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Abstract: When calculating the CWSI, previous researchers usually used canopy temperature and
atmospheric temperature at the same time. However, it takes some time for the canopy temperature
(Tc) to respond to atmospheric temperature (Ta), suggesting the time-lag effects between Ta and Tc.
In order to investigate time-lag effects between Ta and Tc on the accuracy of the CWSI inversion of
photosynthetic parameters in winter wheat, we conducted an experiment. In this study, four moisture
treatments were set up: T1 (95% of field water holding capacity), T2 (80% of field water holding
capacity), T3 (65% of field water holding capacity), and T4 (50% of field water holding capacity).
We quantified the time-lag parameter in winter wheat using time-lag peak-seeking, time-lag cross-
correlation, time-lag mutual information, and gray time-lag correlation analysis. Based on the
time-lag parameter, we modified the CWSI theoretical and empirical models and assessed the impact
of time-lag effects on the accuracy of the CWSI inversion of photosynthesis parameters. Finally, we
applied several machine learning algorithms to predict the daily variation in the CWSI after time-lag
correction. The results show that: (1) The time-lag parameter calculated using time-lag peak-seeking,
time-lag cross-correlation, time-lag mutual information, and gray time-lag correlation analysis are
44–70, 32–44, 42–58, and 76–97 min, respectively. (2) The CWSI empirical model corrected by the
time-lag mutual information method has the highest correlation with photosynthetic parameters.
(3) GA-SVM has the highest prediction accuracy for the CWSI empirical model corrected by the time-
lag mutual information method. Considering time lag effects between Ta and Tc effectively enhanced
the correlation between CWSI and photosynthetic parameters, which can provide theoretical support
for thermal infrared remote sensing to diagnose crop water stress conditions.

Keywords: time-lag effects; winter wheat; CWSI; photosynthetic rate; transpiration rate; stomatal
conductance

1. Introduction

The timely and accurate diagnosis of crop water stress conditions effectively deter-
mines the timing of irrigation and facilitates precision irrigation, crucial for enhancing water
use efficiency (WUE) and increasing yield [1,2]. When crops experience water stress, their
physiological indicators, such as photosynthetic parameters, leaf water potential, and exter-
nal morphology, undergo changes. These changes include a decrease in the leaf area index,
a reduction in chlorophyll concentration, and a diminution in leaf length and width [3,4].
Physiological indicators, including photosynthetic parameters, leaf water potential, and
stem water potential, focus on the crop itself for research and offer a straightforward,
scientific method to diagnose the status of crop water deficit. These indicators have proven
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effective in monitoring the water status of crops [5]. Moisture stress impacts photosynthetic
parameters across the reproductive period of crops, displaying consistent trends in the
net photosynthesis rate (Pn), transpiration rate (Tr), and stomatal conductance (gs), which
all decrease with increasing moisture stress [6]. The extent of changes in photosynthetic
parameters varies with different levels of water stress, with minor reductions under mild
water stress and significant declines under moderate to severe water stress [2].

Beyond the physiological indicators of crop water deficit, the crop water stress index
(CWSI), sensitive to soil moisture, stands as a reliable indirect metric for monitoring crop
water status. Under water stress conditions, crops exhibit reduced stomatal conductance
and diminished transpiration cooling, leading to an increase in canopy temperature. Idso
et al. [7] found that the differential in canopy temperature following noon effectively
measures the crop water deficit, revealing a consistent linear relationship between the
canopy air temperature differential (CTD) and vapor pressure deficit (VPD) under clear sky
conditions, which is not affected by environmental factors, such as wind speed. In response
to the above phenomenon, Idso, Jackson, Pinter, Reginato and Hatfield [7] propose the
CWSI empirical model, which has the advantages of fewer computational parameters, ease
of measurement, and sensitivity to crop varieties. Jackson et al. [8] proposed the CWSI
theoretical model based on the principle of canopy energy balance, taking into account
environmental factors such as aerodynamic resistance, crop minimum canopy resistance,
and net radiation, making the CWSI model more theoretical.

