The Phenotypic Variation in Moso Bamboo and the Selection of Key Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bamboo Germplasm for Testing
2.2. Measurement of Phenotypic Traits
2.2.1. Measurement of Phenotypic Character
2.2.2. Statistical Analysis
3. Results
3.1. Phenotypic Traits
3.2. Characterisation of Correlations between Phenotypic Traits
3.3. Screening for Key Phenotypic Characteristics
3.4. Comprehensive Evaluation of Phenotypic Characteristics
3.5. Comprehensive Evaluation of Phenotypic Traits
3.6. Identification of Different Taxa of Moso Bamboo Germplasm
4. Discussion
4.1. Phenotypic Diversity of Moso Bamboo Germplasm Resources
4.2. Key Phenotypic Traits of Moso Bamboo Germplasm Resources
4.3. Evaluation of Moso Bamboo Germplasm Resources
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.M.; Feng, P.F. Analysis of bamboo resources in China based on the ninth national forest resources inventory. World Bamboo Ratt. Newsl. 2019, 17, 45–48. (In Chinese) [Google Scholar]
- Wang, X.M.; Qiu, L.J.; Jing, R.L.; Ren, G.; Li, Y.; Li, C.; Qin, P.; Gu, Y.; Li, L. Phenotypic trait identification and evaluation of crop germplasm resources: Current status and trends. J. Plant Genet. Resour. 2022, 23, 12–20. [Google Scholar] [CrossRef]
- Khadivi-Khub, A.; Sarooghi, F.; Abbasi, F. Phenotypic variation of Prunus scoparia germplasm: Implications for breeding. Sci. Hortic. 2016, 207, 193–202. [Google Scholar] [CrossRef]
- Wang, Y.L.; Li, Y. Genetic diversity analysis of phenotypic traits among 37 Xanthoceras sorbifolium elite germplasms. J. For. Res. 2022, 27, 140–147. [Google Scholar] [CrossRef]
- Xia, X.W.; Huang, Y.F.; Zhou, M.P. Biodiversity of moso bamboo. Bamboo Res. Repos. 2014, 33, 6–15. (In Chinese) [Google Scholar]
- Shi, J.M.; Yang, G.Y.; Guo, Q.R.; Fan, G.; Zhong, A.; Zhang, W.; Wu, L.; He, G.; Xia, F. Geographic variation of phenotypic traits of moso bamboo in Jiangxi. J. Jiangxi Agric. Univ. 2008, 5, 824–828. (In Chinese) [Google Scholar]
- Jia, D.D.; Xu, Z.G.; Huang, R.; Zheng, Y.; Li, Z. Correlation analysis between phenotypic traits and seed yield of flowering moso bamboo. Guangxi For. Sci. 2022, 51, 331–336. [Google Scholar] [CrossRef]
- Huang, A.M.; Fang, Y.; Sun, J.; Li, J.; Hu, D.; Zhong, Q.; Cheng, D. Functional traits of fine roots of moso bamboo at different elevations in Wuyi Mountain. J. Ecol. 2023, 43, 398–407. [Google Scholar]
- Guo, W.; Paolo, C.; Zhang, J.; Hu, X.; Li, M.; Qi, L. Soil physicochemical properties determine leaf traits but not size traits of moso bamboo. Environ. Res. Lett. 2022, 17, 114061. [Google Scholar] [CrossRef]
- Zhang, W.B.; Fei, B.H.; Tian, G.L.; Yue, X.H.; Jiang, Z.H. Comparison of growth and phenotypic traits of moso bamboo in different regions. J. Northeast. For. Univ. 2019, 47, 1–5. [Google Scholar] [CrossRef]
