the problem of reduced learning efficiency and accuracy due to increasing network
depth by adopting a residual block design, and this structure avoids information loss and
selective omission in deep networks, which improves the recognition accuracy of the model
and ensures smooth data transmission, but its identification precision is only (80.86%,
78.01%, 93.31%, 85.21%, and 83.48%), with an average accuracy of 83.35%. DenseNet-121
adopts a densely connected structure, in which the output of each layer is used as the
input to all subsequent layers, which significantly reduces the number of parameters of
the network, and effectively solves the problems of gradient disappearance and parameter
sparsity. This technique not only boosts the model’s generalization capability but also
increases the overall accuracy of the model (82.52%, 78.21%, 94.65%, 86.68%, and 84.03%),
with an average accuracy of 84.83%. MobileNetV1, by using deep residual separable con-

https://www.kaggle.com/datasets/marquis03/flower-classification
https://www.kaggle.com/datasets/hiyash99/plantvillage
https://www.kaggle.com/datasets/jutrera/stanford-car-dataset-by-classes-folder
https://www.kaggle.com/datasets/hiyash99/plantvillage
https://www.kaggle.com/datasets/alessiocorrado99/animals10
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volution to optimize performance and reduce the computing burden, greatly reduces the
number of parameters and computations, while maintaining the network performance, and
the precision of the model is (79.46%, 78.60%, 95.62%, 86.80%, 85.96%), with the average
accuracy of 84.94%. ShuffleNetV2 effectively optimizes the network structure by combining
channel shuffle and group convolution, and channel rearrangement allows the features
from group convolution to be cross-combined between groups. The method effectively
avoids the problem of information isolation and improves the performance of the model.
The precision of the model is (78.08%, 80.48%, 94.85%, 86.50%, 84.79%), and the average
accuracy is 85.72%. ResNeXt-50 is an improvement of ResNet-50, in which the introduction
of group convolution in the residual block further extends the function of the network.
ResNeXt-50 learns the different feature subspaces of the input and enhances the robustness
of the network. The precision of the model is (82.52%, 81.52%, 96.03%, 87.80%, 86.42%),
and the average accuracy is 86.47%. Compared with ResNet-50, the recognition of the five
pepper diseases by the network is improved (+1.66%, +3.51%, +2.72%, +2.94%), and the
average accuracy is improved by 3.12%; however, these enhancements are accompanied
by a substantial rise in the number of parameters and a reduction in recognition efficiency.
EfficientNet-B0 uses a compound scaling method, which systematically adjusts the ratio
of the depth, width, and input resolution of the network, this well-coordinated scaling
approach significantly enhances both the efficiency and the performance of the model, and
it solves the common problems of efficiency degradation and performance bottlenecks in
the expansion of traditional models. The precision of the model is (83.21%, 82.85%, 96.60%,
87.31%, 87.10%), and the average accuracy is 87.90%. RegNetX-200MF adopts a rule-based
network design approach that focuses on achieving uniform and efficient performance
by systematically optimizing the width and depth of each layer. This approach markedly
diminishes the model’s parameter count and computational demands by meticulously
managing the number of channels and the repetition of layers; it effectively balances the
problem between efficiency and adaptability. The precision of the model is (84.29%, 83.41%,
96.74%, 88.40%, 88.20%), and the average accuracy is 88.86%. The CMT network integrates
the strengths of convolutional neural networks (CNNs) and Transformer technology and
enhances the ability of the model to deal with local features and global dependencies by
integrating convolution operations into the attention mechanism of the Transformer, with
the precision of the model being (85.46%, 85.39%, 97.29%, 89.48%, and 90.13%), with an
average accuracy of 89.52%.

In the confusion matrix depicted in Figure 7, the numbers within each square represent
the classification results obtained by the classification network for each disease. The color
depth of the square represents the accuracy of the classification. The darker the color is,
the higher the prediction accuracy of the category, that is, the greater the number of true
positives. At the same time, this visualization also helps us to identify in which categories
the network performs better or has the problem of misclassification. By comparing the
values on the diagonal with the values on the other diagonals, we can intuitively see
the classification effect and misclassification of the network in different categories. The
comparison of the indicators in Table 10 and the confusion matrix in Figure 7 show that
compared with other networks, the TPSAO-AMWNet’s classification is the best, meeting
the basic disease identification requirements. In addition, in order to verify the ability of the
model to identify various types of other plant leaves, we downloaded the public datasets
on PlantVillage, conducted experiments, and achieved good experimental results as shown
in Table 12, with a mean accuracy of 96.15%.

This paper summarizes the reasons why the TPSAO-AMWNet outperforms other
mainstream networks.

1. In order to highlight the edge of the pepper diseases, this study improves the pyramid
convolution and integrates the SE module to emphasize the pepper disease feature
image area. As shown in the experimental results presented in Table 5, it is evident
that the inclusion of the ARPC structure and pyramid convolution in the model has
led to an improvement in the accuracy of pepper disease classification. Specifically,
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there is a 2.15% increase when compared to the model without the ARPC structure,
and a 1.35% increase when compared to the model without pyramid convolution.