The CWSI is a sensitive indicator used to reflect water stress caused by the stomatal
function of the crop, and continuous water stress results in an increasing trend of the
CWSI and a decreasing trend of Pn, Tr, and gs [9]. There is a good negative correlation
between the CWSI and photosynthetic parameters [6,10]. The results of Ramos-Fernández
et al. [11] showed a strong correlation between the CWSI and gs (R2 = 0.91). When the crop
is subjected to water stress, the soil–root hydraulic resistance increases [12], which reduces
root water transport and eventually leads to the reduction in or closure of plant stomata
and a decrease in photosynthetic parameters [13]. Different physiological characteristics of
wheat have different sensitivities to soil moisture [14]; therefore, the correlation between
Pn, gs, Tr, and CWSI varies.

In calculating the CWSI, previous researchers always used atmospheric temperature
(Ta) and canopy temperature (Tc) at the same moment [15]. However, there is a time-lag
effect in the response of Tc to Ta [16]. Therefore, it is more accurate to use atmospheric
temperature that actually influences the canopy temperature. Zhang et al. [17] discovered
that accounting for the time-lag effect significantly enhances the accuracy of the CWSI in
estimating soil water content. Currently, research on the impact of this time lag on the
accuracy of the CWSI in the inversion of photosynthetic parameters remains unexplored.

We hypothesized that the time-lag effects between the canopy temperature and atmo-
spheric temperature have a significant impact on the model accuracy of the CWSI inversion
of photosynthetic parameters. Therefore, we conducted an experiment with winter wheat,
where we continuously monitored the canopy temperature and environmental factors of
winter wheat. We quantified the time-lag parameters between Ta and Tc using time-lag
peak-finding, time-lag cross-correlation, time-lag mutual information, and time-lag gray
correlation analysis. We then modified the theoretical and empirical CWSI models based on
these time-lag parameters. Finally, we investigated the implication and mechanisms of Ta
and Tc time-lag effects on the accuracy of the CWSI inversion of photosynthesis parameters.

2. Results
2.1. Time-Lag Parameters of Winter Wheat under Different Water Stresses

As depicted in Figure 1, the CCE equation fitted the daily variation process of
winter-wheat canopy temperature smoothed by S-G filtering with excellent accuracy
(R2 = 0.98), and the ECS equation fitted the daily variation process of atmospheric temper-
ature smoothed by S-G filtering with equal precision (R2 = 0.98). As seen in Figures 2–6,
among the time-lagged parameters of Tc and Ta obtained by different methods, the gray
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time-lag correlation analysis was the largest. The time-lag peak-seeking method and the
time-lag mutual information method were the second largest, followed by the time-lag
cross-correlation method.
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Figure 3. Time-lag parameters and corresponding coefficients for fully irrigated treatment. (a) is
the time-lag parameter calculated by the time-lag cross-correlation method and the cross-correlation
coefficient between Ta and Tc after the corrected time-lag; (b) is the time-lag parameter calculated
by the time-lag grey correlation analysis and the time-lag grey correlation coefficient between Ta
and Tc after the corrected time-lag; (c) is the time-lag parameter calculated by the time-lag mutual
information method and the mutual information coefficient between Ta and Tc after the corrected
time-lag. Circles indicate the results of the time-lag cross-correlation method under the four moisture
treatments; cross sign indicates the results of the time-lag grey correlation analysis under the four
moisture treatments; squares indicate the results of the time- lag mutual information method.
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Figure 4. Time-lag parameters and corresponding coefficients for mild water stress treatment. (a) is
the time-lag parameter calculated by the time-lag cross-correlation method and the cross-correlation
coefficient between Ta and Tc after the corrected time-lag; (b) is the time-lag parameter calculated
by the time-lag grey correlation analysis and the time-lag grey correlation coefficient between Ta
and Tc after the corrected time-lag; (c) is the time-lag parameter calculated by the time-lag mutual
information method and the mutual information coefficient between Ta and Tc after the corrected
time-lag. Circles indicate the results of the time-lag cross-correlation method under the four moisture
treatments; cross sign indicates the results of the time-lag grey correlation analysis under the four
moisture treatments; squares indicate the results of the time- lag mutual information method.
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Figure 5. Time-lag parameters and corresponding coefficients for moderate water stress treatment.
(a) is the time-lag parameter calculated by the time-lag cross-correlation method and the cross-
correlation coefficient between Ta and Tc after the corrected time-lag; (b) is the time-lag parameter
calculated by the time-lag grey correlation analysis and the time-lag grey correlation coefficient
between Ta and Tc after the corrected time-lag; (c) is the time-lag parameter calculated by the time-lag
mutual information method and the mutual information coefficient between Ta and Tc after the
corrected time-lag. Circles indicate the results of the time-lag cross-correlation method under the four
moisture treatments; cross sign indicates the results of the time-lag grey correlation analysis under
the four moisture treatments; squares indicate the results of the time- lag mutual information method.
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treatment, the parameters were around 44 min, 32 min, 42 min, and 76 min. These re-
sults highlight the variability in time-lag parameters across different irrigation treat-
ments, as well as the influence of the chosen calculation method. 