- Zheng, Y.Q.; Lin, F.R.; Li, B.; Zong, Y.C.; Guo, W.Y.; Yu, X.D.; Li, W.Y. General Descriptors for Forest Germplasm Resources; China Standard Publishing House: Beijing, China, 2013; pp. 3–6. (In Chinese) [Google Scholar]
- Li, Y.L.; Zhang, Y.S.; Dong, A.H.; Liu, C.; Dong, Y.; Fu, Y.; Mao, X. Survey of germplasm resources and analysis of phenotypic trait diversity of Hepatica. South. For. Sci. 2022, 50, 17–23. [Google Scholar] [CrossRef]
- Liu, D.; Wang, X.; Li, W.; Li, J.; Tan, W.; Xing, W. Genetic Diversity Analysis of the Phenotypic Traits of 215 Sugar Beet Germplasm Resources. Sugar Technol. 2022, 24, 1790–1800. [Google Scholar] [CrossRef]
- Vaughan, P.I.; Ormerod, J.S. Increasing the Value of Principal Components Analysis for Simplifying Ecological Data: A Case Study with Rivers and River Birds. J. Appl. Ecol. 2005, 42, 487–497. [Google Scholar] [CrossRef]
- Li, X.H. Application of random forest model in classification and regression analysis. J. Appl. Entomol. 2013, 50, 1190–1197. (In Chinese) [Google Scholar]
- Meng, Y.D.; Du, H.Y.; Wang, L.; Lv, G.; Qing, J.; He, F.; Huang, H.; Du, Q. Diversity analysis of leaf phenotypic traits in Cortex Eucommia germplasm resources. For. Sci. Res. 2022, 35, 103–112. [Google Scholar] [CrossRef]
- Xu, X.; Yang, M.Y.; Man, Q.C.; Li, W.; Su, R.; Wang, L.; Zhang, Z.; Cui, J. A comprehensive evaluation of 195 potato germplasm resources for phenotypic traits. J. Nucl. Agric. 2023, 37, 1710–1722. (In Chinese) [Google Scholar]
- Zhang, C.B. Analysis of the Diversity of Leaf and Fruit Saponin Content of Sapindus and Screening of High Quality Germplasm Resources; Central South University of Forestry and Technology: Changsha, China, 2023; pp. 8–12. (In Chinese) [Google Scholar]
- Chikh-Rouhou, H.; Mezghani, N.; Mnasri, S.; Mezghani, N.; Garcés-Claver, A. Assessing the Genetic Diversity and Population Structure of a Tunisian Melon (Cucumis melo L.) Collection Using Phenotypic Traits and SSR Molecular Markers. Agronomy 2021, 11, 1121. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, G.S.; Mu, X.Y.; Han, S.; Wang, Y.; Ning, R.; Bai, Y.; Zhang, L. Phenotypic Diversity of Resident Populations of Northern Salix Germplasm Resources. Northwest J. Bot. 2017, 37, 1012–1021. (In Chinese) [Google Scholar]
- Li, D.B.; Wu, M.; Yu, R.; He, T.; Rong, J.; Zheng, Y.; Chen, L. Phenotypic diversity of moso bamboo from different seed sources and its correlation with environmental factors. J. Plant Resour. Environ. 2023, 32, 39–50. (In Chinese) [Google Scholar]
