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Abstract: In this study, processing tomato (Solanum lycopersicum L.) ‘Ligeer 87-5’ was hydroponically
cultivated under 100 mM NaCl to simulate salt stress. To investigate the impacts on ion homeostasis,
osmotic regulation, and redox status in tomato seedlings, different endogenous levels of ascorbic
acid (AsA) were established through the foliar application of 0.5 mM AsA (NA treatment), 0.25 mM
lycorine (LYC, an inhibitor of AsA synthesis; NL treatment), and a combination of LYC and AsA (NLA
treatment). The results demonstrated that exogenous AsA significantly increased the activities and
gene expressions of key enzymes (L-galactono-1,4-lactone dehydrogenase (GalLDH) and L-galactose
dehydrogenase (GalDH)) involved in AsA synthesis in tomato seedling leaves under NaCl stress and
NL treatment, thereby increasing cellular AsA content to maintain its redox status in a reduced state.
Additionally, exogenous AsA regulated multiple ion transporters via the SOS pathway and increased
the selective absorption of K+, Ca2+, and Mg2+ in the aerial parts, reconstructing ion homeostasis
in cells, thereby alleviating ion imbalance caused by salt stress. Exogenous AsA also increased
proline dehydrogenase (ProDH) activity and gene expression, while inhibiting the activity and
transcription levels of ∆1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine-δ-aminotransferase
(OAT), thereby reducing excessive proline content in the leaves and alleviating osmotic stress. LYC
exacerbated ion imbalance and osmotic stress caused by salt stress, which could be significantly
reversed by AsA application. Therefore, exogenous AsA application increased endogenous AsA
levels, reestablished ion homeostasis, maintained osmotic balance, effectively alleviated the inhibitory
effect of salt stress on tomato seedling growth, and enhanced their salt tolerance.

Keywords: ascorbic acid; ion homeostasis; osmotic balance; salt stress; tomato

1. Introduction

Soil salinization poses a significant challenge to agricultural production, impeding
crop growth and limiting yield formation [1,2]. Tomato (Solanum lycopersicum L.), widely
cultivated worldwide, is crucial for global agricultural production and trade. Xinjiang,
China’s largest processing tomato production base, is severely threatened by soil saliniza-
tion. Salt stress reduces the water potential of plant roots, leading to physiological drought
and inducing osmotic stress [3]. Excess salts absorbed by roots enter the aboveground
parts through transpiration, causing the accumulation of excessive Na+ and Cl− in leaves,
which compete with ions such as Ca2+, K+, and Mg2+ and disrupt ionic homeostasis [4].
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Osmotic stress and ionic imbalance induce the production of reactive oxygen species (ROS),
which in turn causes oxidative stress, lipid peroxidation, and irreparable damage to cellu-
lar membranes, ultimately impacting plant growth and development [5]. Consequently,
reducing Na+ accumulation, restoring ionic homeostasis, and maintaining osmotic balance
and redox status are crucial for mitigating the adverse effects of salt stress on plants.

During the course of evolution, plants have developed a mechanism to maintain
low levels of Na+ by actively removing Na+ from the cytoplasm. Under salt stress, Na+

accumulation occurs, and plant cells sequester Na+ into vacuoles via Na+/H+ antiporters,
thereby reducing ion damage [6]. The salt overly sensitive (SOS) signaling pathway
regulates ion homeostasis by modulating the activity of Na+/H+ antiporters in response
to salt stress [7]). In addition to inorganic ions, proline (Pro) plays a crucial role as an
osmotic regulator in plants under stress conditions. The increase in proline content in
plants under salt stress is tightly regulated by enzymes involved in proline metabolism.
Proline biosynthesis in plants primarily occurs through the glutamate (Glu) pathway
and the ornithine (Orn) pathway, with the former being predominantly catalyzed by
∆1-pyrroline-5-carboxylate synthetase (P5CS) and the latter mainly regulated by ornithine-
δ-aminotransferase (OAT) [8]. Most studies indicate that the P5CS pathway is the primary
route for proline accumulation during stress [9], while OAT plays a key role in regulating
plant cell redox homeostasis by modulating proline metabolism under stress conditions [10].

In recent years, the use of exogenous substances to alleviate salt stress damage in
plants has emerged as an effective strategy to enhance plant salt tolerance [11–13]. L-
ascorbic acid (AsA), acting as an electron donor in redox reactions and an antioxidant, plays
crucial roles in plant growth, development, and stress responses [14,15]. AsA, located in the
cytoplasm and extracellular space, can directly perceive environmental stressors, thereby
regulating antioxidant defense and redox-sensitive signal transduction pathways [16,17].
Moreover, AsA has been shown to effectively enhance plant stress resilience. The appli-
cation of exogenous AsA can shield lipids and proteins from oxidative damage induced
by salt or drought stress [18,19]. Furthermore, numerous studies have underscored the
critical role of suitable concentrations of exogenous AsA in ameliorating damage caused
by various abiotic stresses, including salt [20], low temperature [21], heavy metals [22,23],
and drought [24]. Current research on alleviating salt stress with exogenous AsA primarily
focuses on antioxidant defense mechanisms and the mitigation of photoinhibition. For
instance, exogenous AsA enhances the activities of antioxidant enzymes in wheat [25],
tomato [26], strawberry [20], and cowpea [27] under salt stress, thereby counteracting
the adverse effects of salt stress on plant growth. However, research on the regulation of
ion homeostasis, selective absorption, and transport, the regulatory mechanism of Na+

regulation, and the synthesis and metabolism regulation of proline under salt stress by
exogenous AsA remains limited.

Previous studies have demonstrated that exogenous AsA can increase endogenous
AsA content [28]. However, it remains unclear whether exogenous AsA increases endoge-
nous AsA levels by regulating the expression and activity of key enzymes involved in AsA
biosynthesis. Therefore, in this study, processing tomatoes were used as the experimental
material, and exogenous AsA and LYC (lycorine, an inhibitor of AsA synthesis) were
applied to create different AsA levels. The study aimed to elucidate the mechanism by
which exogenous AsA enhances the salt tolerance of processing tomato seedlings from the
perspectives of ion homeostasis and osmotic stress. The results demonstrate that exoge-
nous AsA maintained a high level of endogenous AsA and the redox pool by altering the
activities of enzymes related to endogenous AsA synthesis and the expression levels of
related genes. It induced the SOS pathway to regulate multiple ion transporters, adjusting
intracellular ion homeostasis. Moreover, it enhanced the selective transport of K+, Ca2+, and
Mg2+ in the aerial parts, facilitated the efflux and compartmentalization of Na+ and Cl−,
and alleviated ion imbalance caused by salt stress. Additionally, exogenous AsA regulated
osmotic adjustment by enhancing Pro degradation and inhibiting its synthesis, thereby
mitigating the damage of salt stress to plants. Ultimately, these findings suggest that



Plants 2024, 13, 1672 3 of 18

exogenous AsA effectively enhances root vitality and growth characteristics of processing
tomato seedlings under salt stress.

2. Materials and Methods
2.1. Plant Materials and Treatment Conditions

The experiment was conducted at Shihezi University’s solar greenhouse using the
processing tomato cultivar ‘Ligeer 87-5′. Seeds were germinated in plugs with a charcoal
and vermiculite mixture (2:1 v/v). After producing two true leaves, uniform seedlings were
transferred to black plastic buckets with foam covers for hydroponics, each containing
10 L of Hoagland nutrient solution (pH = 6.2) diluted with deionized water. After a 7-day
pre-cultivation period, seedlings were subjected to various treatments by adding 100 mM
NaCl to the nutrient solution for salt stress. Daily leaf sprays of 0.5 mM ascorbic acid (AsA)
and 0.25 mM lycorine (LYC), an inhibitor of the key AsA synthesis enzyme L-galactono-1,
4-lactone dehydrogenase (GalLDH), were applied. AsA and LYC were sourced from Sigma
(St. Louis, MO, USA) and Yuan Ye (China), respectively. Concentrations were based on
prior screening experiments. The five treatments were (1) control: distilled water; (2) NaCl:
100 mM NaCl + distilled water; (3) NA: 100 mM NaCl + 0.5 mM AsA; (4) NL: 100 mM
NaCl + 0.25 mM LYC; and (5) NLA: 100 mM NaCl + 0.25 mM LYC + 0.5 mM AsA. A
completely randomized block design with four replications per treatment and five plants
per replication was used. The nutrient solution was oxygenated throughout the experiment,
with sampling on the third day of treatment [28].

2.2. Determination of Growth Indicators

Aboveground and belowground relative growth rates (RGRs) were calculated follow-
ing the method described by Van [29]. Root activity was determined using the triphenylte-
trazolium chloride (TTC) method, as outlined by Li [30].

2.3. Ion Content and Transcriptional Expression Assay of Key Genes of SOS Signaling Pathway

K+, Ca2+, Na+, and Mg2+ ions were quantified using inductively coupled plasma emis-
sion spectrometry (ICP-OES, Agilent, Santa Clara, CA, USA). Cl− content was determined
following Nazar’s method [31]. The ion-selective transport ratios [S Na, X = leaf (X/Na+)/root
(X/Na+)] were calculated according to Epstein’s method [32], with X representing Ca2+,
K+, and Mg2+, respectively.

Gene expression levels of salt overly sensitive 1,2,3 (SOS1, SOS2, SOS3), Na+/H+ an-
tiporter 1, 2, 3 (NHX1, NHX2, NHX3), high-affinity potassium transporter protein (HKT1;2),
pyrophosphate-energized vacuolar membrane proton pump (VP1), and chloride channel
(CLC) were determined following Livak et al. [33], with the primers used detailed in Table 1.

Table 1. Quantitative real-time PCR sequences.

Gene Primer Sequence (5′ to 3′)

Actin (NM_001323002.1) FORWARD TGGTCGGAATGGGAAAG
REVERSE CTCAGTCAGGAGAACAGGGT

SOS1 (AJ717346.1) FORWARD GCTGATGTCTCTGGTGTCTTGACTG
REVERSE TTGATGACTCTCGCCCTTGAAAGC

SOS2 (NM_001247281.2) FORWARD TATTTCCCGCCAACCTGCTAAAGTC
REVERSE GACCAGCCCTATTTGCCGTTACC

SOS3 (AJ717347.1) FORWARD TATTCCACCCAAATGCACCAGTAGC
REVERSE CATTCAGCAGCGCCAAAACCATC

NHX1 (NM_001246987.1) FORWARD CTTGGTCTGGTTCTGGTTGGAAGG
REVERSE AGCCCACCATATCGTGACCTGTAG

NHX2 (NM_001328634.1) FORWARD TCACTGCTACCACTGCCATTGTTG
REVERSE ACCATCACCCACAACTTCCAAAGC

NHX3 (NM_001247326.2) FORWARD TGGTTGGAAGGGCAGCATTTGTC
REVERSE TGAAACAGCACCTCGCATAAGTCC
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Table 1. Cont.

Gene Primer Sequence (5′ to 3′)

HKT1;2 (NM_001302904.1) FORWARD CCTACCGTCTTTTCGTCCTCA
REVERSE GCTTCCCCACCAAGAAACATC

VP1 (NM_001278976.2) FORWARD GATGGTTGAGGAAGTGCGTAGGC
REVERSE CACAGGTGGCATAGTCAGGCTTG

CLC (NM_001247096.2) FORWARD CGTCGCCTTCGCCTTCTAATCG
REVERSE CAACAAGCAACATCGCCCATTCC

P5CS (NM_001246978.2) FORWARD TGGAAGATTAGGAGCCCTCTGTGAG
REVERSE CTAAGCCGCTGACGACCAACAC

OAT (NM_001247674.3) FORWARD GGCTCTCATTGTCTCGTGCTGTG
REVERSE GGGCAACCGAATCTCCAAAATCAAC

ProDH (NM_001347105.1) FORWARD CCACCACCACGACCATCACAAC
REVERSE CATTACCCACATGCCCAAATCAACC

AAO (NM_001247900.2) FORWARD ACAAGCAGGACTACAAGGAATGATG
REVERSE AGGCAATGAAGCAAGACCAGTTG

GalDH (XM_004230609.4) FORWARD CAACGACTGGAATGGACGAAGAAG
REVERSE AACAGGAGATCACAATTCACAAGACC

GalLDH (NM_001247674.3) FORWARD GTTGAGAGGCAGGAGCTTGTAGAAC
REVERSE TGTCACAACCACAACGGCATCAG

Note: Actin: Actin gene; SOS1: Salt overly sensitive 1 gene; SOS2: Salt overly sensitive 2 gene; SOS3: Salt
overly sensitive 3 gene; NHX1: Na+/H+ antiporter 1 gene; NHX2: Na+/H+ antiporter 2 gene; NHX3: Na+/H+

antiporter 3 gene; HKT1;2: high-affinity potassium transporter protein gene; VP1: pyrophosphate-energized
vacuolar membrane proton pump gene; CLC: chloride channel protein gene; P5CS: ∆1-pyrroline-5-carboxylate
synthase gene; OAT: ornithine-δ-aminotransferase gene; ProDH: proline dehydrogenase gene; AAO: ascorbate
oxidase gene; GalDH: L-galactose dehydrogenase gene; GalLDH: L-galactono-1, 4-lactone dehydrogenase gene.

2.4. Proline (Pro) Content and Its Anabolic Key Enzyme Activities and Gene Expression Assays

Proline (Pro) content was quantified using the acid ninhydrin colorimetry method
described by de Freitas [34]. The activity of ∆1-pyrroline-5-carboxylate synthase (P5CS)
was assessed following the protocol of Song et al. [35], while the activity of ornithine-δ-
aminotransferase (OAT) was measured according to Kim et al. [36]. Proline dehydrogenase
(ProDH) activity was determined using the method outlined by Lutts [37]. A gene expres-
sion analysis of key enzymes involved in Pro synthesis and metabolism was performed
using qRT-PCR, with the primer sequences provided in Table 1.

2.5. Ascorbic Acid (AsA) Content and Its Anabolic Key Enzyme Activities and Gene
Expression Assays

Ascorbic acid (AsA) and dehydroascorbic acid (DHA) levels were measured following
the protocol outlined by Jiang et al. [38]; l-galactose dehydrogenase (GalDH) activity
was determined using the method described by Gatzek [39]; L-galactono-1, 4-lactone
dehydrogenase (GalLDH) activity was assessed according to Ôba [40]; and ascorbate
oxidase (AAO) activity was determined following the procedure by Esaka [41]. The
gene expression of GalDH, GalLDH, and AAO was analyzed using qRT-PCR, with primer
sequences detailed in Table 1.

2.6. Gene Expression Analysis

The total RNA from tomato leaves was extracted using the Trizol method and reverse-
transcribed into cDNA using the Hyper ScriptTM III RT SuperMix (EnzyArtisan Biotech,
Shanghai, China), following the manufacturer’s instructions. qPCR amplification was
performed in real-time using 2 × S6 Universal SYBR qPCR Mix (enzyme Biotech, China).
Each sample was run in triplicate, and each gene was analyzed with three biological and
technical replicates. The relative gene expression was calculated using the 2−∆∆Ct method.
The qRT-PCR amplification primers are listed in Table 1. The tomato actin gene served as
an internal control [42,43].
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2.7. Statistical Analysis

Data were processed and statistically analyzed using Microsoft Excel 2020 and SPSS
19.0. Graphs were generated using Origin 2021 software. One-way analysis of vari-
ance (ANOVA) followed by Duncan’s multiple range test was utilized to ascertain the
significance of differences between treatments (p < 0.05). The results are expressed as
mean ± standard deviation.

3. Results
3.1. Exogenous AsA Promotes the Growth of Tomato Seedlings under Salt Stress

Figure 1 demonstrates that 100 mM NaCl stress significantly hindered the growth of
tomato seedlings, as indicated by a notable decrease in the relative growth rate of both
aerial and underground parts, along with the root activity of tomato seedlings compared to
the control. However, the application of exogenous AsA mitigated the adverse effects of
NaCl stress on the relative growth rate of both aerial and underground parts, as well as the
root activity of tomato seedlings, resulting in significant increases of 186.1%, 141.9%, and
66.9%, respectively. In contrast, LYC application (NL treatment) exacerbated the inhibitory
effect of NaCl stress on tomato seedling growth. The NLA treatment significantly reversed
the aforementioned indices compared to the NL treatment. These results indicate that AsA
can promote the growth of tomato seedlings under salt stress.
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(D) in the leaves of salt-stressed tomato seedlings with or without exogenous reduced ascorbic acid 

Figure 1. Values of the relative growth rate (aerial part) (A), relative growth rate (underground
part) (B), root activity (C), and photographs of tomato seedlings on the third day after different
treatments (D) in the leaves of salt-stressed tomato seedlings with or without exogenous reduced
ascorbic acid (AsA) and Lycorine (LYC, AsA synthesis inhibitor) spraying. All measurements were
performed on leaves at 3 d after treatment. Error bars represent SD (n = 4). Different letters indicate
significance differences among treatments (p < 0.05). Control: no NaCl and no AsA and no LYC;
NaCl: 100 mM NaCl; NA: 100 mM NaCl + 0.5 mM AsA; NL: 100 mM NaCl + 0.25 mM LYC; NLA:
100 mM NaCl + 0.25 mM LYC + 0.5 mM AsA.
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3.2. Exogenous AsA Increases the Content of Endogenous AsA of Tomato Seedlings under
Salt Stress

As depicted in Figure 2, exposure to NaCl stress significantly reduced the endogenous
AsA content, total AsA content, and the AsA/DHA ratio, while significantly increasing the
DHA content compared to the control. The application of exogenous AsA (NA treatment)
resulted in a significant increase in AsA content by 172.9%, total AsA content by 53.1%,
and the AsA/DHA ratio by 338.7%, while significantly decreasing the DHA content by
37.8% compared to the NaCl treatment. Conversely, the NL treatment significantly reduced
the AsA and total AsA content, as well as the AsA/DHA ratio, compared to the NaCl
treatment, with a significant increase in DHA content in tomato leaves. The NLA treatment
significantly decreased the DHA content and significantly increased the AsA and total
AsA content, as well as the AsA/DHA ratio, compared to the NL treatment. These results
indicate that exogenous AsA can increase the content of endogenous AsA and maintain a
high redox pool of AsA.
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Figure 2. Values of the AsA content (A), total AsA content (B), DHA content (C), and ratio of
AsA/DHA (D) in the leaves of salt-stressed tomato seedlings with or without exogenous reduced
ascorbic acid (AsA) and Lycorine (LYC, AsA synthesis inhibitor) spraying. All measurements were
performed on leaves at 3 d after treatment. Error bars represent SD (n = 4). Different letters indicate
significance differences among treatments (p < 0.05). Control: no NaCl and no AsA and no LYC;
NaCl: 100 mM NaCl; NA: 100 mM NaCl + 0.5 mM AsA; NL: 100 mM NaCl + 0.25 mM LYC; NLA:
100 mM NaCl + 0.25 mM LYC + 0.5 mM AsA.

3.3. Exogenous AsA Affects Key Enzyme Activities and the Gene Expression of AsA Anabolism of
Tomato Seedlings under Salt Stress