This indicates that the time lag between the Tc and Ta obtained from different calcu-
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the Tc reached its peak time later, resulting in a decrease in the time-lag parameter be-
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Figure 6. Time-lag parameters and corresponding coefficients for severe water stress treatment. (a) is
the time-lag parameter calculated by the time-lag cross-correlation method and the cross-correlation
coefficient between Ta and Tc after the corrected time-lag; (b) is the time-lag parameter calculated
by the time-lag grey correlation analysis and the time-lag grey correlation coefficient between Ta
and Tc after the corrected time-lag; (c) is the time-lag parameter calculated by the time-lag mutual
information method and the mutual information coefficient between Ta and Tc after the corrected
time-lag. Circles indicate the results of the time-lag cross-correlation method under the four moisture
treatments; cross sign indicates the results of the time-lag grey correlation analysis under the four
moisture treatments; squares indicate the results of the time- lag mutual information method.

The time-lag parameters between the canopy temperature (Tc) and atmospheric tem-
perature (Ta), calculated using four different methods, exhibited distinct values across
varying irrigation treatments. For the fully irrigated treatment, the time-lag parameters
were approximately 53 min, 44 min, 58 min, and 97 min when calculated using the time-lag
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peak-finding method, time-lag cross-correlation method, time-lag mutual information
method, and gray time-lag correlation analysis, respectively; for the mild water stress
treatment, these time-lag parameters were about 52 min, 43 min, 55 min, and 92 min, respec-
tively. For the moderate water stress treatment, the parameters were approximately 55 min,
44 min, 54 min, and 98 min. Lastly, for the severe water stress treatment, the parameters
were around 44 min, 32 min, 42 min, and 76 min. These results highlight the variability in
time-lag parameters across different irrigation treatments, as well as the influence of the
chosen calculation method.

This indicates that the time lag between the Tc and Ta obtained from different calcula-
tion methods for the fully irrigated, mild water stress, and moderate water stress treatments
did not differ significantly. However, for the severe water stress treatment, the Tc reached
its peak time later, resulting in a decrease in the time-lag parameter between the Ta and
Tc by approximately 10 to 22 min. This phenomenon might be associated with the soil
moisture threshold [18]. When the soil moisture threshold was reached, the water lost
through transpiration in winter wheat could not be replenished promptly. To ensure the
normal life activities of the crop, the expansion rate of the crop leaves was reduced, stomatal
conductance decreased significantly, transpiration rate declined, and canopy temperature
continued to increase, reaching the peak time later. This led to a shorter time lag between
the atmospheric temperature and canopy temperature [19].

In addition, the cross-correlation coefficient, mutual information coefficient, and gray
correlation coefficient values corresponding to the peak moments for the fully irrigated,
mild water stress, moderate water stress, and severe water stress treatments did not differ
significantly. This indicated that the linear correlation [20], nonlinear correlation [21], and
curve similarity [22] of Tc and Ta under the four moisture treatments after a time-lag
correction did not differ much.

The accuracy of the CWSI inversion of photosynthetic parameters before and after
time-lag effects was considered.