- Qu, K.L.; Zhang, Y.C.; Wang, H.Q.; Li, B.; Kang, Y.; Dong, S. Phenotypic diversity analysis of sour jujube from different seed sources. J. Plant Resour. Environ. 2024, 33, 58–70. (In Chinese) [Google Scholar]
- Stotz, G.C.; Salgado-Luarte, C.; Escobedo, V.M.; Valladares, F.; Gianoli, E. Phenotypic plasticity and the leaf economics spectrum: Plasticity is positively associated with specific leaf area. Oikos 2022, 2022, e09342. [Google Scholar] [CrossRef]
- Sun, X.L.; Zhang, Z.P.; Jiang, L.C. Construction of a prediction model of breast diameter and wood volume of major conifer species in Xiaoxinganling by applying ground diameter. J. Northeast. For. Univ. 2023, 51, 60–65+73. [Google Scholar] [CrossRef]
- Li, H. Comparison and selection of models for the relationship between ground diameter and diameter at breast height in Pinus sylvestris. Zhejiang For. Sci. Technol. 2020, 40, 71–76. (In Chinese) [Google Scholar]
- Wei, S.W.; Yang, H.; Zhang, Q.R.; Chen, S.; Luo, L.; Long, P. Diversity analysis of leaf lettuce resources based on phenotypic traits. J. Plant Genet. Resour. 2016, 17, 871–876. [Google Scholar] [CrossRef]
- Rui, W.J.; Wang, X.M.; Zhang, Q.N.; Hu, X.; Hu, X.; Fu, J.; Gao, Y.; Li, J. Analysis of genetic diversity of phenotypic traits in 353 germplasm resources of tomato. J. Hortic. 2018, 45, 561–570. [Google Scholar] [CrossRef]
- Jan, C. A new membership function approach to uncertain functions. Fuzzy Sets Syst. 2019, 387, 68–80. [Google Scholar] [CrossRef]
- Li, J.; Su, X.; Guo, J.; Xu, W.; Feng, L.; Wang, T.; Fu, F.; Wang, G. Sex-Related Differences of Ginkgo biloba in Growth Traits and Wood Properties. Forests 2023, 14, 1809. [Google Scholar] [CrossRef]
- Le, X.; Zhang, W.; Sun, G.; Fan, J.; Zhu, M. Research on the Differences in Phenotypic Traits and Nutritional Composition of Acer Truncatum Bunge Seeds from Various Regions. Foods 2023, 12, 2444. [Google Scholar] [CrossRef] [PubMed]
- Ingmar, R.S.; Alexandra, W.; Christian, W. Biodiversity change in light of succession theory. Oikos 2023, 2023, e09883. [Google Scholar] [CrossRef]
- de Oliveira Buzatti, R.S.; Pfeilsticker, T.R.; Carneiro, M.A.; Ellis, V.A.; de Souza, R.P.; Lemos-Filho, J.P.; Lovato, M.B. Disentangling the Environmental Factors That Shape Genetic and Phenotypic Leaf Trait Variation in the Tree Qualea grandiflora across the Brazilian Savanna. Front. Plant Sci. 2019, 10, 1580. [Google Scholar] [CrossRef]
- Liu, J.P. Research on climatic zoning of moso bamboo production areas. Bamboo Res. Repos. 1987, 3, 1–12. (In Chinese) [Google Scholar]
- Tayir, M.; Dai, Y.; Shi, Q.; Abdureyim, A.; Erkin, F. Distinct leaf functional traits of Tamarix chinensis at different habitats in the hinterland of the Taklimakan desert. Front. Plant Sci. 2023, 13, 1094049. [Google Scholar] [CrossRef] [PubMed]
