Unravelling the Homology between Calycine Glands in Malpighiales: New Data from Basal Malpighiaceae
Abstract
:1. Introduction
2. Results
2.1. Elaiophore Vasculature in the Galphimioid and Byrsonimoid Clades
2.2. Ontogeny of Elaiophores in the Galphimioid and Byrsonimoid Clades
2.3. Homology between Elaiophores, Floral, and Extrafloral Nectaries in Malpighiales
3. Discussion
3.1. Ontogenetic Origin of Elaiophores in Malpighiaceae
3.2. Evolutionary Origin of Elaiophores in Malpighiaceae
4. Materials and Methods
4.1. Sampling
4.2. Anatomical Analysis
4.3. Terminological Framework
4.4. Criteria for Homology Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gagliardi, K.B.; Cordeiro, I.; Demarco, D. Protection and attraction: Bracts and secretory structures in reduced inflorescences of Malpighiales. Flora 2016, 220, 52–62. [Google Scholar] [CrossRef]
- Machado, S.R.; Morellato, L.P.C.; Sajo, M.G.; Oliveira, P.S. Morphological patterns of extrafloral nectaries in woody plant species of the Brazilian Cerrado. Plant Biol. 2008, 10, 660–673. [Google Scholar] [CrossRef] [PubMed]
- Rocha, D.I.; Da Silva, L.C.; Valente, V.M.M.; Francino, D.M.T.; Meira, R.M.S.A. Morphoanatomy and development of leaf secretory structures in Passiflora amethystina Mikan (Passifloraceae). Aust. J. Bot. 2009, 57, 619–626. [Google Scholar] [CrossRef]
- Matthews, M.L.; Endress, P.K. Comparative floral structure and systematics in Rhizophoraceae, Erythroxylaceae and the potentially related Ctenolophonaceae, Linaceae, Irvingiaceae and Caryocaraceae (Malpighiales). Bot. J. Linn. Soc. 2011, 166, 331–416. [Google Scholar] [CrossRef]
- Weber, M.G.; Porturas, L.D.; Keeler, K.H. World List of Plants with Extrafloral Nectaries. Available online: http://www.extrafloralnectaries.org/ (accessed on 8 June 2021).
- Almeida, A.L.; Paiva, E.A.S. Colleters in Mabea fistulifera Mart. (Euphorbiaceae): Anatomy and biology of the secretory process. Flora 2019, 258, 151439. [Google Scholar] [CrossRef]
- Paiva, E.A.S.; Dötterl, S.; De-Paula, O.C.; Schlindwein, C.; Souto, L.S.; Vitarelli, N.C.; da Silva, C.I.; Mateus, S.; Alves-dos-Santos, I.; Oliveira, D.M.T. Osmophores of Caryocar brasiliense (Caryocaraceae): A particular structure of the androecium that releases an unusual scent. Protoplasma 2019, 256, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.; Ruhfel, B.R.; Schaefer, H.; Amorim, A.M.; Sugumaran, M.; Wurdack, K.J.; Endress, P.K.; Matthews, M.L.; Stevens, P.F.; Mathews, S.; et al. Phylogenomics and a posteriori data partitioning resolve the Cretaceous Angiosperm radiation Malpighiales. Proc. Natl. Acad. Sci. USA 2012, 109, 17519–17524. [Google Scholar] [CrossRef] [PubMed]
- Paiva, E.A.S.; Couy-Melo, G.A.; Ballego-Campos, I.; Baptista, P.; Carillo, P. Colleters, extrafloral nectaries, and resin glands protect buds and young leaves of Ouratea castaneifolia (DC.) Engl. (Ochnaceae). Plants 2021, 10, 1680. [Google Scholar] [CrossRef] [PubMed]
- Pace, M.R.; Cunha Neto, I.L.; Santos-Silva, L.N.N.; Melo-de-Pinna, G.F.A.; Acevedo-Rodríguez, P.; Almeida, R.F.; Amorim, A.M.; Angyalossy, V. First report of laticifers in lianas of Malpighiaceae and their phylogenetic implications. Am. J. Bot. 2019, 106, 1156–1172. [Google Scholar] [CrossRef]
