The Long-Term Effects of Barren Land Afforestation on Plant Productivity, Soil Fertility, and Soil Moisture in China: A Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Effects of Afforestation on Productivity and Soil Fertility in Barren Lands
2.2. Long-Term Effects of Afforestation on Productivity and Soil Fertility in Barren Lands
2.3. Environmental Drivers of Productivity and Soil Fertility Changes in Barren Land Afforestation
3. Discussion
3.1. Long Terms Effects of Barren Land Afforestation
3.2. Influencing Factors of the Long-Term Effects of Barren Land Afforestation
3.3. Limitation and Outlook
4. Materials and Methods
4.1. Data Compilation
4.2. Indicators Used and Data Sources
4.3. Statistical Analysis
4.3.1. Response Ratio
4.3.2. Threshold Analysis
4.3.3. Random Forest Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patriarca, C.; Bako, M.; Branthomme, A.; Frescino, T.S.; Haddad, F.F.; Hamid, A.H.; Martucci, A.; Chour, H.O.; Patterson, P.L.; Picard, N. Trees, Forests and Land Use in Drylands: The First Global Assessment; FAO Forestry Paper No. 184; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; 184p. [Google Scholar]
- Guo, Y.; Abdalla, M.; Espenberg, M.; Hastings, A.; Hallett, P.; Smith, P. A systematic analysis and review of the impacts of afforestation on soil quality indicators as modified by climate zone, forest type and age. Sci. Total Environ. 2021, 757, 143824. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Z.; Zhu, J. Land evolution in alpine inland river basin from 1980 to 2020 on the Northeastern Tibetan plateau, China. Appl. Ecol. Environ. Res. 2023, 21, 3497–3506. [Google Scholar] [CrossRef]
- Bhagat, S.; Prasad, P.R.C. Assessing the impact of spatio-temporal land use and land cover changes on land surface temperature, with a major emphasis on mining activities in the state of Chhattisgarh, India. Spat. Inf. Res. 2024, 32, 339–355. [Google Scholar] [CrossRef]
- Wu, S.Y.; Liu, L.B.; Li, D.L.; Zhang, W.T.; Liu, K.D.; Shen, J.S.; Zhang, L.B. Global desert expansion during the 21st century: Patterns, predictors and signals. Land Degrad. Dev. 2023, 34, 377–388. [Google Scholar] [CrossRef]
- Qi, K.; Zhu, J.; Zheng, X.; Wang, G.G.; Li, M. Impacts of the world’s largest afforestation program (Three-North Afforestation Program) on desertification control in sandy land of China. GIScience Remote Sens. 2023, 60, 2167574. [Google Scholar] [CrossRef]
- Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Angel, P.N.; Barton, C.D.; Davis, V.; Franklin, J.A. Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines. Environ. Manag. 2011, 47, 751–765. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Zhang, G.; Dong, J.; Xiao, X.; Hu, Z.; Sheldon, S. Effectiveness of ecological restoration projects in Horqin Sandy Land, China based on SPOT-VGT NDVI data. Ecol. Eng. 2012, 38, 20–29. [Google Scholar] [CrossRef]
- Ye, L.; Fang, L.; Shi, Z.; Deng, L.; Tan, W. Spatio-temporal dynamics of soil moisture driven by ‘Grain for Green’ program on the Loess Plateau, China. Agric. Ecosyst. Environ. 2019, 269, 204–214. [Google Scholar] [CrossRef]