Trait | Minimum Value | Maximum Value | Mean Value | Standard Deviation | Coefficient of Variation/% |
---|---|---|---|---|---|
DBH/cm | 6.45 | 12.73 | 10.28 | 1.23 | 11.97 |
DG/cm | 7.13 | 15.27 | 11.82 | 1.52 | 12.84 |
TG/cm * m−1 | 0.52 | 1.14 | 0.75 | 0.09 | 11.84 |
H/m | 12.08 | 19.67 | 15.7 | 1.54 | 9.84 |
TNN/node | 50 | 72 | 63.27 | 4.75 | 7.51 |
HuB/m | 4.36 | 10.87 | 7.21 | 1.34 | 18.56 |
NNuB/node | 18 | 35 | 27.22 | 3.17 | 11.65 |
LN/cm | 20.83 | 30 | 24.35 | 1.83 | 7.53 |
PC/m | 1.58 | 3.02 | 2.27 | 0.25 | 11.06 |
WC/kg | 9.73 | 44.45 | 26.44 | 6.91 | 26.14 |
BLr/g * g−1 | 0.72 | 3.56 | 1.72 | 0.57 | 33.33 |
WBL/kg | 2.36 | 11.03 | 6.49 | 1.75 | 26.9 |
WB/kg | 1.65 | 6.9 | 3.85 | 1.14 | 29.65 |
WL/kg | 0.53 | 4.99 | 2.64 | 0.9 | 33.96 |
W/kg | 13.62 | 52.82 | 32.91 | 7.97 | 24.23 |
Cwr/g * g−1 | 0.51 | 1.63 | 0.88 | 0.19 | 21.84 |
Bmc/g * g−1 | 0.42 | 1.66 | 0.61 | 0.13 | 21.15 |
Lmc/g * g−1 | 0.49 | 4.54 | 1.1 | 0.4 | 36.57 |
TABP/mm | 9.85 | 21.71 | 16.54 | 1.99 | 12.03 |
TABH/mm | 6.66 | 16.04 | 10.22 | 1.3 | 12.68 |
CD/mm | 49.21 | 104.32 | 80.48 | 10.38 | 12.89 |
WCr/mm * mm−1 | 0.2 | 0.39 | 0.26 | 0.03 | 10.78 |
LT/mm | 0.09 | 0.16 | 0.13 | 0.01 | 11.13 |
LA/cm2 | 6.8 | 15.14 | 10.45 | 1.49 | 14.24 |
LL/cm | 7.29 | 12.08 | 10.05 | 0.75 | 7.49 |
LW/cm | 1.21 | 1.81 | 1.48 | 0.12 | 7.81 |
LAr/cm * cm−1 | 5.24 | 7.91 | 6.82 | 0.4 | 5.87 |
SLA/cm2 * g−1 | 129.26 | 271.07 | 182.59 | 26.83 | 14.69 |
Mean | 16.65 |
Comp. 1 | Comp. 2 | Comp. 3 | Comp. 4 | Comp. 5 | Comp. 6 | Comp. 7 | Comp. 8 | |
---|---|---|---|---|---|---|---|---|
DBH | 0.105 | 0.006 | −0.022 | 0.053 | −0.008 | −0.003 | −0.036 | 0.009 |
DG | 0.103 | −0.001 | −0.012 | 0.093 | −0.077 | 0.001 | 0 | −0.045 |
TG | 0.038 | −0.102 | 0.085 | 0.235 | −0.247 | 0.076 | 0.071 | −0.215 |
H | 0.088 | 0.095 | −0.066 | −0.063 | 0.066 | 0.045 | −0.154 | 0.124 |
TNN | 0.083 | −0.059 | −0.008 | 0.02 | −0.055 | 0.025 | −0.03 | −0.21 |
HuB | 0.069 | 0.111 | −0.209 | −0.116 | 0.022 | −0.011 | −0.169 | 0.014 |
NNBB | 0.083 | 0.033 | −0.189 | −0.023 | −0.074 | −0.042 | −0.039 | −0.174 |
LN | −0.014 | 0.15 | −0.037 | −0.127 | 0.244 | −0.027 | −0.186 | 0.371 |
PC | 0.031 | 0.038 | 0.188 | 0.091 | 0.079 | 0.117 | 0.086 | 0.292 |
WC | 0.102 | 0.057 | −0.053 | −0.034 | 0.007 | −0.014 | 0.029 | 0.019 |
BLr | 0.012 | 0.072 | −0.158 | 0.3 | 0.016 | −0.105 | 0.397 | 0.279 |
WBL | 0.071 | −0.055 | 0.215 | −0.107 | 0.204 | 0.044 | 0.16 | −0.053 |
WB | 0.074 | −0.023 | 0.143 | 0.017 | 0.176 | 0.007 | 0.343 | 0.108 |
WL | 0.043 | −0.077 | 0.237 | −0.23 | 0.172 | 0.077 | −0.125 | −0.24 |
W | 0.104 | 0.037 | 0.001 | −0.054 | 0.053 | −0.003 | 0.059 | 0.004 |
Cwr | 0 | −0.108 | −0.084 | 0.197 | 0.105 | 0.284 | −0.349 | 0.113 |