- Possobom, C.C.F.; Guimarães, E.; Machado, S.R. Structure and secretion mechanisms of floral glands in Diplopterys pubipetala (Malpighiaceae), a Neotropical species. Flora 2015, 211, 26–39. [Google Scholar] [CrossRef]
- Possobom, C.C.F.; Machado, S.R. Elaiophores in three Neotropical Malpighiaceae species: A comparative study. Plant Syst. Evol. 2018, 304, 15–32. [Google Scholar] [CrossRef]
- Anderson, W.R. Floral conservatism in Neotropical Malpighiaceae. Biotropica 1979, 11, 219–223. [Google Scholar] [CrossRef]
- Anderson, W.R. The origin of the Malpighiaceae—The evidence from morphology. Mem. N. Y. Bot. Gard. 1990, 64, 210–224. [Google Scholar]
- Vogel, S. History of the Malpighiaceae pollination ecology. Mem. N. Y. Bot. Gard. 1990, 55, 130–142. [Google Scholar]
- Davis, C.C.; Schaefer, H.; Xi, Z.; Baum, D.A.; Donoghue, M.J.; Harmon, L.J. Long-term morphological stasis maintained by a plant-pollinator mutualism. Proc. Natl. Acad. Sci. USA 2014, 111, 5914–5919. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.R.; Anderson, C.; Davis, C.C. Malpighiaceae. 2006. Available online: http://herbarium.lsa.umich.edu/malpigh/index.html (accessed on 24 April 2024).
- Davis, C.C.; Anderson, W.R. A Complete generic phylogeny of Malpighiaceae inferred from nucleotide sequence data and morphology. Am. J. Bot. 2010, 97, 2031–2048. [Google Scholar] [CrossRef]
- Davis, C.C.; Marinho, L.C.; Amorim, A.M. Andersoniodoxa, a replacement name for Andersoniella (Malpighiaceae). Phytotaxa 2020, 470, 121–122. [Google Scholar] [CrossRef]
- Davis, C.C.; Marinho, L.C.; Amorim, A.M.A. Andersoniella: A new genus of Neotropical Malpighiaceae. Harv. Pap. Bot. 2020, 25, 51–56. [Google Scholar] [CrossRef]
- Caspary, R. De Nectariis. Adolphum Marcum. Botanische Zeitung 1848, 6, 628–630. [Google Scholar]
- Delpino, F. Funzione mirmecofila nel Regno Vegetale. Mem. Accad. Sci. Istit. Bologna 1886, 4, 215–392. [Google Scholar]
- Subramanian, R.B.; Arumugasamy, K.; Inamdar, J.A. Studies in the secretory glands of Hiptage sericea (Malpighiaceae). Nord. J. Bot. 1990, 10, 57–62. [Google Scholar] [CrossRef]
- Castro, M.A.; Vega, A.S.; Múlgura, M.E. Structure and ultrastructure of leaf and calyx glands in Galphimia brasiliensis (Malpighiaceae). Am. J. Bot. 2001, 88, 1935–1944. [Google Scholar] [CrossRef] [PubMed]
- Guesdon, I.R.; Amorim, A.M.; Meira, R.M.S.A. Functional role and evolutionary contributions of floral gland morphoanatomy in the paleotropical genus Acridocarpus (Malpighiaceae). PLoS ONE 2019, 14, e0222561. [Google Scholar] [CrossRef]
- Wurdack, K.J.; Davis, C.C. Malpighiales phylogenetics: Gaining ground on one of the most recalcitrant clades in the Angiosperm tree of life. Am. J. Bot. 2009, 96, 1551–1570. [Google Scholar] [CrossRef]
- Henslow, G. The Origin of Floral Structures: Through Insect and Other Agencies; D. Appleton and Co.: New York, NY, USA, 1888; p. 347. [Google Scholar]
- Arber, A. On the structure of the androecium in Parnassia and its bearing on the affinities of the genus. Ann. Bot. 1913, 27, 491–510. [Google Scholar] [CrossRef]
