Phylogeographic Structure and Population Dynamics of Baoxing Osmanthus (Osmanthus serrulatus), an Endemic Species from the Southwest Sichuan Basin, China
Abstract
:1. Introduction
2. Results
2.1. Sequence Variation and Genetic Diversity
2.2. Genetic Differentiation and Population Structure
2.3. Distribution Pattern and Phylogenetic Relationship
2.4. Divergence Time Estimation and Population Dynamics
3. Discussion
3.1. Genetic Diversity and Haplotype Variation
3.2. Population Differentiation and Genetic Structure
3.3. Population Divergence and History Dynamics
4. Materials and Methods
4.1. Population Sampling
4.2. DNA Extraction, PCR Amplification, and Sequencing
4.3. Genetic Diversity and Population Structure
4.4. Phylogenetic Analysis and Divergence Time Estimation
4.5. Demographic Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wan, T.; Oaks, J.R.; Jiang, X.; Huang, H.; Knowles, L.L. Differences in Quaternary co-divergence reveals community-wide diversification in the mountains of southwest China varied among species. Proc. R. Soc. B-Biol. Sci. 2021, 288, 20202567. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Ree, R.H. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. USA 2017, 114, E3444–E3451. [Google Scholar] [CrossRef] [PubMed]
- López-Pujol, J.; Zhang, F.; Sun, H.; Ying, T.; Ge, S. Centres of plant endemism in China: Places for survival or for speciation? J. Biogeogr. 2011, 38, 1267–1280. [Google Scholar] [CrossRef]
- Shi, Y.; Li, J.; Li, B.; Yao, T.; Wang, S.; Li, S.; Cui, Z.; Wang, F.; Pan, B.; Fang, X.; et al. Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during Late Cenozoic. Acta Geogr. Sin. 1999, 54, 10–20. [Google Scholar] [CrossRef]
- Ding, W.N.; Ree, R.H.; Spicer, R.A.; Xing, Y.-W. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 2020, 369, 578–581. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Yang, R.; Abbott, R.J.; Miehe, G.; Hu, T.; Liu, J. Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom. (Pinaceae) in the Qinghai-Tibetan Plateau and adjacent highlands. Mol. Ecol. 2007, 16, 4128–4137. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.S.; Li, Y.F.; Ding, X.; Wang, X. Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai-Tibetan Plateau and its correlation with the Quaternary climate change. Mol. Ecol. 2008, 17, 5135–5145. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Fu, C.; Comes, H.P. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol. Phylogenet. Evol. 2011, 59, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.M.; Kang, H.Z.; Liu, C.J. An overview on the potential Quaternary glacial refugia of plants in China mainland. Bull. Bot. Res. 2011, 31, 623–632. [Google Scholar]
- Shen, L.; Chen, X.Y.; Li, Y.Y. Glacial refugia and postglacial recolonization patterns of organisms. Acta Ecol. Sin. 2002, 22, 1983–1990. [Google Scholar]
- He, K.; Jiang, X. Sky islands of southwest China. I: An overview of phylogeographic patterns. Chin. Sci. Bull. 2014, 59, 585–597. [Google Scholar] [CrossRef]
- Bai, W.N.; Wang, W.T.; Zhang, D.Y. Phylogeographic breaks within Asian butternuts indicate the existence of a phytogeographic divide in East Asia. New Phytol. 2016, 209, 1757–1772. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Abbott, R.J.; Li, W.; Sun, H.; Volis, S. Genetic diversity hotspots and refugia identifid by mapping multi-plant species haplotype diversity in China. Isr. J. Plant Sci. 2019, 66, 136–151. [Google Scholar] [CrossRef]
- Fan, Z.; Gao, C.; Lin, L. Phylogeographical and population genetics of Polyspora sweet in China provides insights into its phylogenetic evolution and subtropical dispersal. BMC Plant Biol. 2024, 24, 89. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907. [Google Scholar] [CrossRef] [PubMed]
- Si, X.; Cadotte, M.W.; Davies, T.J.; Antonelli, A.; Ding, P.; Svenning, J.; Faurby, S. Phylogenetic and functional clustering illustrate the roles of adaptive radiation and dispersal filtering in jointly shaping Late-Quaternary mammal assemblages on oceanic islands. Ecol. Lett. 2022, 25, 1250–1262. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Lougheed, S.C.; Zhao, Y.; Zhang, G.; Liu, W.; Lu, F.; Wang, Y.; Zhang, W.; Yang, J.; Qiong, L.; et al. Comparative phylogeography study reveals introgression and incomplete lineage sorting during rapid diversification of Rhodiola. Ann. Bot.-Lond. 2022, 129, 185–200. [Google Scholar] [CrossRef]
- Xiang, Q.B.; Liu, Y.L. An Illustrated Monograph of the Sweet Osmanthus Cultivars in China; Zhejiang Science & Technology Press: Hangzhou, China, 2008; pp. 2–12. [Google Scholar]
- Li, Y.; Li, X.; Nie, S.; Zhang, M.; Yang, Q.; Xu, W.; Duan, Y.; Wang, X. Reticulate evolution of the tertiary relict Osmanthus. Plant J. 2023, 117, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Xiong, M.; Ji, C.; Li, D.; Zhang, Z. Molecular phylogenetic reconstruction of Osmanthus Lour. (Oleaceae) and related genera based on three chloroplast intergenic spacers. Plant Syst. Evol. 2011, 294, 57–64. [Google Scholar] [CrossRef]
- Yang, G.D.; Qian, H.R.; Chen, L.; Wang, X. Analysis of community structure of Osmanthus serrulatus based on TWINSPAN classification and DCCA sequencing. Acta Ecol. Sin. 2018, 38, 3059–3068. [Google Scholar] [CrossRef]
- Ji, C.F. Systematic Taxonomy of the Genus Osmanthus (Oleaceae). Ph.D. Dissertation, Nanjing Forestry University, Nanjing, China, 2004; pp. 53–54. [Google Scholar]
- Chang, M.; Qiu, L.; Wei, Z.; Green, P.S. Osmanthus . In Flora of China; Wu, Z., Raven, P., Hong, D., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 1996; Volume 15, pp. 286–292. [Google Scholar]
- Chen, L.; Yang, G.D.; Qian, H.R.; Li, L.N.; Cheng, Y. Analyses on characteristics and species diversity of Osmanthus serrulatus community in Dongla Mountain of Sichuan Province. J. Plant Resour. Environ. 2017, 26, 74–83. [Google Scholar] [CrossRef]
- Chen, L.; Pan, T.; Qian, H.; Zhang, M.; Yang, G.; Wang, X. Genetic diversity and population structure revealed by SSR markers on endemic species Osmanthus serrulatus Rehder from southwestern Sichuan Basin, China. Forests 2021, 12, 1365. [Google Scholar] [CrossRef]
- Yang, G.D.; Qian, H.R.; Chen, L.; Wang, X. Ultrastructure observation in the development of Osmanthus serrulatus seed mature. J. Cent. South. Univ. For. Technol. 2018, 38, 19–25, 34. [Google Scholar] [CrossRef]
- Yang, G.D.; Qian, H.R.; Chen, L.; Wang, X. Reproduction system of Osmanthus serrulatus, an endemic plant to China. Sci. Silvae Sin. 2018, 54, 17–29. [Google Scholar] [CrossRef]
- Yang, G.D.; Qian, H.R.; Chen, L.; Wang, X. Effect of soil nutrients on spatial distribution of Osmanthus serrulatus community in Dongla Mountains. Acta Bot. Boreali-Occident. Sin. 2018, 38, 343–352. [Google Scholar] [CrossRef]
- Jump, A.S.; Marchant, R.; Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 2009, 14, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Ellegren, H.; Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 2016, 17, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Goodall-Copestake, W.P.; Tarling, G.A.; Murphy, E.J. On the comparison of population-level estimates of haplotype and nucleotide diversity: A case study using the gene cox1 in animals. Heredity 2012, 109, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Petit, R.J.; Duminil, J.; Fineschi, S.; Hampe, A.; Salvini, D.; Vendramin, G.G. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol. Ecol. 2005, 14, 689–701. [Google Scholar] [CrossRef]
- Young, A.; Boyle, T.; Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 1996, 11, 413–418. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.; Zhang, X.; Zhou, W.; Chen, X.; Hu, X. Advancing phylogeography with chloroplast DNA markers. Biodivers. Sci. 2019, 27, 219–234. [Google Scholar] [CrossRef]
- Daniell, H.; Lin, C.; Yu, M.; Chang, W.-J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Jin, S.; Zhang, L.; Qin, R.; Liu, H. The applications of chloroplast genome analysis in plant system development. Bot. Res. 2014, 3, 1–9. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, T.; Zheng, S.; Meng, H.-H.; Cao, J.-G.; Song, Y.-G.; Kozlowski, G. Phylogeography of Pterocarya hupehensis reveals the evolutionary patterns of a Cenozoic relict tree around the Sichuan Basin. For. Res. 2024, 4, e008. [Google Scholar] [CrossRef]
- Yin, Q.Y.; Fan, Q.; Li, P.; Truong, D.; Zhao, W.; Zhou, R.; Chen, S.; Liao, W. Neogene and Quaternary climate changes shaped the lineage differentiation and demographic history of Fokienia hodginsii (Cupressaceae s.l.), a Tertiary relict in East Asia. J. Syst. Evol. 2021, 59, 1081–1099. [Google Scholar] [CrossRef]
- Liu, J.; Luo, Y.; Li, D.; Gao, L. Evolution and maintenance mechanisms of plant diversity in the Qinghai-Tibet Plateau and adjacent regions: Retrospect and prospect. Biodivers. Sci. 2017, 25, 163–174. [Google Scholar] [CrossRef]
- Fu, P.C.; Sun, S.S.; Hollingsworth, P.M.; Chen, S.-L.; Favre, A.; Twyford, A.D. Population genomics reveal deep divergence and strong geographical structure in gentians in the Hengduan Mountains. Front. Plant Sci. 2022, 13, 936761. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Yue, J.P.; Sun, W.G.; Xu, B.; Li, Z.; Comes, H.P.; Sun, H. Evolutionary history of the subnival flora of the Himalaya-Hengduan Mountains: First insights from comparative phylogeography of four perennial herbs. J. Biogeogr. 2016, 43, 31–43. [Google Scholar] [CrossRef]
- Fan, D.M.; Yue, J.P.; Nie, Z.L.; Li, Z.M.; Comes, H.P.; Sun, H. Phylogeography of Sophora davidii (Leguminosae) across the ‘Tanaka-Kaiyong Line’, an important phytogeographic boundary in Southwest China. Mol. Ecol. 2013, 22, 4270–4288. [Google Scholar] [CrossRef]
- Fu, J.; Wen, L. Impacts of Quaternary glaciation, geological history and geography on animal species history in continental East Asia: A phylogeographic review. Mol. Ecol. 2023, 32, 4497–4514. [Google Scholar] [CrossRef]