Bmc | −0.016 | −0.056 | −0.132 | 0.122 | 0.22 | 0.175 | 0.024 | −0.169 |
Lmc | 0.002 | −0.027 | −0.109 | 0.157 | 0.269 | 0.121 | −0.008 | −0.228 |
TABP | 0.063 | 0.028 | 0.103 | 0.065 | −0.084 | −0.176 | 0.057 | −0.053 |
TABH | 0.076 | −0.011 | −0.074 | −0.126 | −0.152 | 0.375 | 0.152 | 0.168 |
CD | 0.103 | 0.001 | −0.035 | 0.067 | 0.01 | −0.016 | −0.089 | 0.005 |
WCr | −0.038 | −0.012 | −0.048 | −0.223 | −0.184 | 0.452 | 0.287 | 0.174 |
LT | −0.014 | 0.119 | 0.12 | 0.103 | 0.099 | −0.177 | 0.143 | 0.042 |
LA | −0.021 | 0.21 | 0.092 | 0.097 | −0.016 | 0.242 | −0.036 | −0.227 |
LL | −0.008 | 0.191 | 0.161 | 0.153 | −0.06 | 0.245 | −0.136 | −0.076 |
LW | −0.029 | 0.209 | 0.004 | 0.02 | 0.046 | 0.165 | 0.114 | −0.333 |
LAr | 0.026 | −0.032 | 0.201 | 0.174 | −0.136 | 0.081 | −0.345 | 0.366 |
SLA | −0.007 | −0.122 | −0.062 | 0.118 | 0.255 | 0.214 | 0.095 | 0.071 |
Eigenvalue | 9.241 | 3.985 | 2.335 | 1.967 | 1.83 | 1.29 | 1.185 | 1.026 |
Contribution rate | 33.002 | 14.231 | 8.338 | 7.026 | 6.536 | 4.608 | 4.232 | 3.663 |
Cumulative contribution rate | 33.002 | 47.234 | 55.572 | 62.598 | 69.134 | 73.742 | 77.974 | 81.637 |
Number | D | Rank | Number | D | Rank |
---|---|---|---|---|---|
Huangshan 1 | 0.55 | 62 | Jiujiang 1 | 0.445 | 100 |
Huangshan 2 | 0.556 | 61 | Jiujiang 2 | 0.692 | 9 |
Guangde 1 | 0.695 | 8 | Yifeng 1 | 0.557 | 59 |
Guangde 2 | 0.466 | 97 | Yifeng 2 | 0.5 | 82 |
Ningguo 1 | 0.599 | 44 | Anfu 1 | 0.593 | 48 |
Ningguo 2 | 0.584 | 51 | Anfu 2 | 0.638 | 25 |
Huoshan 1 | 0.785 | 2 | Shangrao 1 | 0.51 | 79 |
Huoshan 2 | 0.634 | 28 | Shangrao 2 | 0.57 | 55 |
Dehua 1 | 0.644 | 23 | Yihuang 1 | 0.531 | 69 |
Dehua 2 | 0.689 | 10 | Yihuang 2 | 0.515 | 77 |
Yongan 1 | 0.427 | 105 | Ruijin 1 | 0.504 | 81 |
Yongan 2 | 0.612 | 39 | Ruijin 2 | 0.427 | 105 |
Wuyi 1 | 0.803 | 1 | Chongyi 1 | 0.594 | 47 |
Wuyi 2 | 0.703 | 5 | Chongyi 2 | 0.569 | 56 |
Jianou 1 | 0.716 | 3 | Fenghua 1 | 0.667 | 15 |
Jianou 2 | 0.668 | 14 | Fenghua 2 | 0.493 | 84 |
Jiaocheng 1 | 0.664 | 17 | Huangyan 1 | 0.686 | 12 |
Jiaocheng 2 | 0.647 | 21 | Huangyan 2 | 0.499 | 83 |
Nanzhao 1 | 0.405 | 108 | Jinyun 1 | 0.648 | 20 |
Shihe 1 | 0.493 | 84 | Jinyun 2 | 0.621 | 34 |
Xinxian 1 | 0.614 | 38 | Longyou 1 | 0.522 | 73 |
Xinxian 2 | 0.487 | 90 | Longyou 2 | 0.517 | 74 |
Yiliang 1 | 0.533 | 68 | Anji 1 | 0.583 | 52 |
Yiliang 2 | 0.684 | 13 | Anji 2 | 0.467 | 96 |
Changning 1 | 0.535 | 67 | Zhuji 1 | 0.623 | 33 |
Changning 2 | 0.638 | 25 | Zhuji 2 | 0.478 | 91 |
Muchuan 1 | 0.631 | 29 | Chun’an 1 | 0.616 | 36 |
Muchuan 2 | 0.617 | 35 | Chun’an 2 | 0.563 | 58 |
Tianquan 1 | 0.624 | 32 | Jurong 1 | 0.445 | 100 |
Tianquan 2 | 0.491 | 87 | Yixing 1 | 0.426 | 107 |
Zizhong 1 | 0.643 | 24 | Yixing 2 | 0.489 | 88 |
Pingle 1 | 0.375 | 111 | Liyang 1 | 0.583 | 52 |
Pingle 2 | 0.317 | 113 | Chibi 1 | 0.548 | 63 |
Xing’an 1 | 0.517 | 74 | Chibi 2 | 0.599 | 44 |
Xing’an 2 | 0.46 | 98 | Yangxin 1 | 0.405 | 108 |
Sanjiang 1 | 0.54 | 66 | Yangxin 2 | 0.591 | 50 |
Sanjiang 2 | 0.528 | 70 | Huangmei 1 | 0.701 | 6 |
Rong’an 1 | 0.492 | 86 | Lutian 1 | 0.665 | 16 |
Rong’an 2 | 0.647 | 21 | Jingshan 1 | 0.472 | 94 |
Pingjiang 1 | 0.608 | 40 | Shishou 1 | 0.489 | 88 |
Pingjiang 2 | 0.441 | 103 | Enshi 1 | 0.699 | 7 |
Taojiang 1 | 0.629 | 31 | Enshi 2 | 0.445 | 100 |
Taojiang 2 | 0.544 | 65 | Yidu 1 | 0.596 | 46 |
Taoyuan 1 | 0.548 | 63 | Nanzhang 1 | 0.382 | 110 |
Taoyuan 2 | 0.607 | 41 | Zhushan 1 | 0.374 | 112 |
Xiangtan 1 | 0.516 | 76 | Changshou 1 | 0.476 | 92 |
Xiangtan 2 | 0.474 | 93 | Changshou 2 | 0.526 | 71 |
Hengyang 1 | 0.526 | 71 | Liangping 1 | 0.659 | 18 |
Hengyang 2 | 0.506 | 80 | Fengdu 1 | 0.429 | 104 |
Suining 1 | 0.638 | 25 | Fengdu 2 | 0.708 | 4 |
Suining 2 | 0.605 | 42 | Xiushan 1 | 0.631 | 29 |
Shuangpai 1 | 0.557 | 59 | Xiushan 2 | 0.689 | 10 |
Shuangpai 2 | 0.592 | 49 | Jiangjin 1 | 0.514 | 78 |
Yanling 1 | 0.576 | 54 | Jiangjin 2 | 0.468 | 95 |
Yanling 2 | 0.565 | 57 | Chishui 1 | 0.615 | 37 |
Wanli 1 | 0.451 | 99 | Chishui 2 | 0.6 | 43 |
Wanli 2 | 0.649 | 19 |
Trait | D | Trait | D |
---|---|---|---|
DBH | 0.851 *** | W | 0.863 *** |
DG | 0.815 *** | Cwr | −0.105 |
TG | 0.184 * | Bmc | −0.144 ** |
H | 0.767 *** | Lmc | −0.062 |
TNN | 0.538 *** | TABP | 0.548 *** |
HuB | 0.500 *** | TABH | 0.572 *** |
NNBB | 0.539 *** | CD | 0.816 *** |
LN | 0.107 | WCr | −0.395 *** |
PC | 0.501 ** | LT | 0.219 |
WC | 0.826 *** | LA | 0.250 |
BLr | 0.372 | LL | 0.333 |
WBL | 0.611 *** | LW | 0.171 |
WB | 0.748 *** | LAr | 0.217 * |
WL | 0.262 ** | SLA | −0.032 * |
Trait | Items | Group | |||
---|---|---|---|---|---|
I | II | III | IV | ||
DBH | M ± SD | 11.05 ± 0.8 a | 8.88 ± 1.03 d | 10.28 ± 0.55 b | 9.7 ± 1.48 c |
DG | M ± SD | 12.77 ± 1.03 a | 10.1 ± 1.25 d | 11.79 ± 0.62 b | 11.03 ± 1.81 c |
TG | M ± SD | 0.76 ± 0.07 a | 0.7 ± 0.08 b | 0.78 ± 0.07 a | 0.76 ± 0.17 a |
H | M ± SD | 16.66 ± 1.39 a | 14.37 ± 0.91 b | 15.3 ± 0.91 bc | 14.81 ± 1.62 c |
TNN | M ± SD | 65.37 ± 3.55 a | 58.92 ± 5.01 b | 64.12 ± 3 a | 60.63 ± 5.55 b |
HuB | M ± SD | 7.98 ± 1.29 a | 6.34 ± 0.9 b | 6.61 ± 1.01 b | 6.68 ± 0.88 b |
NNBB | M ± SD | 29.17 ± 2.59 a | 24.31 ± 2.69 c | 26.4 ± 2.18 b | 26.13 ± 1.81 b |
LN | M ± SD | 24.32 ± 1.79 ab | 25.05 ± 2.17 a | 23.72 ± 1.36 b | 24.28 ± 1.82 ab |
PC | M ± SD | 2.31 ± 0.27 a | 2.2 ± 0.2 a | 2.25 ± 0.27 a | 2.22 ± 0.21 a |
WC | M ± SD | 31.07 ± 5.47 a | 19.56 ± 4.82 c | 24.91 ± 3.59 b | 22.24 ± 6.4 bc |
BLr | M ± SD | 1.81 ± 0.51 a | 1.51 ± 0.57 a | 1.7 ± 0.65 a | 1.86 ± 0.65 a |
WBL | M ± SD | 6.84 ± 1.52 ab | 5.27 ± 1.45 c | 7.2 ± 1.8 a | 5.93 ± 1.99 bc |
WB | M ± SD | 4.19 ± 1.04 a | 2.93 ± 0.67 b | 4.19 ± 1.24 a | 3.56 ± 1.14 ab |
WL | M ± SD | 2.66 ± 0.77 ab | 2.34 ± 0.92 b | 3.01 ± 1 a | 2.37 ± 0.96 b |
W | M ± SD | 37.88 ± 6.28 a | 24.83 ± 5.85 c | 32.11 ± 4.54 b | 28.17 ± 8.09 bc |
Cwr | M ± SD | 0.83 ± 0.19 a | 0.88 ± 0.21 a | 0.96 ± 0.15 a | 0.93 ± 0.22 a |
Bmc | M ± SD | 0.58 ± 0.07 c | 0.6 ± 0.08 bc | 0.67 ± 0.21 ab | 0.71 ± 0.16 a |
Lmc | M ± SD | 1.08 ± 0.54 a | 1.06 ± 0.19 a | 1.13 ± 0.14 a | 1.31 ± 0.32 a |
TABP | M ± SD | 17.37 ± 1.86 a | 15.31 ± 1.63 b | 16.21 ± 1.79 ab | 15.88 ± 2.18 b |
TABH | M ± SD | 86.69 ± 7.36 a | 69.17 ± 9.08 c | 80.23 ± 4.85 ab | 76.18 ± 11.98 bc |
CD | M ± SD | 10.77 ± 1.08 a | 9.14 ± 1.2 c | 10.34 ± 1.07 b | 9.72 ± 1.42 b |
WCr | M ± SD | 0.25 ± 0.03 a | 0.27 ± 0.03 a | 0.26 ± 0.03 a | 0.26 ± 0.02 a |
LT | M ± SD | 0.13 ± 0.01 a | 0.13 ± 0.02 a | 0.12 ± 0.01 a | 0.13 ± 0.01 a |
LA | M ± SD | 10.66 ± 1.18 a | 10.61 ± 2.04 a | 10.26 ± 1.13 a | 9.15 ± 1.77 b |
LL | M ± SD | 10.2 ± 0.55 a | 10 ± 0.97 a | 10.06 ± 0.55 a | 9.07 ± 1.06 b |
LW | M ± SD | 1.49 ± 0.1 a | 1.5 ± 0.16 a | 1.44 ± 0.09 a | 1.44 ± 0.14 a |
LAr | M ± SD | 6.87 ± 0.31 ab | 6.69 ± 0.33 b | 7.01 ± 0.29 a | 6.35 ± 0.83 c |
SLA | M ± SD | 166.91 ± 16.42 c | 176.21 ± 13.32 c | 202.19 ± 9.89 b | 247.93 ± 14.37 a |
D | M | 0.62 | 0.47 | 0.56 | 0.5 |
Sample Type | Training Set | Test Set | ||||||
---|---|---|---|---|---|---|---|---|
I | II | III | IV | I | II | III | IV | |
Number of samples | 41 | 18 | 13 | 7 | 12 | 11 | 10 | 1 |
Accurate prediction number | 34 | 14 | 7 | 3 | 9 | 6 | 9 | 0 |
Prediction accuracy/% | 82.93% | 77.78% | 53.85% | 42.86% | 75.00% | 54.55% | 90.00% | 0.00% |
Average accuracy/% | 73.42% | 70.59% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Wei, S.; Li, J.; Wang, J.; Deng, Z.; Gu, R.; Fan, S.; Liu, G. The Phenotypic Variation in Moso Bamboo and the Selection of Key Traits. Plants 2024, 13, 1625. https://doi.org/10.3390/plants13121625
Zheng S, Wei S, Li J, Wang J, Deng Z, Gu R, Fan S, Liu G. The Phenotypic Variation in Moso Bamboo and the Selection of Key Traits. Plants. 2024; 13(12):1625. https://doi.org/10.3390/plants13121625
Chicago/Turabian StyleZheng, Shihui, Songpo Wei, Jiarui Li, Jingsheng Wang, Ziyun Deng, Rui Gu, Shaohui Fan, and Guanglu Liu. 2024. "The Phenotypic Variation in Moso Bamboo and the Selection of Key Traits" Plants 13, no. 12: 1625. https://doi.org/10.3390/plants13121625
APA StyleZheng, S., Wei, S., Li, J., Wang, J., Deng, Z., Gu, R., Fan, S., & Liu, G. (2024). The Phenotypic Variation in Moso Bamboo and the Selection of Key Traits. Plants, 13(12), 1625. https://doi.org/10.3390/plants13121625