As shown in Figure 3, the activities of GalDH and GalLDH in tomato seedling leaves
under NaCl stress were significantly reduced, while AAO activity was significantly in-
creased compared to the control, exhibiting similar trends in AAO, GalDH, and GalLDH
gene expression. The exogenous application of AsA significantly increased the enzyme
activities of GalDH and GalLDH and their gene expression, while significantly decreasing
AAO activity and gene expression levels compared to the NaCl treatment. Conversely, the
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exogenous application of LYC significantly decreased GalDH and GalLDH activities and
GalDH gene expression levels compared to the NaCl treatment, had no significant effect on
AAO activity, but significantly upregulated AAO gene expression levels throughout the
treatment. The application of AsA on top of the NL treatment significantly reversed these
indices, increasing GalDH and GalLDH activities by 103.1% and 129.3%, respectively, and
significantly decreasing AAO activity by 90.7%. These results indicate that exogenous AsA
can significantly affect the activity of key enzymes and the gene expression of endogenous
AsA anabolic metabolism.
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Figure 3. Values of the AAO activity (A), AAO gene expression (B), GalDH activity (C), GalDH gene
expression (D), GalLDH activity (E), and GalLDH gene expression (F) in the leaves of salt-stressed
tomato seedlings with or without exogenous reduced ascorbic acid (AsA) and Lycorine (LYC, AsA
synthesis inhibitor) spraying. All measurements were performed on leaves at 3 d after treatment. Error
bars represent SD (n = 4). Different letters indicate significance differences among treatments (p < 0.05).
Control: no NaCl and no AsA and no LYC; NaCl: 100 mM NaCl; NA: 100 mM NaCl + 0.5 mM AsA;
NL: 100 mM NaCl + 0.25 mM LYC; NLA: 100 mM NaCl + 0.25 mM LYC + 0.5 mM AsA.

3.4. Exogenous AsA Alleviates the Ionic Imbalance of Tomato Seedlings under Salt Stress

Compared to the control, the NaCl treatment significantly increased the Na+ and Cl−

contents as well as Na+/K+, Na+/Ca2+, and Na+/Mg2+ ratios in tomato leaves and roots,
and significantly decreased K+, Ca2+, and Mg2+ contents, as shown in Figure 4. Treatment
with exogenous AsA under salt stress significantly reduced the Na+ and Cl− contents in
both leaves and roots by 2.6% and 14.1%, and 21.6% and 16.6%, respectively, compared to
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the NaCl treatment. Furthermore, it significantly increased the K+, Ca2+, and Mg2+ contents
by 10.5% and 13.6%, 36.4% and 52.6%, and 15.8% and 7.8%, respectively. Additionally,
the ratios of Na+/K+, Na+/Ca2+, and Na+/Mg2+ showed a significant decrease. The NL
treatment led to an accumulation of Na+ and Cl− and a significant reduction in K+, Ca2+,
and Mg2+ contents in both leaves and roots of tomato seedlings under NaCl treatment,
further disrupting the ionic homeostasis (resulting in significantly increased Na+/K+,
Na+/Ca2+, and Na+/Mg2+ ratios). However, the application of AsA significantly mitigated
the negative effects of LYC on the leaves and roots of tomato seedlings under salt stress.
The above indicates that exogenous AsA can reduce the ion imbalance caused by salt stress
in tomato seedlings.
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Figure 4. Values of the Na+ content (A), Cl− content (B), K+ content (C), Ca2+ content (D), Mg2+

content (E), Na+/K+ (F), Na+/Ca2+ (G) and Na+/Mg2+ (H) in the leaves and roots of salt-stressed
tomato seedlings with or without exogenous reduced ascorbic acid (AsA) and Lycorine (LYC, AsA
synthesis inhibitor) spraying. All measurements were performed on leaves at 3 d after treatment. Error
bars represent SD (n = 4). Different letters indicate significance differences among treatments (p < 0.05).
Control: no NaCl and no AsA and no LYC; NaCl: 100 mM NaCl; NA: 100 mM NaCl + 0.5 mM AsA;
NL: 100 mM NaCl + 0.25 mM LYC; NLA: 100 mM NaCl + 0.25 mM LYC + 0.5 mM AsA.
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3.5. Exogenous AsA Affects the Ion Selective Absorption and Transportation Capacity of Tomato
Seedlings under Salt Stress

As shown in Figure 5, compared to the control, salt stress significantly increased SK, Na,
SMg, Na, and SCa, Na by 52.6%, 28.4% and 110.5%, respectively. The exogenous spraying of
AsA significantly decreased SK, Na, SMg, Na, and SCa, Na in tomato seedlings under salt stress.
Conversely, the exogenous spraying of LYC significantly decreased SK, Na and SMg, Na but
had no significant effect on SCa, Na under salt stress. Compared to the NL treatment, the
NLA treatment significantly increased SK, Na and SMg, Na, while significantly decreasing
SCa, Na. These results indicate that exogenous AsA can significantly affect the ion selective
transport ratio of tomato under salt stress.
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Figure 5. Values of SK, Na (A), SMg, Na (B), and SCa, Na (C) in leaves of salt-stressed tomato seedlings
with or without exogenous reduced ascorbic acid (AsA) and Lycorine (LYC, AsA synthesis inhibitor)
spraying. All measurements were performed on leaves at 3 d after treatment. Error bars represent SD
(n = 4). Different letters indicate significance differences among treatments (p < 0.05). Control: no
NaCl and no AsA and no LYC; NaCl: 100 mM NaCl; NA: 100 mM NaCl + 0.5 mM AsA; NL: 100 mM
NaCl + 0.25 mM LYC; NLA: 100 mM NaCl + 0.25 mM LYC + 0.5 mM AsA.

3.6. Exogenous AsA Regulates the Expression of Genes Related to the SOS Pathway of Tomato
Seedlings under Salt Stress

The expression levels of the SOS1, SOS2, NHX2, NHX3, HKT1;2, VP1, and CLC genes
were downregulated to varying degrees in tomato seedling leaves under NaCl treatment
compared with control, as shown in Figure 6. The exogenous spraying of AsA significantly
upregulated the expression levels of the SOS1, SOS2, NHX2, NHX3, HKT1;2, VP1, and
CLC genes in tomato seedling leaves by 2.12-, 3.35-, 2.64-, 2.19-, 3.05-, 4.55-, 5.55-, 3.76, and
1.44-fold, respectively, compared to the NaCl treatment. The expression of the above genes
decreased to different degrees in the NL treatment compared to NaCl stress. However,
the NLA treatment reversed this phenomenon, and all the above-mentioned genes were
significantly upregulated. This indicates that exogenous AsA can regulate ion homeostasis
by regulating the expression of genes related to the SOS pathway.

3.7. Exogenous AsA Regulates Proline (Pro) Content and Its Anabolic Key Enzyme Activities and
Gene Expression in Tomato Seedlings under Salt Stress

As shown in Figures 7 and 8, salt stress significantly increased Pro content and the
activity and gene expression of P5CS and OAT, while significantly decreasing ProDH activ-
ity and gene expression in tomato seedling leaves compared with the control. Compared
with the NaCl treatment, the NA treatment significantly reduced Pro content as well as
the activities of P5CS and OAT by 60.2%, 45.6, and 14.8%, respectively. The NA treatment
downregulated the expression of the P5CS gene by 0.25-fold and the expression of the OAT
gene by 0.38-fold under NaCl stress. Additionally, the NA treatment significantly increased
ProDH activity by 20.7% and upregulated ProDH gene expression by 2.64-fold. However,
the exogenous application of the AsA inhibitor LYC significantly increased proline content
as well as OAT and P5CS activities and their gene expression in tomato seedling leaves
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under salt stress conditions, while significantly decreasing ProDH activity and gene ex-
pression. The exogenous spraying of AsA on top of the NL treatment then significantly
reversed the trend of the above indicators. These results indicate that exogenous AsA can
reduce the proline content in tomato under salt stress by regulating the activity of key
enzymes and gene expression in proline anabolism.
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Figure 6. Expression of SOS1 (Salt overly sensitive 1 gene) (A), SOS2 (Salt overly sensitive 2 gene)
(B), SOS3 (Salt overly sensitive 3 gene) (C), NHX1 (Na+/H+ antiporter 1 gene) (D), NHX2 (Na+/H+

antiporter 2 gene) (E), NHX3 (Na+/H+ antiporter 3 gene) (F), HKT1;2 (high-affinity potassium
transporter protein gene) (G), VP1 (pyrophosphate-energized vacuolar membrane proton pump
gene) (H), and CLC (chloride channel protein gene) (I) genes in the leaves of salt-stressed tomato
seedlings with or without exogenous reduced ascorbic acid (AsA) and Lycorine (LYC, AsA synthesis
inhibitor) spraying. All measurements were performed on leaves at 3 d after treatment. Error bars
represent SD (n = 3). Different letters indicate significance differences among treatments (p < 0.05).
Control: no NaCl and no AsA and no LYC; NaCl: 100 mM NaCl; NA: 100 mM NaCl + 0.5 mM AsA;
NL: 100 mM NaCl + 0.25 mM LYC; NLA: 100 mM NaCl + 0.25 mM LYC + 0.5 mM AsA.

3.8. Analysis of Correlation

From the results of the correlation analysis, significant positive or negative correlations
were observed between some salt-responsive physiological and morphological parameters
(Figure 9). For example, aboveground and belowground relative growth rates were sig-
nificantly and negatively correlated with Cl− content in plant leaves and roots, and the
salt over-sensitive (SOS) regulatory pathways (SOS1, SOS2, and SOS3 gene expression)
were significantly and positively correlated with the expression of the ProDH and GalDH
genes. This suggests that some of the parameters may have similar responses to salt stress.
However, the significant correlation between two parameters does not imply that they can
be substituted for each other.
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Figure 7. Values of proline content in the leaves of salt-stressed tomato seedlings with or without
exogenous reduced ascorbic acid (AsA) and Lycorine (LYC, AsA synthesis inhibitor) spraying. All
measurements were performed on leaves at 3 d after treatment. Error bars represent SD (n = 4).
Different letters indicate significance differences among treatments (p < 0.05). Control: no NaCl
and no AsA and no LYC; NaCl: 100 mM NaCl; NA: 100 mM NaCl + 0.5 mM AsA; NL: 100 mM
NaCl + 0.25 mM LYC; NLA: 100 mM NaCl + 0.25 mM LYC + 0.5 mM AsA.
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Figure 8. Values of ∆1-pyrroline-5-carboxylate synthase (P5CS) activity (A), expression of P5CS
(∆1-pyrroline-5-carboxylate synthase gene) gene (B), ornithine-δ-aminotransferase (OAT) activity (C),
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expression of OAT (ornithine-δ-aminotransferase gene) gene (D), proline dehydrogenase (ProDH)
activity (E), and expression of ProDH (proline dehydrogenase gene) gene (F) in the leaves of salt-
stressed tomato seedlings with or without exogenous reduced ascorbic acid (AsA) and Lycorine (LYC,
AsA synthesis inhibitor) spraying. All measurements were performed on leaves at 3 d after treatment.
Error bars represent SD (n = 4). Different letters indicate significance differences among treatments
(p < 0.05). Control: no NaCl and no AsA and no LYC; NaCl: 100 mM NaCl; NA: 100 mM
NaCl + 0.5 mM AsA; NL: 100 mM NaCl + 0.25 mM LYC; NLA: 100 mM NaCl + 0.25 mM
LYC + 0.5 mM AsA.
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3.9. Mechanism of AsA in Alleviating Salt Stress

As shown in Figure 10, salt stress induces a high oxidative state in cells, disrupts ionic
homeostasis in the roots and leaves of tomato seedlings, accumulates large amounts of
Na+ and Cl−, and reduces the expression of genes related to the SOS pathway, thereby
disrupting the dynamic balance of proline. These effects ultimately lead to decreased
root activity and affect the overall growth and development of the plant. However, the
exogenous spraying of AsA significantly reverses these phenomena. Exogenous AsA
effectively improves the growth characteristics of plants under salt stress by maintaining
high endogenous AsA levels and redox pools. This maintenance mediates the SOS pathway
to alleviate ionic toxicity and mitigates osmotic stress by regulating proline synthesis and
metabolism. These actions enhance the plant’s resilience to stress.
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in tomato seedlings.

4. Discussion

Salt stress, as a major abiotic stressor, induces ion toxicity, osmotic stress, and oxidative
stress, leading to physiological imbalances in plants. These effects severely restrict crop
growth, development, and yield, posing a global threat to agricultural production [44].
Plant roots are particularly sensitive to stress signals, and salt stress inhibits their growth,
reducing root vitality and impacting the absorption of water and nutrients, thereby affecting
the entire plant’s normal growth. The findings of this study demonstrate that salt stress
significantly inhibited the growth and biomass accumulation of tomato seedlings. However,
the exogenous application of AsA effectively improved plant growth characteristics under
salt stress by enhancing root vitality, as shown in Figure 1. These results are consistent with
earlier reports indicating that AsA can mitigate the adverse effects of salt stress on plant
biomass. Furthermore, we observed that exogenous AsA application to tomato seedlings
under salt stress increased endogenous AsA levels and the AsA/DHA ratio, as illustrated
in Figure 2.

Research has shown that the cellular redox state is an important factor in plants’ re-
sistance to abiotic stress [45]. Maintaining a high redox pool of AsA (AsA/DHA ratio) is
crucial for plants to scavenge excessive ROS and keep the thiol groups of soluble proteins
and membrane proteins in a reduced state. The results indicate that the exogenous applica-
tion of AsA can effectively promote the growth of tomato seedlings under salt stress, and is
positively correlated with endogenous AsA levels (Figure 9). The L-galactose pathway is
the main pathway for plants to synthesize AsA, and GalLDH and GalDH are key enzymes
in the final two steps of AsA synthesis in the L-galactose pathway. Studies in melon [46]
and tobacco [47] have found a close correlation between the content of endogenous AsA
and the activity and gene expression of GalLDH; a significant correlation between GalDH
activity and AsA content was found in shepherd’s purse and Arabidopsis [48]. Studies
on corn extracts have found that lycorine (LYC) is an effective inhibitor of GalLDH [49].
To further explore the role of AsA, we applied LYC under salt stress and found that the
activities and gene expression of GalLDH and GalDH in tomato seedlings were inhibited,
as were the endogenous AsA levels and AsA/DHA ratio (Figures 1 and 3). However,
after the exogenous application of AsA, the activities and gene expression of GalDH and
GalLDH were significantly increased (Figure 3). AAO is a key enzyme in the AsA oxidation
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metabolism pathway. When studying the salt tolerance of AAO transgenic plants, it was
found that under normal conditions, there was no obvious phenotype change in AAO over-
expressing and antisense transgenic plants compared to the control. However, under high
salt conditions, the germination and photosynthetic rates of the antisense AAO transgenic
plants were higher compared to those of the wild type and AAO overexpressing transgenic
plants. Furthermore, it was found that the H2O2 content in overexpressing transgenic
plants was the highest, while the AsA content was very low, indicating that inhibiting
the expression of the AAO gene can increase the salt tolerance of plants [50]. This study
found that salt stress led to a significant increase in AAO activity and gene expression
in tomato leaves, while the exogenous spraying of AsA significantly reduced the AAO
activity and downregulated AAO expression in tomato leaves under NaCl treatment and
NL treatment (Figure 3). These findings suggest that the exogenous AsA maintains a high
level of endogenous AsA and redox pool by altering the activities and gene expression
levels of enzymes involved in AsA synthesis and metabolism, thus protecting plants from
oxidative damage caused by salt stress (NaCl and NL treatments) and improving the salt
tolerance of tomato seedlings.

Plants maintain ion homeostasis in response to stress environments by reducing excess
Na+ (reducing Na+ uptake, promoting Na+ efflux, and compartmentalizing Na+) to enhance
salt tolerance. Na+ efflux and compartmentalization are active transport processes mainly
driven by the proton gradient generated by H+-ATPase and H+-PPase, and mediated
by Na+/H+ antiporters [51]. Besides Na+, Cl− efflux and compartmentalization are also
important salt tolerance mechanisms. Studies have shown that exogenous silicon can
reduce Na+ content in tomato seedling leaves, promote the uptake of K+, Ca2+, and Mg2+,
and increase the K+/Na+ and Ca2+/Na+ ratios in leaves by at least 2-fold [52]; exogenous
melatonin significantly increases the expression of SOS genes (SOS1, SOS2, and SOS3) in
plants under salt stress, reducing Na+ content in the aboveground parts and increasing
the K+/Na+ ratio [53,54]; exogenous boron, by upregulating the expression of CLC genes,
reduces Cl− uptake, alleviating the impact of NaCl stress on beet growth [55]. This study
found that salt stress disrupted ion homeostasis in tomato seedling roots and leaves,
resulting in the accumulation of Na+ and Cl−, while reducing the uptake of K+, Ca2+, and
Mg2+, affecting the absorption and transport ratios of ions in roots and leaves (Figures 4
and 5), and decreasing the expression of the SOS (SOS1, SOS2, and SOS3), HKT1;2, NHX
(NHX1, NHX2, and NHX3), CLC, and VP1 genes in seedling leaves (Figure 6). Similar
conclusions have been drawn in cabbage [56], cucumber [57], eggplant [58], and other
plants. However, spraying AsA under salt stress and NL treatment revealed that exogenous
AsA enhanced Na+ and Cl− efflux by upregulating the expression of SOS and CLC genes.
This treatment also promoted the accumulation of K+, Ca2+, and Mg2+, resulting in reduced
Na+/K+, Na+/Ca2+, and Na+/Mg2+ ratios. Additionally, it reduced Na+ selectivity in
aboveground parts while enhancing the selective absorption and transport capacity of K+,
Ca2+, and Mg2+ from roots to leaves (Figures 4 and 5). Regulating NHX gene expression
compartmentalized Na+ into vacuoles, a key mechanism for maintaining water absorption
in plants under salt stress. Regulating HKT gene expression recycles Na+ from transpiration
flow to avoid the excessive accumulation of Na+ in photosynthetic tissues. Upregulating
VP1 gene expression provides more driving force for ion transmembrane transport to
ensure the normal operation of Na+/H+ antiporters, thereby enhancing plant salt tolerance
(Figure 6).

Proline, as an osmoprotectant, membrane stabilizer, and ROS scavenger [59–62], and
exogenous AsA may have different regulatory patterns in plants under different abiotic
stresses, with Pro content increasing [63,64] or decreasing [65,66]. Kavi [67] proposed that
maintaining a dynamic balance of Pro under stress conditions is a necessary condition for
normal plant growth and development. Therefore, evaluating the resistance of plants to
abiotic stress by Pro content is of great significance. In this study, NaCl stress increased
the activity and gene expression of key enzymes in Pro synthesis pathways (P5CS and
OAT) in tomato seedling leaves while inhibiting the activity and transcription level of the
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rate-limiting enzyme in the Pro degradation pathway (ProDH), resulting in a significant
increase in Pro content in leaves, indicating that plants have initiated defense mechanisms
to resist osmotic stress caused by salt stress (Figures 7 and 8). This is consistent with studies
in papaya [68], cucumber [69], and tomato [70]. However, some studies have shown that
excess Pro not only fails to alleviate stress-induced damage but also exacerbates growth
inhibition under stress [71]. In this study, it was found that the exogenous spraying of the
inhibitor LYC dramatically increased Pro content in tomato seedling leaves under salt stress,
but the exogenous spraying of AsA reduced excess Pro content in leaves by reducing the
synthesis pathway of Pro and enhancing the degradation pathway of Pro, maintaining the
dynamic balance of Pro in plants, thereby enhancing the salt tolerance of tomato seedlings.

5. Conclusions

In conclusion, salt stress induces ion imbalance and osmotic stress in tomato seedlings,
severely affecting their growth. However, the application of exogenous AsA significantly
improves the growth characteristics of plants under salt stress conditions. The research
results indicate that exogenous AsA, by regulating the activity and gene expression levels
of enzymes related to endogenous AsA synthesis, increases the intracellular AsA content,
maintaining the intracellular redox state in a reduced state. Furthermore, exogenous AsA
also regulates the transcription levels of multiple ion transporters through the SOS pathway,
enhancing the plant’s selective absorption of K+, Ca2+, and Mg2+, thereby alleviating ion
imbalance caused by salt stress. Meanwhile, exogenous AsA alleviates osmotic stress by
regulating Pro synthesis and metabolism, enhancing the salt tolerance of tomato seedlings
(Figure 10).
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