- Han, K.S.; Park, Y.Y.; Yeom, J.M. Detection of change in vegetation in the surrounding Desert areas of Northwest China and Mongolia with multi-temporal satellite images. Asia-Pac. J. Atmos. Sci. 2015, 51, 173–181. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.L.; Xiao, Z.Q.; Wang, J.; Hu, F.Z. Desertification in the Mu Us Sandy Land in China: Response to climate change and human activity from 2000 to 2020. Geogr. Sustain. 2022, 3, 177–189. [Google Scholar] [CrossRef]
- Dong, L.; Li, J.; Liu, Y.; Hai, X.; Li, M.; Wu, J.; Wang, X.; Shangguan, Z.; Zhou, Z.; Deng, L. Forestation delivers significantly more effective results in soil C and N sequestrations than natural succession on badly degraded areas: Evidence from the Central Loess Plateau case. CATENA 2022, 208, 105734. [Google Scholar] [CrossRef]
- Hayman, G. Forestation is not an easy fix. Sciences 2024, 383, 6685. [Google Scholar] [CrossRef] [PubMed]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Zhu, X.; Si, J.; He, X.; Jia, B.; Zhou, D.; Wang, C.; Qin, J.; Liu, Z. Effects of long-term afforestation on soil water and carbon in the Alxa Plateau. Front. Plant Sci. 2024, 14, 1273108. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, X.; Zeng, Z.; Liu, Y.; Peng, S.; Zhu, Z.; Piao, S. The effect of afforestation on soil moisture content in northeastern China. PLoS ONE 2016, 11, e0160776. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wei, W.; Chen, L.; Yang, L. The joint effects of precipitation gradient and afforestation on soil moisture across the Loess Plateau of China. Forests 2019, 10, 285. [Google Scholar] [CrossRef]
- Wu, X.T.; Wang, S.; Fu, B.J.; Liu, J.G. Spatial variation and influencing factors of the effectiveness of afforestation in China’s Loess Plateau. Sci. Total Environ. 2021, 771, 144904. [Google Scholar] [CrossRef]
- Guo, J.H.; Feng, H.L.; McNie, P.; Liu, Q.Y.; Xu, X.; Pan, C.; Yan, K.; Feng, L.; Goitom, E.A.; Yu, Y.C. Species mixing improves soil properties and enzymatic activities in Chinese fir plantations: A meta-analysis. Catena 2023, 220, 106723. [Google Scholar] [CrossRef]
- Berthrong, S.T.; Piñeiro, G.; Jobbagy, E.G.; Jackson, R.B. Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age. Ecol. Appl. 2012, 22, 76–86. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Zhou, X.H.; Eldridge, D.J.; Han, X.M.; Song, Y.J.; Liu, R.Q.; Zhou, L.Y.; He, Y.H.; Du, Z.G.; Delgado-Baquerizo, M. Temperature and Rainfall Patterns Constrain the Multidimensional Rewilding of Global Forests. Adv. Sci. 2022, 9, 2201144. [Google Scholar] [CrossRef]
- del Campo, A.D.; Segura-Orenga, G.; Ceacero, C.J.; González-Sanchis, M.; Molina, A.J.; Reyna, S.; Hermoso, J. Reforesting drylands under novel climates with extreme drought filters: The importance of trait-based species selection. For. Ecol. Manag. 2020, 467, 118156. [Google Scholar] [CrossRef]
- Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 2014, 507, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Avila, R.T.; de Almeida, W.L.; Costa, L.C.; Machado, K.L.G.; Barbosa, M.L.; de Souza, R.P.B.; Martino, P.B.; Juárez, M.A.T.; Marçal, D.M.S.; Martins, S.C.V.; et al. Elevated air [CO2] improves photosynthetic performance and alters biomass accumulation and partitioning in drought-stressed coffee plants. Environ. Exp. Bot. 2020, 177, 104137. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, Y.; Zhao, L.; Yang, C.H.; Zhao, Y.C.; Zhang, Q.P. Enhancing resilience against geological hazards and soil erosion through sustainable vegetation management: A case study in Shaanxi Province. J. Clean. Prod. 2023, 423, 138687. [Google Scholar] [CrossRef]
- Li, Y.R.; Zhang, X.C.; Cao, Z.; Liu, Z.J.; Lu, Z.; Liu, Y.S. Towards the progress of ecological restoration and economic development in China’s Loess Plateau and strategy for more sustainable development. Sci. Total Environ. 2021, 756, 143676. [Google Scholar]
- Xu, H.; Yue, C.; Zhang, Y.; Liu, D.; Piao, S.L. Forestation at the right time with the right species can generate persistent carbon benefits in China. Proc. Natl. Acad. Sci. USA 2023, 120, e2304988120. [Google Scholar] [CrossRef]
- Giweta, M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. J. Ecol. Environ. 2020, 44, 11. [Google Scholar] [CrossRef]
- Naorem, A.; Jayaraman, S.; Dang, Y.P.; Dalal, R.C.; Sinha, N.K.; Rao, C.S.; Patra, A.K. Soil Constraints in an Arid Environment-Challenges, Prospects, and Implications. Agronomy 2023, 13, 220. [Google Scholar] [CrossRef]
- Stavi, I.; Islam, K.R.; Rahman, M.A.; Gusarov, Y.; Laham, J.; Comay, O.; Basson, U.; Xu, C.; Xu, Z.W.; Argaman, E. Unexpected consequences of afforestation in degraded drylands: Divergent impacts on soil and vegetation. J. Environ. Manag. 2023, 345, 118703. [Google Scholar] [CrossRef]
- Cusack, D.F.; Addo-Danso, S.D.; Agee, E.A.; Andersen, K.M.; Arnaud, M.; Batterman, S.A.; Brearley, F.Q.; Ciochina, M.I.; Cordeiro, A.L.; Dallstream, C.; et al. Tradeoffs and Synergies in Tropical Forest Root Traits and Dynamics for Nutrient and Water Acquisition: Field and Modeling Advances. Front. For. Glob. Change 2021, 4, 704469. [Google Scholar] [CrossRef]
- Bowles, T.M.; Jackson, L.E.; Cavagnaro, T.R. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Glob. Change Biol. 2018, 24, E171–E182. [Google Scholar] [CrossRef] [PubMed]
- Kahle, P.; Baum, C.; Boelcke, B. Effect of afforestation on soil properties and mycorrhizal formation. Pedosphere 2005, 15, 754–760. [Google Scholar]
- Liu, Y.; Miao, H.T.; Huang, Z.; Cui, Z.; He, H.H.; Zheng, J.Y.; Han, F.P.; Chang, X.F.; Wu, G.L. Soil water depletion patterns of artificial forest species and ages on the Loess Plateau (China). For. Ecol. Manag. 2018, 417, 137–143. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Wu, Q.; Si, B.; Jobbágy, E.G.; McDonnell, J.J. Afforestation triggers water mining and a single pulse of water for carbon trade-off in deep soil. Agric. Ecosyst. Environ. 2023, 356, 108655. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Piao, S.; Wang, S.H.; Ciais, P.; Zeng, Z.Z.; Lü, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Farley, K.A.; Kelly, E.F.; Hofstede, R.G.M. Soil organic carbon and water retention following conversion of grasslands to pine plantations in the Ecuadoran Andes. Ecosystems 2004, 7, 729–739. [Google Scholar] [CrossRef]
- Joshi, J.; Stocker, B.D.; Hofhansl, F.; Zhou, S.X.; Dieckmann, U.; Prentice, I.C. Towards a unified theory of plant photosynthesis and hydraulics. Nat. Plants 2022, 8, 1304–1316. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, S.; Li, H.; Liang, J.; Liu, W.; Piao, S.; Tian, H.; Zhou, G.; Lu, C.; You, W. Maximizing carbon sequestration potential in Chinese forests through optimal management. Nat. Commun. 2024, 15, 3154. [Google Scholar] [CrossRef]
- Ma, J.Y.; Li, Z.B.; Ma, B. Influences of revegetation mode on soil water dynamic in gully slope of the Chinese Loess hilly-gully region. Nat. Hazards 2020, 104, 51–72. [Google Scholar] [CrossRef]
- Al Omary, A. Effects of aspect and slope position on growth and nutritional status of planted Aleppo pine (Pinus halepensis Mill.) in a degraded land semi-arid areas of Jordan. New For. 2011, 42, 285–300. [Google Scholar] [CrossRef]
- Ma, H.; Zhu, Q.K.; Zhao, W.J. Soil water response to precipitation in different micro-topographies on the semi-arid Loess Plateau, China. J. For. Res. 2020, 31, 245–256. [Google Scholar] [CrossRef]
- Nan, G.W.; He, X.Y.; Ma, L.; Qin, S.Y.; Han, L.; Xu, S.C. Identify a sustainable afforestation pattern for soil carbon sequestration: Considering both soil water-carbon conversion efficiency and their coupling relationship on the Loess Plateau. Land Degrad. Dev. 2024, 35, 2058–2070. [Google Scholar] [CrossRef]
- Gong, C.; Tan, Q.Y.; Liu, G.B.; Xu, M.X. Positive effects of mixed-species plantations on soil water storage across the Chinese Loess Plateau. For. Ecol. Manag. 2024, 552, 121571. [Google Scholar] [CrossRef]
- Liang, H.B.; Xue, Y.Y.; Li, Z.S.; Gao, G.Y.; Liu, G.H. Afforestation may accelerate the depletion of deep soil moisture on the Loess Plateau: Evidence from a meta-analysis. Land Degrad. Dev. 2022, 33, 3829–3840. [Google Scholar] [CrossRef]
- Feng, Y.H.; Schmid, B.; Loreau, M.; Forrester, D.; Fei, S.L.; Zhu, J.X.; Tang, Z.Y.; Zhu, J.L.; Hong, P.B.; Ji, C.J.; et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 2022, 376, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Crouzeilles, R.; Ferreira, M.S.; Chazdon, R.L.; Lindenmayer, D.B.; Sansevero, J.B.B.; Monteiro, L.; Iribarrem, A.; Latawiec, A.E.; Strassburg, B.B.N. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 2017, 3, e1701345. [Google Scholar] [CrossRef]
- Mooney, K.A.; Gruner, D.S.; Barber, N.A.; Van Bael, S.A.; Philpott, S.M.; Greenberg, R. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants. Proc. Natl. Acad. Sci. USA 2010, 107, 7335–7340. [Google Scholar] [CrossRef]
- Fong, Y.Y.; Huang, Y.; Gilbert, P.B.; Permar, S.R. chngpt: Threshold regression model estimation and inference. BMC Bioinform. 2017, 18, 454. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Qin, F.; Li, L.; Dong, X.; Liu, L.; Yang, L. The Long-Term Effects of Barren Land Afforestation on Plant Productivity, Soil Fertility, and Soil Moisture in China: A Meta-Analysis. Plants 2024, 13, 1614. https://doi.org/10.3390/plants13121614
Liu Y, Qin F, Li L, Dong X, Liu L, Yang L. The Long-Term Effects of Barren Land Afforestation on Plant Productivity, Soil Fertility, and Soil Moisture in China: A Meta-Analysis. Plants. 2024; 13(12):1614. https://doi.org/10.3390/plants13121614
Chicago/Turabian StyleLiu, Yanqi, Fucang Qin, Long Li, Xiaoyu Dong, Linfu Liu, and Liangping Yang. 2024. "The Long-Term Effects of Barren Land Afforestation on Plant Productivity, Soil Fertility, and Soil Moisture in China: A Meta-Analysis" Plants 13, no. 12: 1614. https://doi.org/10.3390/plants13121614
APA StyleLiu, Y., Qin, F., Li, L., Dong, X., Liu, L., & Yang, L. (2024). The Long-Term Effects of Barren Land Afforestation on Plant Productivity, Soil Fertility, and Soil Moisture in China: A Meta-Analysis. Plants, 13(12), 1614. https://doi.org/10.3390/plants13121614