2.2. Time-Lag Peak-Seeking Method, Time-Lag Cross-Correlation Method, Time-Lag Mutual
Information Method, and Gray Time-Lag Correlation Analysis

As shown in Figures 7 and 8, correcting the time lag between the Ta and Tc improved
the accuracy of the CWSI inversion for Pn. After CWSI empirical and theoretical models
were corrected using the time-lag peak-seeking method, time-lag cross-correlation method,
time-lag mutual information method, and gray time-lag correlation analysis, the correlation
between the CWSI and Pn improved for all methods, with the empirical model showing
a more significant improvement. This indicated that the time-lag effect had a substantial
impact on the accuracy of the CWSI empirical model in inverting Pn, while its impact on
the accuracy of the CWSI theoretical model in inverting Pn was small and negligible.
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As shown in Figures 9 and 10, the time-lag effect has a small impact on the accuracy
of the CWSI theoretical model inverting Tr and a large impact on the accuracy of the
CWSI empirical model inverting Tr. The correlation between the CWSI and Tr does not
change after correcting the CWSI theoretical model by using the time-lag peak-seeking
method. The correlation between the CWSI and Tr is improved by correcting the CWSI
theoretical model by using time-lag cross-correlation method, time-lag mutual information
method, and gray time-lag correlation analysis. The correlation between Tr and the CWSI
theoretical model corrected based on gray time-lag correlation analysis and time-lag mutual
information is the best (R2 = 0.90). The correlation between the CWSI empirical model
and Tr decreases after correcting the CWSI empirical model using the time-lag mutual
information method and gray time-lag correlation analysis. The accuracy of the CWSI
inversion of Tr improves after correcting the CWSI empirical model using the time-lag
peak-seeking method and time-lag mutual correlation method. The correlation between Tr
and the CWSI empirical model corrected based on the time-lag mutual correlation method
is the highest (R2 = 0.94).
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Figure 9. Heat map of the CWSI theoretical model and Tr before and after considering time-lag effects.

As demonstrated in Figures 11 and 12, the correlation between the CWSI and gs
remains unchanged after the CWSI theoretical model was corrected by applying the time-lag
peak-seeking method. However, the correlation between the CWSI and gs improved after
the CWSI theoretical model was corrected using the time-lag cross-correlation method, the
time-lag mutual information method, and the gray time-lag correlation analysis. Notably,
the time-lag mutual information method enhanced the accuracy of the CWSI theoretical
model inversion of gs the most (R2 = 0.96). The time-lag effect significantly impacted the
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accuracy of the CWSI empirical model inversion of gs. The correlation between the CWSI
and gs increased after correcting the CWSI empirical model using the time-lag peak-seeking
method, the time-lag mutual correlation method, the time-lag mutual information method,
and the gray time-lag correlation analysis. gs showed the highest correlation with the CWSI
empirical model based on the time-lag mutual information method (R2 = 0.96).
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impact was more substantial on the accuracy of the CWSI empirical model for inverting
photosynthetic parameters, and the time-lag-corrected CWSI empirical model demon-
strated a higher correlation with the photosynthetic parameters. This indicated that the
CWSI empirical model was more sensitive to the time-lag effect than the CWSI theoretical
model. The reason for this phenomenon might be that the CWSI theoretical model required
measurements of net radiation, soil heat flux, wind speed, and canopy resistance, making
the theoretical models less volatile [23]. The correlation of the time-lag-corrected CWSI
with Pn, Tr, and gs was in the order of gs > Tr > Pn. Pn showed the highest correlation
with the empirical/theoretical CWSI models corrected by the time-lag mutual information
method (R2 = 0.8); Tr had the best correlation with the CWSI empirical model corrected by
the time-lag mutual information method (R2 = 0.93); and gs exhibited the best correlation
with the CWSI empirical model corrected by the time-lag mutual information method
(R2 = 0.93). Occasionally, time-lag correction reduced the accuracy of the CWSI inversion
of photosynthetic parameters. This reduction could be attributed to the fact that the time-
lag effect between the Tc and environmental factors, such as relative humidity and solar
radiation, was not accounted for [24].

Meanwhile, the time-lag effect was the result of the continuous direct or indirect
influence of previous environmental factors on crops, representing an accumulative pro-
cess [25–27]. The time-lag peak-finding method, which utilized a function to fit the daily
change curves of the Tc and Ta and defined the time-lag parameter solely by the time
difference between its peak points, exhibited certain limitations.