- Hou, H.; Ye, H.; Wang, Z.; Wu, J.; Gao, Y.; Han, W.; Na, D.; Sun, G.; Wang, Y. Demographic history and genetic differentiation of an endemic and endangered Ulmus lamellosa (Ulmus). BMC Plant Biol. 2020, 20, 526. [Google Scholar] [CrossRef] [PubMed]
- Favre, A.; Päckert, M.; Pauls, S.U.; Jähnig, S.C.; Uhl, D.; Michalak, I.; Muellner-Riehl, A.N. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 2015, 90, 236–253. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.Y.; Ma, P.F.; Yang, G.Q.; Guo, C.; Zhang, Y.; Chen, Y.; Guo, Z.; Li, D. Rapid diversification of alpine bamboos associated with the uplift of the Hengduan Mountains. J. Biogeogr. 2019, 46, 2678–2689. [Google Scholar] [CrossRef]
- Cao, Y.; Comes, H.P.; Sakaguchi, S.; Chen, L.-Y.; Qiu, Y.-X. Evolution of East Asia’s Arcto-Tertiary relict Euptelea (Eupteleaceae) shaped by Late Neogene vicariance and Quaternary climate change. BMC Evol. Biol. 2016, 16, 66. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Jiang, W.M.; Comes, H.P.; Hu, F.S.; Qiu, Y.X.; Fu, C.X. Molecular phylogeography and ecological niche modelling of a widespread herbaceous climber, Tetrastigma hemsleyanum (Vitaceae): Insights into Plio–Pleistocene range dynamics of ever-green forest in subtropical China. New Phytol. 2015, 206, 852–867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zhou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Leigh, J.; Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Li, E.; Liu, Y.; Xu, C.; Wang, Y.; Liu, K.; Cui, X.; Sun, J.; Suo, Z.; Zhang, Z.; et al. Phylogenomic approaches untangle early divergences and complex diversifications of the olive plant family. BMC Biol. 2022, 20, 92. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Drummond, A.; Xie, D.; Baele, G.; Suchard, M. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, P.; Rieb, E.; Abrami, G.; Lücking, A.; Mehler, A. TreeAnnotator: Versatile visual annotation of hierarchical text relations. In Proceedings of the LREC 2018: 11th Edition of the Language Resources and Evaluation Conference, Miyazaki, Japan, 7–12 May 2018. [Google Scholar]
- Xie, J.; Chen, Y.; Cai, G.; Cai, R.; Hu, Z.; Wang, H. Tree Visualization By One Table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res. 2023, 51, W587–W592. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Harpending, H.C. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol. 1994, 66, 591–600. [Google Scholar]
Haplotype | Nucleotide Position | ||||
---|---|---|---|---|---|
matK | trnS-trnG | ||||
396 | 699 | 1051 | 1098 | 1105 | |
H1 | G | C | A | A | T |
H2 | T | . | . | . | . |
H3 | T | . | . | C | . |
H4 | T | T | . | C | . |
H5 | . | . | . | C | . |
H6 | T | . | C | . | G |
Populations | Locations | Sample Size | Longitude (E) | Latitude (N) | Elevation (m) | Hd | π (×10−3) | Haplotypes (No. of Individuals) | Nh |
---|---|---|---|---|---|---|---|---|---|
BCP | Jinkouhe, Leshan | 12 | 103°09′ | 29°24′ | 1940 | 0.409 | 0.20 | H1 (3)/H2 (9) | 2 |
EMS | Emeishan, Leshan | 18 | 103°20′ | 29°32′ | 2308 | 0.294 | 0.14 | H3 (15)/H4 (3) | 2 |
HZP | Hanyuan, Ya’an | 26 | 102°33′ | 29°38′ | 2140 | 0.471 | 0.23 | H3 (17)/H5 (9) | 2 |
XYG | Hanyuan, Ya’an | 18 | 102°42′ | 29°27′ | 2412 | 0.366 | 0.18 | H3 (14)/H5 (4) | 2 |
YCP | Hanyuan, Ya’an | 18 | 102°34′ | 29°36′ | 2034 | 0.366 | 0.18 | H3 (14)/H5 (4) | 2 |
WZX | Lushan, Ya’an | 7 | 103°02′ | 30°27′ | 2146 | 0.476 | 0.23 | H3 (2)/H5 (5) | 2 |
MPZ | Lushan, Ya’an | 15 | 102°56′ | 30°22′ | 1318 | 0.343 | 0.17 | H3 (12)/H5 (3) | 2 |
DLS1 | Baoxing, Ya’an | 12 | 102°33′ | 30°25′ | 2080 | 0.712 | 0.43 | H2 (4)/H3 (5)/H4 (3) | 3 |
DLS2 | Baoxing, Ya’an | 11 | 102°32′ | 30°25′ | 2153 | 0.000 | 0.00 | H3 (11) | 1 |
XLXS | Dayi, Chengdu | 11 | 103°10′ | 30°39′ | 2013 | 0.000 | 0.00 | H6 (11) | 1 |
mean | 0.344 | 0.17 | |||||||
All | 148 | 0.590 | 0.47 |
Source of Variation | d.f. | SSD | Variance Components | Percentage of Variation (%) | FST | GST/NST | Nm |
---|---|---|---|---|---|---|---|
Among groups | 9 | 23.172 | 0.174 Va | 81.23 | 0.812 (p < 0.05) | 0.396/0.698 (p < 0.05) | 0.11 |
Within populations | 138 | 5.533 | 0.040 Vb | 18.77 | |||
Total | 147 | 28.704 | 0.214 |
Population | Tajima’s D | p | Fu’s FS | p | Demographic Expansion | Spatial Expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SSD | p | HRag | p | SSD | p | HRag | p | |||||
BCP | 0.541 | 0.827 | 0.735 | 0.489 | 0.008 | 0.456 | 0.2 | 0.496 | 0.008 | 0.196 | 0.200 | 0.514 |
EMS | 0.022 | 0.722 | 0.463 | 0.385 | 0.242 | 0.121 | 0.256 | 0.281 | 0.002 | 0.232 | 0.256 | 0.437 |
HZP | 1.303 | 0.925 | 1.437 | 0.672 | 0.016 | 0.099 | 0.225 | 0.089 | 0.016 | 0.025 | 0.225 | 0.109 |
HYQ | 0.488 | 0.804 | 0.796 | 0.515 | 0.005 | 0.426 | 0.206 | 0.417 | 0.005 | 0.206 | 0.206 | 0.447 |
HYX | 0.488 | 0.782 | 0.796 | 0.501 | 0.005 | 0.408 | 0.206 | 0.427 | 0.005 | 0.199 | 0.206 | 0.455 |
WZX | 0.559 | 0.85 | 0.589 | 0.459 | 0.017 | 0.270 | 0.229 | 0.615 | 0.017 | 0.208 | 0.229 | 0.622 |
LSD | 0.235 | 0.767 | 0.597 | 0.443 | 0.003 | 0.486 | 0.216 | 0.382 | 0.003 | 0.25 | 0.216 | 0.416 |
DLS1 | 1.022 | 0.814 | 0.462 | 0.574 | 0.029 | 0.185 | 0.213 | 0.135 | 0.029 | 0.127 | 0.213 | 0.141 |
DLS2 | 0.000 | 1.000 | 0.000 | N.A. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
XLXS | 0.000 | 1.000 | 0.000 | N.A. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Mean | 0.466 | 0.849 | 0.588 | 0.505 | 0.033 | 0.245 | 0.175 | 0.284 | 0.009 | 0.144 | 0.175 | 0.314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wu, X.; Liu, X.; Zhang, M.; Xie, C.; Chen, L. Phylogeographic Structure and Population Dynamics of Baoxing Osmanthus (Osmanthus serrulatus), an Endemic Species from the Southwest Sichuan Basin, China. Plants 2024, 13, 1653. https://doi.org/10.3390/plants13121653
Wang Z, Wu X, Liu X, Zhang M, Xie C, Chen L. Phylogeographic Structure and Population Dynamics of Baoxing Osmanthus (Osmanthus serrulatus), an Endemic Species from the Southwest Sichuan Basin, China. Plants. 2024; 13(12):1653. https://doi.org/10.3390/plants13121653
Chicago/Turabian StyleWang, Zhibei, Xi Wu, Xin Liu, Min Zhang, Chunping Xie, and Lin Chen. 2024. "Phylogeographic Structure and Population Dynamics of Baoxing Osmanthus (Osmanthus serrulatus), an Endemic Species from the Southwest Sichuan Basin, China" Plants 13, no. 12: 1653. https://doi.org/10.3390/plants13121653
APA StyleWang, Z., Wu, X., Liu, X., Zhang, M., Xie, C., & Chen, L. (2024). Phylogeographic Structure and Population Dynamics of Baoxing Osmanthus (Osmanthus serrulatus), an Endemic Species from the Southwest Sichuan Basin, China. Plants, 13(12), 1653. https://doi.org/10.3390/plants13121653