- Almeida, A.L. Nectários em inflorescência de Mabea fistulifera Mart. (Euphorbiaceae): Anatomia e composição química do néctar. Master’s Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2015. [Google Scholar]
- Farias, S.Q.; Medeiros, D.; Riina, R. A new species of dragon’s blood Croton (Euphorbiaceae) from Serra dos Órgãos (Rio de Janeiro, Brazil). PhytoKeys 2019, 126, 13–24. [Google Scholar] [CrossRef]
- Narayana, L.L.; Rao, D. Contributions to the floral anatomy of Linaceae. J. Jpn. Bot. 1969, 44, 289–294. [Google Scholar]
- Knapp, S.; Mallet, J. Two new species of Passiflora (Passifloraceae) from Panama, with comments on their natural history. Ann. Mo. Bo Gard. 1984, 71, 1068–1074. [Google Scholar] [CrossRef]
- Bernacci, L.C.; Soares-Scott, M.D.; Junqueira, N.T.V.; Passos, I.R.D.S.; Meletti, L.M.M. Passiflora edulis Sims: The correct taxonomic way to cite the yellow passion fruit (and of others colors). Rev. Bras. Frutic. 2008, 30, 566–576. [Google Scholar] [CrossRef]
- Shivanna, K.R. Reproductive assurance through unusual autogamy in the absence of pollinators in Passiflora edulis (passion fruit). Curr. Sci. 2012, 103, 1091–1096. [Google Scholar]
- Cuatrecasas, J. A taxonomic revision of the Humiriaceae. Contrib. U. S. Natl. Herb. 1961, 35, 25–214. [Google Scholar]
- Wurdack, K.J.; Zartman, C.E. Insights on the systematics and morphology of Humiriaceae (Malpighiales): Androecial and extrafloral nectary variation, two new combinations, and a new Sacoglottis from Guyana. PhytoKeys 2019, 124, 87–121. [Google Scholar] [CrossRef]
- Prance, G.T.; White, F. The genera of Chrysobalanaceae: A study in practical and theoretical taxonomy and its relevance to evolutionary biology. Philos. Trans. R. Soc. Lond. 1988, 320, 1–184. [Google Scholar]
- Asprino, R.; Amorim, A.M. Flora da Bahia: Hirtella (Chrysobalanaceae). Sitientibus Série Ciências Biológicas 2016, 16, 1–20. [Google Scholar] [CrossRef]
- Bonifácio, S.K.V.; Amorim, A.M.; Oliveira, D.M.T. Floral anatomy points to autogamy as a possible evolutionary path in Elatinaceae (Malpighiales). Plant Syst. Evol. 2023, 309, 34. [Google Scholar] [CrossRef]
- Oliveira, P.S.M.C. Sobre a Interação de Formigas com Pequi-do-Cerrado, Caryocar brasiliense Camb. (Caryocaraceae): O Significado Ecológico de Nectários Extraflorais. Ph.D. Thesis, State University of Campinas, Campinas, Brazil, 1988. [Google Scholar]
- Oliveira, P.S.; Freitas, A.V.L. Ant-plant-herbivore interactions in the Neotropical Cerrado Savanna. Naturwissenschaften 2004, 91, 557–570. [Google Scholar] [CrossRef]
- Niedenzu, F. Elatinaceae. In Die Natürlichen Pflanzenfamilien; Engler, A., Prantl, K., Eds.; Engelmann: Leipzig, Germany, 1925; pp. 270–276. [Google Scholar]
- Souto, L.S.; Oliveira, D.M.T. Evaluation of the floral vasculature of the Janusia, Mascagnia and Tetrapterys species as a tool to explain the decrease of floral organs in Malpighiaceae. Flora 2013, 208, 351–359. [Google Scholar] [CrossRef]
- Mello, A.C.M.P. Anatomia foliar e floral de Amorimia (Malpighiaceae) e suas Aplicações Filogenéticas. Master’s Thesis, Federal University of Minas Gerais, Belo Horizonte, Brazil, 2017. [Google Scholar]