2. In order to effectively capture the minor disease characteristics and balance global and
local feature extraction, this paper introduces MTDFA. According to the experimental
results in Table 6, the accuracy of pepper disease classification is improved by 3.65%
after the addition of MTDFA.

3. To cope with the problems of model overfitting and selecting the best learning rate, we
add L2 regularization to Weighted Focal Loss and determine the best learning rate using
the TPSAO algorithm. Through the experimental data in Tables 7 and 8, it can be seen that
these measures effectively improve the accuracy of pepper disease classification.

4. As shown in the ablation experiments in Table 9, the four modules of our network
assume different functions, including solving the edge-blurring problem, extracting
tiny features, preventing overfitting, and optimizing the search for the learning rate.
The integration of these modules significantly enhances the overall performance of
the network and has a clear positive impact on the model’s effectiveness.

5. According to our study, this method has a higher classification accuracy than other
deep neural network models, with an average accuracy of 92.43%.

In general, the TPSAO-AMWNet model performs well in classifying pepper dis-
eases and also shows good results in classifying various types of leaves of other plants.
Nonetheless, given the large number of pepper diseases and complex leaf characteristics,
our experiments failed to adequately address the identification of other diseases and the
similarity between different diseases. Current research focuses on disease recognition at
the image acquisition stage. To extend this identification process to the full cycle of pepper
cultivation and the dynamic large-scale monitoring of diseases, we should explore the
potential of the model in real-time applications and its scalability. In addition, it is crucial to
ensure that the model operates effectively in real agricultural environments, which requires
enhancing the model’s adaptability to various environmental conditions, such as different
light intensities, weather variations, and planting backgrounds. Further, combining AI
technology with agricultural Internet of Things (IoT) devices allows for automated and
real-time disease monitoring; by deploying sensors and cameras in the field, data on poten-
tial diseases of chili peppers can be collected continuously; this data can be transmitted
in real-time to a cloud platform and analyzed using a trained model to provide a quick
response and guide the farmer to take the appropriate measures. In addition, the scalability
of such a system is critical; it should be designed to be able to easily add new sensors, etc., to
accommodate different crops and disease types, thus broadening its range of applications.
It is also necessary to develop user-friendly interfaces that allow agriculturalists to easily
manage and interpret the data output from the model, and should include alarm systems,
as well as easy-to-operate control functions. Finally, to ensure the widespread adoption of
the technology, it is also important to take into account its cost-effectiveness and ensure
that the technological solution is both affordable and easy to deploy. This will not only help
to modernize the agricultural industry but will also drive its intelligence.

5. Conclusions

In this paper, we propose a new TPSAO-AMWNet-based pepper disease recognition
method, which optimizes the extraction of tiny disease features and effectively balances
global and local features. We also use the TPSAO optimization algorithm to find the
optimal learning rate, a step that is less-considered in previous studies, which significantly
improves the training effect. To solve the edge-blurring problem and highlight the edges of
pepper diseases, APRC is proposed. Meanwhile, we propose MTDFA, which enhances the
model’s performance by combining dual-space and dual-channel information to capture
the local details of the pepper leaf disease features while maintaining the focus on the global
features. In addition, WfrLoss is proposed in this paper, which has a better adaptability,
convergence speed, and stability than Weighted Focal Loss and avoids the overfitting
problem during the training process. For the difficult problem of determining the optimal



Plants 2024, 13, 1581 29 of 31

learning rate, we use an optimization algorithm to find the most suitable learning rate. Tent
chaotic mapping is used to initialize the algorithm, followed by the combination of the
SAO and PSO algorithms, and the particles are balanced between the local optimal solution
and the overall optimal solution, which effectively optimizes the search process. In the
experimental phase, our customized dataset is divided into training and test sets according
to an 8:2 ratio. The TPSAO-AMWNet achieves a high recognition accuracy of 93.52% on
the test set, which proves the effectiveness of the model. In addition, through modular and
ablation experiments, we confirm the effectiveness of each component of APRC, MTDFA,
WfrLoss and the TPSAO and their interactions. In generalization experiments, we verify
the generalization ability of the model. We also conduct network comparison experiments,
which show that our model outperforms other networks and effectively improves disease
identification in precision agriculture.

To further optimize the accuracy of pepper disease recognition, future studies will
deeply explore specific image preprocessing techniques, such as image enhancement and
noise removal, to improve the performance of the model under various lighting and
background conditions. In addition, there are plans for future studies to enhance the
generalization ability of the deep learning model by expanding the dataset and increasing
the experimental scale, and also to integrate transfer learning technology and the pre-
trained model into the TPSAO-AMWNet framework to optimize the feature extraction
and improve the performance of the model. The implementation of these strategies is
expected to significantly improve the efficacy of the model, supporting more efficient
disease identification and decision-making in agricultural production.
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