2.3. Machine Learning Algorithms for Predicting CWSI Empirical Models Based on Time-Lag
Mutual Information Correction

The accuracy of the CWSI empirical model corrected based on the time-lag mutual
information method for the inversion of photosynthetic parameters was overall high. It was
investigated by using Genetic Algorithm Optimized Support Vector Machines (GA-SVMs)
based on genetic algorithms, Bayesian Optimized Long and Short-Term Memory Neural
Networks (Bayes-LSTMs), Particle Swarm Algorithm Optimized Long and Short-Term
Memory (PSO-LSTM) based on particle swarm algorithms, Convolutional Bi-directional
Long and Short-Term Memory Neural Networks (CNN-BILSTMs), Attention Mechanism
Long Short-Term Memory Neural Networks (attention-LSTMs), and Attention Mechanism
Gated Recurrent Unit (attention-GRU) machine learning algorithms for predictions. The
prediction accuracies are shown in Table 1.

Table 1. Prediction accuracy of machine learning algorithms for the CWSI empirical model based on
time-lag mutual information correction.

Machine Learning Algorithm R2 RMSE

attention-LSTM 0.88928 0.035052
GRU-attention 0.80197 0.037266
CNN-BILSTM 0.9148 0.031886

GA-SVM 0.98237 0.016596
PSO-LSTM 0.9466 0.028885

Bayes-LSTM 0.97865 0.018266

With GA-SVM > Bayes-LSTM > PSO-LSTM > CNN-BILSTM > attention-LSTM >
GRU-attention. The prediction accuracy of the above models for the CWSI empirical model
corrected by the time-lag mutual information method was higher overall. Predicted effect
diagrams are shown in Figures 13–24. The GA-SVM model had the highest prediction
accuracy (R2 = 0.982, RMSE = 0.017).
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date was 1 June 2023. Irrigation was carried out by drip irrigation system, and the irriga-
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lated by oven-drying method and the irrigation quota is calculated as follows: 
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China (108◦24′ E, 34◦20′ N). This region is characterized by a warm, temperate, semi-humid
monsoon climate, distinguished by four distinct seasons and moderate rainfall. The average
annual temperature ranges from approximately 13 ◦C to 15 ◦C. Rainfall predominantly
occurs in July and August, driven by the southeast monsoon, with an annual average
between 600 mm and 800 mm. The effect of groundwater recharge is not considered in this
experiment.

3.2. Experiment Design

The experimental site was 32.5 m × 10.5 m and divided into 12 plots, each measuring
4 m × 4 m. Protected row treatments were used to mitigate the effects of water infiltration
(Figure 25). Four moisture treatments were used in the experiment to obtain generalizable
results: T1 (fully irrigated), T2 (mild water stress), T3 (moderate water stress), and T4
(severe water stress). The upper irrigation limits were set at 95%, 80%, 65%, and 50%
of the field water holding capacity for T1, T2, T3, and T4, respectively. Each moisture
treatment was replicated three times. Instruments for the continuous monitoring of canopy
temperature and environmental factors were positioned above experimental plots 2, 5, 8,
and 11. The cultivar used was “Genmai 68” winter wheat sown at 25 cm spacing with 30 g
of seed per row. The sowing date was 19 October 2022 and the harvest date was 1 June 2023.
Irrigation was carried out by drip irrigation system, and the irrigation quota is detailed
in Table 2. The measured volumetric soil water content was calculated by oven-drying
method and the irrigation quota is calculated as follows:

m = H · (θs − θo) · p · s (1)

where m is the irrigation quota (mm); H is the planned wetted layer depth (m): 0.4–0.5 m
(green-up stage), 0.5–0.6 m (jointing stage), 0.6–0.8 m (tasseling stage), and 0.8–1.0 m
(grouting period); θs is the field capacity (%), which is the upper limit of soil moisture
content; θo is the measured volumetric soil moisture content (%); s is the trial plot size (m);
and p is the drip irrigation wetting ratio, 0.6.
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3.3. Data Acquisition
3.3.1. Tc Measurements

In this study, the canopy temperature of winter wheat was continuously monitored us-
ing an SI-411 infrared thermometer. The monitoring interval was set at 2 min. Considering
the effect of crop cover on the instrumental monitoring of canopy temperature, the time-lag
parameter was calculated in this experiment starting from 16 February 2023. The canopy
temperature of winter wheat for the four moisture treatments is shown in Figure 26.
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3.3.2. Environmental

In this experiment, meteorological factors were continuously monitored using the
AWS-CR1000 scientific-grade automatic meteorological monitoring system, as detailed in
Table 3. Data collection intervals were set at 2 min. Meteorological factors are shown in
Figure 27.

Table 3. Summary of environmental factors observed by the weather station.

Variables Sensor Number Instrument
Height (m) Abbreviation Unit

Solar radiation SN-500 3.5 Rs W·m−2

Soil heat fux HFP01 −0.10 G W·m−2

Atmospheric
temperature HC2AS3 2.5 Ta ◦C

Relative humidity HC2AS3 2.5 RH %
Wind speed HC2AS3 2 u m·s−1

3.3.3. Photosynthetic Parameters Measurements

The differences in crop physiological indicators at different irrigation levels were
small in the morning and evening, and the differences were largest around midday, which
could accurately reflect the crop water status [28,29]. Therefore, we chose sunny and
windless days to collect the photosynthetic parameters of winter wheat: stomatal conduc-
tance gs (mol/(m2·s)), net photosynthesis rate Pn (µmol/(m2·s)), and transpiration rate
Tr (mmol/(m2·s)) at 14:00 using a portable photosynthesizer model Li-6800 from LICOR,
Lincoln, NE, USA. Three wheat plants were randomly selected from each plot, and the mea-
surements were repeated three times for each wheat flag leaf, and the average value was
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taken as the photosynthetic parameters of the crop under the moisture treatment; to ensure
the accuracy of the acquired data, the CO2 concentration of the Li-6800 portable photosyn-
thesizer reached 400 µmol/mol, and the intensity of the light reached 1000 µmol/(m2·s)
during the measurement. The data of photosynthetic parameters were collected 12 times in
this experiment (Figure 28).
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3.4. Data Processing
3.4.1. Savitzky–Golay (S-G) Filter

The Savitzky–Golay (S-G) filter [30] is a smoothing filtering technique that employs
local least squares to eliminate noise from time-series data. This method achieves its
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smoothing effect by fitting a polynomial to the data, which effectively removes noise while
preserving the signal’s original shape as closely as possible. Consequently, the S-G filter
maintains the integrity of the signal, ensuring effective smoothing.

3.4.2. Z-Score Normalization

Employing the Z-Score standardization method [31], the dimensionless standardiza-
tion of raw indicator data effectively mitigates the impact of discrepancies in data size,
characteristics, and distribution. This approach eliminates unit differences across the data,
enabling comparability among variables with diverse characteristics, while preserving the
original distribution pattern of the data.

3.4.3. Time-Lag Peak-Seeking Method

The time-lag peak-seeking method [32,33] selects the appropriate function to fit the Ta
and Tc and determine the peak position of the fitted curve. The time difference correspond-
ing to this peak point represents the time-lag parameter between the Ta and Tc. Zhang and
Wu [34] used the Gaussian function to fit the canopy temperature and atmospheric temper-
ature of summer maize and achieved good accuracy. However, the Gaussian function fits
the canopy temperature and atmospheric temperature of winter wheat with lower accuracy.
The CCE equation has a higher fitting accuracy for the canopy temperature after smoothing
by S-G filtering, and the ECS equation has a higher fitting accuracy for the atmospheric
temperature after smoothing by S-G filtering.

The CCE equation is expressed as follows:

double1 z = x − xc1 (2)

y = y0 + A × (exp(−z × z/(2 × w)) + (1 − 0.5 × (1 − tan(k2 × (x − xc2))))×
B × exp(−0.5 × k3 × (abs(x − xc3) + (x − xc3))))

(3)

where xc1 is the peak moment of winter-wheat canopy temperature. The fitting accuracy
was judged by the coefficient of determination (R2).

The ECS equation is expressed as follows:

y = y0 + A/(w × sqrt(2 × pi))× (exp(−0.5 × ((x − xc)/w)2)× (1 + (a3/(3 × 2 × 1))× ((x − xc)/w)×
(((x − xc)/w)2 − 3) + (a4/(4 × 3 × 2 × 1))× (((x − xc)/w)4 − 6 × ((x − xc)/w)3 + 3)+
((10 × a2

3)/(6 × 5 × 4 × 3 × 2 × 1))× (((x − xc)/w)6 − 15 × ((x − xc)/w)4+

45 × ((x − xc)/w)2 − 15)))

(4)

where xc is the moment of peak atmospheric temperature. The accuracy of the fit is judged
by the coefficient of determination (R2), and the peak time difference between Tc and Ta is
the time-lag parameter between Tc and Ta.

3.4.4. Time-Lag Cross-Correlation Method

Zhang et al. [35] used the time-lag cross-correlation method to calculate the time lag
between the canopy temperature and atmospheric temperature in winter wheat. They
then found that correcting the time-lag effect between Tc and Ta by the time-lag cross-
correlation method can improve the accuracy of the CWSI inversion of SWC. X (Tc) is first
mapped to Y (Ta) in the chronological order of observations. Then, Tc is shifted in steps of
2 min and the Pearson correlation coefficients of the two series are calculated. When the
Pearson correlation coefficient attains its maximum value, the corresponding shift duration
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is designated as the time-lag parameter for the two series [16,36], where the correlation
coefficient is calculated as:

Rk =

n−k
∑

i=1
(xi − xi)(yi+k − yi+k)√

n−k
∑

i=1
(xi − xi)

2

√
n−k
∑

i=1
(yi+k − yi+k)

2

(5)

Rm = max(Rk) (6)

TL = 2m (7)

where Rk is Pearson correlation coefficient for a sliding shift number of K; n is the sample
size; xi is the canopy temperature (◦C); yi+k is the atmospheric temperature (◦C); xi is
the mean of canopy temperature series (◦C); yi+k is the mean of atmospheric tempera-
ture series (◦C); Rm is the maximum correlation coefficient; m is the sliding shifts in the
canopy temperature series that correspond to the maximum Pearson correlation coefficient;
k = 0, ±1, ±2, . . ., ±n, k > 0 indicates the canopy temperature change ahead of atmospheric
temperature; and k < 0 indicates that canopy temperature changes lag behind atmospheric
temperature. TL is the time-lag parameter (min).

3.4.5. Time-Lag Mutual Information Method

To date, no researcher has calculated the time-lag parameter between Tc and Ta using
the time-lag mutual information method. Therefore, this study investigates it. Employing
the time-lag mutual information method, the time-lag parameter between the canopy
temperature, X, and atmospheric temperature, Y, is determined [37]. The formula is
presented as follows:

I(X, Y, τ) = ∑
x

∑
y

p(xt, yt+τ) log
p(xt, yt+τ)

p(xt, )p(yt+τ)
(8)

where P(xt, yt+τ) is the X = xt, Y = yt+τ joint distribution probability. τ is the time-lag
parameter. The time-lag parameter τ is determined when the mutual information coefficient
reaches its peak. A positive τ means that x changes before y, while a negative τ indicates
that x changes after y.

3.4.6. Gray Time-Lag Correlation Analysis

Currently, no researcher has employed the gray the time-lag correlation analysis to
investigate the time-lag effect between the Ta and Tc. Therefore, this study pioneers the use
of gray time-lag correlation analysis to calculate the time-lag parameter between Ta and Tc.
The methodology is outlined as follows:

1⃝ The reference sequence canopy temperature (Tc) is

X = (x(1), x(2), . . . , x(n)) (9)

The comparison of the sequence group atmospheric temperature (Ta) is

Yτ = (y(1 + τ), y(2 + τ), . . . , y(n + τ)) (10)

where τ is the time-lag parameter.
2⃝ Calculate the correlation coefficient ζ(x(k), yτ(k + τ)) between X and Yτ with the

following formula:

ζ(x(k), yτ(k + τ)) =
minτmink|x(k)− yτ(k + τ)|+ ρmaxτmaxk|x(k)− yτ(k + τ)|

|x(k)− yτ(k + τ)|+ ρmaxτmaxk|x(k)− yτ(k + τ)| (11)

k = 1, 2, 3, . . . , n (12)
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τ = 0, 1, . . . , T − n (13)

γ(τ) =
1
n∑n

k=1 ζ(x(k), yτ(k + τ)) (14)

τ = 0, 1, . . . , T − n (15)

where ρ is the resolution factor, ρ = 0.5; T is the time span of the time series.
3⃝The time lag parameter τ between Ta and Tc is identified as the time at which

γ(τ) peaks.
γ(τ∗) = max0≤τ≤T−nγ(τ) (16)

where γ(τ*) is the gray correlation between X and Y, τ∗ is the time-lag parameter of Y
and X.

3.4.7. CWSI Theoretical Model

Based on the canopy energy balance theory, Jackson, