Implementation and Evaluation of Spatial Attention Mechanism in Apricot Disease Detection Using Adaptive Sampling Latent Variable Network
Abstract
:1. Introduction
- Model design for apricot tree disease detection based on data fusion: A multimodal large model architecture tailored for apricot tree disease detection is proposed. This architecture not only considers the visual features of image data but also integrates environmental information from sensor data, achieving effective fusion and significantly enhancing the model’s accuracy.
- Adaptive sampling latent variable network (ASLVN): A dynamic adaptive sampling latent variable network is developed that is dynamically adjusted by two main parameters. This design allows the network to adaptively adjust according to the dynamic changes in disease progression, effectively enhancing real-time detection accuracy.
- Spatial state attention mechanism: A spatial state attention mechanism is introduced through the design of an embedded attention aggregation module that focuses on feature areas that are highly related to disease detection. This mechanism enhances the model’s sensitivity and recognition capability for apricot tree disease features, especially when dealing with complex backgrounds and various stages of disease development.
2. Theoretical Foundations of the Algorithms Used
2.1. CNN-Based Object Detection Models
2.1.1. Single-Stage Models
2.1.2. Two-Stage Models
2.2. Attention Mechanisms
2.3. Deep Learning Model Lightweighting
3. Materials and Method
3.1. Dataset Collection
- Environmental sensors: These sensors monitor environmental parameters such as temperature, humidity, and light intensity. These data help analyze the conditions under which diseases occur and develop.
- Spectral sensors: These sensors capture the spectral information of plant leaves. By analyzing the reflectance of leaves at different wavelengths, it is possible to detect internal disease conditions within the leaves.
- Near-infrared sensors: These sensors acquire near-infrared images of plants, which are particularly effective for early disease detection because near-infrared light can penetrate the leaf surface and detect potentially diseased areas.
3.2. Dataset Annotation
3.3. Dataset Enhancement
3.3.1. Cutout
3.3.2. Cutmix
3.3.3. Mosaic
3.3.4. Replication Augmentation
3.4. Proposed Method
3.4.1. Overview
3.4.2. Adaptive Sampling Latent Variable Network
3.4.3. Spatial State Attention Mechanism
3.4.4. Model Lightweight Deployment
3.5. Experimental Setup
3.5.1. Hardware and Software Platform
3.5.2. Training Strategy
3.5.3. Performance Metrics
3.6. Baseline Models
4. Results and Discussion
4.1. Disease Detection Experimental Results
4.2. Detection Results Analysis
4.3. Application on Edge Computing Platform
4.4. Results of the Adaptive Sampling Latent Variable Network Ablation Experiment
4.5. Results of the Spatial State Attention Mechanism Ablation Experiment
4.6. Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Zhang, S.; Wang, B. Plant disease detection and classification by deep learning—A review. IEEE Access 2021, 9, 56683–56698. [Google Scholar] [CrossRef]
- López, M.M.; Roselló, M.; Palacio-Bielsa, A. Diagnosis and detection of the main bacterial pathogens of stone fruit and almond. J. Plant Pathol. 2010, 92, S57–S66. [Google Scholar]
- Yang, C. Remote sensing and precision agriculture technologies for crop disease detection and management with a practical application example. Engineering 2020, 6, 528–532. [Google Scholar] [CrossRef]
- López-López, M.; Calderón, R.; González-Dugo, V.; Zarco-Tejada, P.J.; Fereres, E. Early detection and quantification of almond red leaf blotch using high-resolution hyperspectral and thermal imagery. Remote Sens. 2016, 8, 276. [Google Scholar] [CrossRef]
- Liang, P.S.; Slaughter, D.C.; Ortega-Beltran, A.; Michailides, T.J. Detection of fungal infection in almond kernels using near-infrared reflectance spectroscopy. Biosyst. Eng. 2015, 137, 64–72. [Google Scholar] [CrossRef]
- Shrestha, G.; Das, M.; Dey, N. Plant disease detection using CNN. In Proceedings of the 2020 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, India, 7–9 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 109–113. [Google Scholar]
- Deepalakshmi, P.; Lavanya, K.; Srinivasu, P.N. Plant leaf disease detection using CNN algorithm. Int. J. Inf. Syst. Model. Des. 2021, 12, 1–21. [Google Scholar] [CrossRef]
- Nandhini, M.; Kala, K.; Thangadarshini, M.; Verma, S.M. Deep Learning model of sequential image classifier for crop disease detection in plantain tree cultivation. Comput. Electron. Agric. 2022, 197, 106915. [Google Scholar] [CrossRef]
- Xu, L.; Cao, B.; Zhao, F.; Ning, S.; Xu, P.; Zhang, W.; Hou, X. Wheat leaf disease identification based on deep learning algorithms. Physiol. Mol. Plant Pathol. 2023, 123, 101940. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wa, S.; Liu, Y.; Kang, J.; Lv, C. GenU-Net++: An Automatic Intracranial Brain Tumors Segmentation Algorithm on 3D Image Series with High Performance. Symmetry 2021, 13, 2395. [Google Scholar] [CrossRef]
- Lin, X.; Wa, S.; Zhang, Y.; Ma, Q. A dilated segmentation network with the morphological correction method in farming area image Series. Remote Sens. 2022, 14, 1771. [Google Scholar] [CrossRef]
- Elidan, G.; Friedman, N.; Chickering, D.M. Learning Hidden Variable Networks: The Information Bottleneck Approach. J. Mach. Learn. Res. 2005, 6, 81–127. [Google Scholar]
- Yan, C.; Tu, Y.; Wang, X.; Zhang, Y.; Hao, X.; Zhang, Y.; Dai, Q. STAT: Spatial-temporal attention mechanism for video captioning. IEEE Trans. Multimed. 2019, 22, 229–241. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, Y. Object tracking based on spatial attention mechanism. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 7595–7599. [Google Scholar]
- Sun, J.; Zhang, J.; Gao, X.; Wang, M.; Ou, D.; Wu, X.; Zhang, D. Fusing spatial attention with spectral-channel attention mechanism for hyperspectral image classification via encoder–decoder networks. Remote Sens. 2022, 14, 1968. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, R.; Li, X.; Qi, N.; Yang, X. Discriminative correlation tracking based on spatial attention mechanism for low-resolution imaging systems. Vis. Comput. 2022, 38, 1495–1508. [Google Scholar] [CrossRef]
- Arkin, E.; Yadikar, N.; Xu, X.; Aysa, A.; Ubul, K. A survey: Object detection methods from CNN to transformer. Multimed. Tools Appl. 2023, 82, 21353–21383. [Google Scholar] [CrossRef]
- Bacea, D.S.; Oniga, F. Single stage architecture for improved accuracy real-time object detection on mobile devices. Image Vis. Comput. 2023, 130, 104613. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Srivastava, A.; Rawat, B.S.; Bajpai, P.; Dhondiyal, S.A. Potato Leaf Disease Detection Method Based on the YOLO Model. In Proceedings of the 2024 4th International Conference on Data Engineering and Communication Systems (ICDECS), Bangalore, India, 22–23 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–5. [Google Scholar]
- Vijayakumar, A.; Vairavasundaram, S. YOLO-based Object Detection Models: A Review and its Applications. Multimed. Tools Appl. 2024, 1–40. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Tang, R.; Lei, Y.; Luo, B.; Zhang, J.; Mu, J. YOLOv7-Plum: Advancing plum fruit detection in natural environments with deep learning. Plants 2023, 12, 2883. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Hua, Z.; Wen, Y.; Deng, H.; Zhao, Y.; Pu, L.; Song, H. Using an improved lightweight YOLOv8 model for real-time detection of multi-stage apple fruit in complex orchard environments. Artif. Intell. Agric. 2024, 11, 70–82. [Google Scholar] [CrossRef]
- Balafas, V.; Karantoumanis, E.; Louta, M.; Ploskas, N. Machine learning and deep learning for plant disease classification and detection. IEEE Access 2023, 11, 114352–114377. [Google Scholar] [CrossRef]
- Tang, P.; Guo, Y.; Zheng, G.; Zheng, L.; Pu, J.; Wang, J.; Chen, Z. Two-stage filtering method to improve the performance of object detection trained by synthetic dataset in heavily cluttered industry scenes. Vis. Comput. 2024, 40, 2015–2034. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Wang, T.; Wu, Q. RiceNet: A two stage machine learning method for rice disease identification. Biosyst. Eng. 2023, 225, 25–40. [Google Scholar] [CrossRef]
- Priyadharshini, G.; Dolly, D.R.J. Comparative investigations on tomato leaf disease detection and classification using CNN, R-CNN, fast R-CNN and faster R-CNN. In Proceedings of the 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 17–18 March 2023; IEEE: Piscataway, NJ, USA, 2023; Volume 1, pp. 1540–1545. [Google Scholar]
- Gong, X.; Zhang, S. A high-precision detection method of apple leaf diseases using improved faster R-CNN. Agriculture 2023, 13, 240. [Google Scholar] [CrossRef]
- Shetty, K.U.; Kutty, R.J.; Donthi, K.; Patil, A.; Subramanyam, N. Plant Disease Detection for Guava and Mango using YOLO and Faster R-CNN. In Proceedings of the 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), Gwalior, India, 14–16 March 2024; IEEE: Piscataway, NJ, USA, 2024; Volume 2, pp. 1–6. [Google Scholar]
- Dai, G.; Fan, J.; Tian, Z.; Wang, C. PPLC-Net: Neural network-based plant disease identification model supported by weather data augmentation and multi-level attention mechanism. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101555. [Google Scholar]
- Liu, Y.; Shao, Z.; Hoffmann, N. Global attention mechanism: Retain information to enhance channel-spatial interactions. arXiv 2021, arXiv:2112.05561. [Google Scholar]
- Aghdam, E.K.; Azad, R.; Zarvani, M.; Merhof, D. Attention swin u-net: Cross-contextual attention mechanism for skin lesion segmentation. In Proceedings of the 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), Cartagena, Colombia, 18–21 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (accessed on 18 May 2019).
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11534–11542. [Google Scholar]
- Lin, J.; Bai, D.; Xu, R.; Lin, H. TSBA-YOLO: An improved tea diseases detection model based on attention mechanisms and feature fusion. Forests 2023, 14, 619. [Google Scholar] [CrossRef]
- Gao, T.; Han, X.; Liu, Z.; Sun, M. Hybrid attention-based prototypical networks for noisy few-shot relation classification. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 6407–6414. [Google Scholar]
- Sharma, V.; Tripathi, A.K.; Mittal, H. DLMC-Net: Deeper lightweight multi-class classification model for plant leaf disease detection. Ecol. Inform. 2023, 75, 102025. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Zhao, Q.; Yuan, P.; Chang, B. PMVT: A lightweight vision transformer for plant disease identification on mobile devices. Front. Plant Sci. 2023, 14, 1256773. [Google Scholar] [CrossRef]
- Vadera, S.; Ameen, S. Methods for pruning deep neural networks. IEEE Access 2022, 10, 63280–63300. [Google Scholar] [CrossRef]
- Nagel, M.; Fournarakis, M.; Amjad, R.A.; Bondarenko, Y.; Van Baalen, M.; Blankevoort, T. A white paper on neural network quantization. arXiv 2021, arXiv:2106.08295. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Ma, D.; Li, S.; Dang, B.; Zang, H.; Dong, X. Fostc3net: A Lightweight YOLOv5 Based On the Network Structure Optimization. arXiv 2024, arXiv:2403.13703. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Chen, Y.; Chen, X.; Lin, J.; Pan, R.; Cao, T.; Cai, J.; Yu, D.; Cernava, T.; Zhang, X. Dfcanet: A novel lightweight convolutional neural network model for corn disease identification. Agriculture 2022, 12, 2047. [Google Scholar] [CrossRef]
- DeVries, T.; Taylor, G.W. Improved regularization of convolutional neural networks with cutout. arXiv 2017, arXiv:1708.04552. [Google Scholar]
- Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6023–6032. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Finamore, A.; Wang, C.; Krolikowski, J.; Navarro, J.M.; Chen, F.; Rossi, D. Replication: Contrastive Learning and Data Augmentation in Traffic Classification Using a Flowpic Input Representation. In Proceedings of the 2023 ACM on Internet Measurement Conference, Montreal, QC, Canada, 24–26 October 2023; pp. 36–51. [Google Scholar]
- Zhang, Y.; Wa, S.; Liu, Y.; Zhou, X.; Sun, P.; Ma, Q. High-accuracy detection of maize leaf diseases CNN based on multi-pathway activation function module. Remote Sens. 2021, 13, 4218. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Liu, Y.; Zhou, J.; Huang, Y.; Li, J.; Zhang, L.; Ma, Q. A time-series neural network for pig feeding behavior recognition and dangerous detection from videos. Comput. Electron. Agric. 2024, 218, 108710. [Google Scholar] [CrossRef]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 2778–2788. [Google Scholar]
- Talaat, F.M.; ZainEldin, H. An improved fire detection approach based on YOLO-v8 for smart cities. Neural Comput. Appl. 2023, 35, 20939–20954. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 10781–10790. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–229. [Google Scholar]
- Zhang, Y.; Lv, C. TinySegformer: A lightweight visual segmentation model for real-time agricultural pest detection. Comput. Electron. Agric. 2024, 218, 108740. [Google Scholar] [CrossRef]
- Chi, T.S.; Ab Wahab, M.N.; Mohamed, A.S.A.; Noor, M.H.M.; Kang, K.B.; Chuan, L.L.; Brigitte, L.W.J. Enhancing EfficientNet-YOLOv4 for Integrated Circuit Detection on Printed Circuit Board (PCB) (December 2023). IEEE Access 2024, 12, 25066–25078. [Google Scholar] [CrossRef]
- Kumar, V.S.; Jaganathan, M.; Viswanathan, A.; Umamaheswari, M.; Vignesh, J. Rice leaf disease detection based on bidirectional feature attention pyramid network with YOLO v5 model. Environ. Res. Commun. 2023, 5, 065014. [Google Scholar] [CrossRef]
- Li, W.; Zhu, L.; Liu, J. PL-DINO: An Improved Transformer-Based Method for Plant Leaf Disease Detection. Agriculture 2024, 14, 691. [Google Scholar] [CrossRef]
Disease Type | Number (before/after Dataset Augmentation) | Collection Location | Time |
---|---|---|---|
Brown Rot Disease | 1398/1678 | Xinhua Community in Linhe District, Bayannur, Su Dulun Town in Urad Front Banner, Yongqing County, Hebei Province | April–July 2023 |
Powdery Mildew Disease | 926/1112 | Shuguang Township in Linhe District, Bayannur, Su Dulun Town in Urad Front Banner | May–October 2023 |
Scab Disease | 601/722 | Xinhua Community in Linhe District, Bayannur, Pick-Your-Own Gardens in Changping District, Beijing | April–September 2023 |
Bacterial Leaf Spot Disease | 882/1059 | Yongqing County, Hebei Province, Shuguang Township in Linhe District, Bayannur | March–August 2023 |
Almond Bee Disease | 1130/1356 | Yongqing County, Hebei Province, Pick-Your-Own Gardens in Changping District, Beijing | March–October 2023 |
Apricot Moth Disease | 1108/1330 | Xinhua Community in Linhe District, Bayannur, Su Dulun Town in Urad Front Banner, Yongqing County, Hebei Province | May–July 2023 |
Scale Chosomiasis Disease | 753/904 | Shuguang Township in Linhe District, Bayannur, Yongqing County, Hebei Province | April–August 2023 |
Apricot Moth Disease | 1209/1451 | Yongqing County, Hebei Province, Su Dulun Town in Urad Front Banner | May–October 2023 |
Model | Precision | Recall | Accuracy | mAP | Size | FPS |
---|---|---|---|---|---|---|
RetinaNet | 0.83 | 0.80 | 0.81 | 0.82 | 33 M | 21.6 |
EfficientDet | 0.84 | 0.82 | 0.83 | 0.84 | 3.9 M | 30.7 |
YOLOv5 | 0.85 | 0.84 | 0.85 | 0.86 | 7.5 M | 42.5 |
DETR | 0.87 | 0.85 | 0.86 | 0.87 | 41 M | 18.3 |
YOLOv8 | 0.89 | 0.87 | 0.88 | 0.89 | 10 M | 33.2 |
TinySegformer [60] | 0.90 | 0.89 | 0.90 | 0.89 | 27 M | 22.8 |
Proposed Method | 0.92 | 0.89 | 0.90 | 0.91 | 8.3 M | 40.9 |
Platform | Accuracy | Model—Size | FPS |
---|---|---|---|
GPU Platform | 0.90 | Normal—8.3 M | 40.9 |
GPU Platform | 0.86 | Knowledge Distilled—3.7 M | 68.4 |
Huawei P70 | 0.90 | Normal—8.3 M | 13.6 |
Huawei P70 | 0.86 | Knowledge Distilled—3.7 M | 30.8 |
Jetson Nano | 0.90 | Normal—8.3 M | 9.1 |
Jetson Nano | 0.86 | Knowledge Distilled—3.7 M | 15.7 |
Model | Precision | Recall | Accuracy | mAP |
---|---|---|---|---|
Model with ASLVN | 0.92 | 0.89 | 0.90 | 0.91 |
Model without ASLVN | 0.80 | 0.77 | 0.79 | 0.79 |
Model | Precision | Recall | Accuracy | mAP |
---|---|---|---|---|
No attention mechanism | 0.81 | 0.79 | 0.80 | 0.80 |
Channel attention mechanism | 0.84 | 0.82 | 0.83 | 0.84 |
Spatial attention mechanism | 0.87 | 0.85 | 0.86 | 0.87 |
Spatial state attention mechanism | 0.92 | 0.89 | 0.90 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, B.; Duan, P.; Zhou, C.; Su, X.; Yang, Z.; Zhou, S.; Ji, M.; Xie, Y.; Chen, J.; Lv, C. Implementation and Evaluation of Spatial Attention Mechanism in Apricot Disease Detection Using Adaptive Sampling Latent Variable Network. Plants 2024, 13, 1681. https://doi.org/10.3390/plants13121681
Han B, Duan P, Zhou C, Su X, Yang Z, Zhou S, Ji M, Xie Y, Chen J, Lv C. Implementation and Evaluation of Spatial Attention Mechanism in Apricot Disease Detection Using Adaptive Sampling Latent Variable Network. Plants. 2024; 13(12):1681. https://doi.org/10.3390/plants13121681
Chicago/Turabian StyleHan, Bingyuan, Peiyan Duan, Chengcheng Zhou, Xiaotong Su, Ziyan Yang, Shutian Zhou, Mengxue Ji, Yucen Xie, Jianjun Chen, and Chunli Lv. 2024. "Implementation and Evaluation of Spatial Attention Mechanism in Apricot Disease Detection Using Adaptive Sampling Latent Variable Network" Plants 13, no. 12: 1681. https://doi.org/10.3390/plants13121681
APA StyleHan, B., Duan, P., Zhou, C., Su, X., Yang, Z., Zhou, S., Ji, M., Xie, Y., Chen, J., & Lv, C. (2024). Implementation and Evaluation of Spatial Attention Mechanism in Apricot Disease Detection Using Adaptive Sampling Latent Variable Network. Plants, 13(12), 1681. https://doi.org/10.3390/plants13121681