- Bonifácio, S.K.V.; de Almeida, R.F.; Amorim, A.M.A.; Oliveira, D.M.T. Floral synorganization in acmantheroid clade suggests hypotheses to explain elaiophore suppression in Malpighiaceae. Flora 2021, 281, 151870. [Google Scholar] [CrossRef]
- Dickison, W.C. A study of the floral morphology and anatomy of the Caryocaraceae. Bull. Torrey Bot. Club 1990, 117, 123–137. [Google Scholar] [CrossRef]
- De-Paula, O.C.; das Graças Sajo, M.; Prenner, G.; Cordeiro, I.; Rudall, P.J. Morphology, development and homologies of the perianth and floral nectaries in Croton and Astraea (Euphorbiaceae-Malpighiales). Plant Syst. Evol. 2011, 292, 1–14. [Google Scholar] [CrossRef]
- Puri, V. The role of floral anatomy in the solution of morphological problems. Bot. Rev. 1951, 17, 471–553. [Google Scholar] [CrossRef]
- Araújo, J.S.; Meira, R.M.S.A. Comparative anatomy of calyx and foliar glands of Banisteriopsis C. B. Rob. (Malpighiaceae). Acta Bot Bras 2016, 30, 112–123. [Google Scholar] [CrossRef]
- Possobom, C.C.F.; Machado, S.R. Elaiophores: Their taxonomic distribution, morphology and functions. Acta Bot Bras 2017, 31, 503–524. [Google Scholar] [CrossRef]
- Nery, L.A.; Vieira, M.F.; Ventrella, M.C. Leaf glands of Banisteriopsis muricata (Malpighiaceae): Distribution, secretion composition, anatomy and relationship to visitors. Acta Bot Bras 2017, 31, 459–467. [Google Scholar] [CrossRef]
- Weber, M.G.; Keeler, K.H. The phylogenetic distribution of extrafloral nectaries in plants. Ann. Bot. 2013, 111, 1251–1261. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Fagundes, M.; Greco, M.K.B.; Barbeitos, M.S.; Santos, J.C. Ants and their effects on an insect herbivore community associated with the inflorescences of Byrsonima crassifolia (Linnaeus) HBK (Malpighiaceae). Rev. Bras. Entomol. 2005, 49, 264–269. [Google Scholar] [CrossRef]
- Sazima, M.; Sazima, I. Oil-gathering bees visit flowers of eglandular morphs of the oil-producing Malpighiaceae. Bot. Acta 1989, 102, 106–111. [Google Scholar] [CrossRef]
- Sigrist, M.R.; Sazima, M. Pollination and reproductive biology of twelve species of Neotropical Malpighiaceae: Stigma morphology and its implications for the breeding system. Ann. Bot. 2004, 94, 33–41. [Google Scholar] [CrossRef]
- Oliveira, P.S. The ecological function of extrafloral nectaries: Herbivore deterrence by visiting ants and reproductive output in Caryocar brasiliense (Caryocaraceae). Funct. Ecol. 1997, 11, 323–330. [Google Scholar] [CrossRef]
- Radcliffe-Smith, A. Genera Euphorbiacearum; Royal Botanic Gardens: Kew, UK, 2001. [Google Scholar]
- Durkee, L.T. The floral and extrafloral nectaries of Passiflora. II. The extrafloral nectary. Am. J. Bot. 1982, 69, 1420–1428. [Google Scholar] [CrossRef]
- Araújo, J.S.; Azevedo, A.A.; Silva, L.C.; Meira, R.M.S.A. Leaf anatomy as an additional taxonomy tool for 16 species of Malpighiaceae found in the Cerrado area (Brazil). Plant Syst. Evol. 2010, 286, 117–131. [Google Scholar] [CrossRef]
- Cocucci, A.A.; Holgado, A.M.; Anton, A.M. Estudio morfológico y anatómico de los eleóforos pedicelados de Dinemandra ericoides, Malpigiácea endémica del desierto de Atacama, Chile. Darwiniana 1996, 34, 183–192. [Google Scholar]
- Ren, M.; Zhong, Y.; Song, X. Mirror-image flowers without buzz pollination in the Asian endemic Hiptage benghalensis (Malpighiaceae). Bot. J. Linn. Soc. 2013, 173, 764–774. [Google Scholar] [CrossRef]
- Davis, C.C.; Webb, C.O.; Wurdack, K.J.; Jaramillo, C.A.; Donoghue, M.J. Explosive radiation of Malpighiales supports a Mid-Cretaceous origin of modern tropical rain forests. Am. Nat. 2005, 165, E36–E65. [Google Scholar] [CrossRef]
- Nelsen, M.P.; Ree, R.H.; Moreau, C.S. Ant-plant interactions evolved through increasing interdependence. Proc. Natl. Acad. Sci. USA 2018, 115, 12253–12258. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.G.; Agrawal, A.A. Defense mutualisms enhance plant diversification. Proc. Natl. Acad. Sci. USA 2014, 111, 16442–16447. [Google Scholar] [CrossRef] [PubMed]
- Smith, F.H.; Smith, E.C. Anatomy of the inferior ovary of Darbya. Am. J. Bot. 1942, 29, 464. [Google Scholar] [CrossRef]
- Mello, A.C.M.P.; De Almeida, R.F.; Amorim, A.M.A.; Oliveira, D.M.T. Leaf structure in Amorimia and closely related neotropical genera and implications for their systematics and leaf evolution in Malpighiaceae. Bot. J. Linn. Soc. 2019, 191, 102–127. [Google Scholar] [CrossRef]
- Johansen, D.A. Plant Microtechnique; McGraw-Hill Book Company: London, UK, 1940. [Google Scholar]
- Paiva, E.A.S.; Pinho, S.Z.; Oliveira, D.M.T. Large plant samples: How to process for GMA embedding? In Light Microscopy: Methods and Protocols; Chiarini-Garcia, H., Melo, R.C.N., Eds.; Springer/Humana Press: New York, NY, USA, 2011; Volume 689, pp. 37–49. [Google Scholar]
- O’Brien, T.P.; Feder, N.; McCully, M.E. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 1964, 59, 368–373. [Google Scholar] [CrossRef]
Family | Species | Occurrence of Nectary (Evidence) | Distribution of Glands in Sepals | Position in the Sepal | Number of Glands per Sepal | Ontogenetic Origin of the Gland | Trace that Vascularises the Gland | Reference |
---|---|---|---|---|---|---|---|---|
Euphorbiaceae | Mabea fistulifera | + (histochemistry) | All sepals | Margin (between two sepals) | 1 to several | ? | Lateral trace of sepal * | Almeida [29] |
Croton rizzinii | ? | Some of the sepals | Median region | 1 | ? | Farias et al. [30] | ||
Linaceae | Acioa edulis | ? | 3 of 5 sepals (inner sepals do not have) | Margin | Several | ? | Lateral trace of sepal | Narayana and Rao [31] |
Passifloraceae | Passiflora macdougaliana | + (ants visiting) | 3 or all | All the margin | 1 or 2 | ? | ? | Knapp and Mallet [32] |
Passiflora edulis | 2 or 3 | Bernacci et al. [33] | ||||||
1 or 2 | Shivanna [34] | |||||||
Humiriaceae | Sacoglottis amazonica | ? | ? | Margin or apex | Several | ? | ? | Cuatrecasas [35] Wurdack and Zartman [36] |
Chrysobalanaceae | Dactyladenia Acioa | ? | ? | Margin or median region | 1 to several | ? | ? | Prance and White [37] |
Hirtella | ? | ? | Margin | Several | ? | Asprino and Amorim [38] | ||
Elatinaceae | Bergia perennis | ? | All | Margin | 1 or 2 | ? | Median trace of sepal | Bonifácio et al. [39] |
Elatine gratioloides | Apex | 1 | Median trace of sepal | |||||
Caryocaraceae | Caryocar brasiliense | + (ants visiting) | ? | Median region | 1 | ? | ? | Oliveira [40] Oliveira and Freitas [41] Machado et al. [2] Matthews and Endress [4] |
Cla-de | Species | Voucher | Samples | Provenance | Calyx Status |
---|---|---|---|---|---|
byrsonimoid | Byrsonima stipulacea A.Juss. | Amorim et al. 3355 (CEPEC) | dried | Espírito Santo, Brazil | EG |
D. Sucre 8353 (CEPEC) | dried | Espírito Santo, Brazil | EG | ||
Jardim et al. 4327 (CEPEC) | dried | Bahia, Brazil | EG | ||
V. Demuner et al. 3622 (CEPEC) | dried | Espírito Santo, Brazil | GL | ||
Folli, D.A. s.n. (CEPEC) | dried | Espírito Santo, Brazil | GL | ||
Kollmann et al. 2536 (CEPEC) | dried | Espírito Santo, Brazil | GL | ||
Byrsonima triopterifolia A.Juss. | Amorim 10797 (CEPEC) | fixed | Bahia, Brazil | GL | |
Amorim 10798 (CEPEC) | fixed | Bahia, Brazil | GL | ||
Amorim 10799 (CEPEC) | fixed | Bahia, Brazil | GL | ||
Blepharandra hypoleuca Griseb. | Martinelli 17280 (CEPEC) | dried | Amazonas, Brazil | GL | |
Forzza 6559 (CEPEC) | dried | Amazonas, Brazil | GL | ||
Diacidia aracaensis W.R.Anderson | Forzza 6561 (CEPEC) | dried | Amazonas, Brazil | GL | |
Amorim 8617 (CEPEC) | dried | Amazonas, Brazil | GL | ||
galphimioid | Galphimia australis Chodat | Vasco 20495 (CEPEC) | dried | Minas Gerais, Brazil | EG |
Queiroz 12643 (CEPEC) | dried | Rio Grande do Sul, Brazil | EG | ||
Poliquesi 495 (CEPEC) | dried | Santa Catarina, Brazil | EG | ||
Irwin 26193 (CEPEC) | dried | Minas Gerais, Brazil | GL | ||
Rezende 2182 (HUEFS) | dried | Minas Gerais, Brazil | GL | ||
Galphimia brasiliensis A.Juss. | Cardoso 916 (CEPEC) | dried | Bahia, Brazil | EG | |
Santos 3070 (CEPEC) | dried | Bahia, Brazil | EG | ||
Bastos 162 (CEPEC) | dried | Bahia, Brazil | EG | ||
Lophanthera lactescens Ducke | Bonifácio 32 (BHCB) | fixed | Minas Gerais, Brazil | GL | |
Lophanthera longifolia (Kunth) Griseb. | Fraga 3014 (CEPEC) | dried | Pará, Brazil | GL | |
Santos 23 (CEPEC) | dried | Amazonas, Brazil | GL | ||
Spachea elegans A.Juss. | Martinelli 17422 (CEPEC) | dried | Roraima, Brazil | GL | |
Verrucularia glaucophylla Juss. | Amorim et al. 10944 (CEPEC) | fixed | Bahia, Brazil | GL | |
Amorim et al. 10947 (CEPEC) | fixed | Bahia, Brazil | GL | ||
Amorim et al. 10948 (CEPEC) | fixed | Bahia, Brazil | GL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonifácio, S.K.V.; Amorim, A.M.A.; Paiva, É.A.S.; Oliveira, D.M.T. Unravelling the Homology between Calycine Glands in Malpighiales: New Data from Basal Malpighiaceae. Plants 2024, 13, 1654. https://doi.org/10.3390/plants13121654
Bonifácio SKV, Amorim AMA, Paiva ÉAS, Oliveira DMT. Unravelling the Homology between Calycine Glands in Malpighiales: New Data from Basal Malpighiaceae. Plants. 2024; 13(12):1654. https://doi.org/10.3390/plants13121654
Chicago/Turabian StyleBonifácio, Stéphani Karoline Vasconcelos, André Márcio Araújo Amorim, Élder Antônio Sousa Paiva, and Denise Maria Trombert Oliveira. 2024. "Unravelling the Homology between Calycine Glands in Malpighiales: New Data from Basal Malpighiaceae" Plants 13, no. 12: 1654. https://doi.org/10.3390/plants13121654
APA StyleBonifácio, S. K. V., Amorim, A. M. A., Paiva, É. A. S., & Oliveira, D. M. T. (2024). Unravelling the Homology between Calycine Glands in Malpighiales: New Data from Basal Malpighiaceae. Plants, 13(12), 1654. https://doi.org/10.3390/plants13121654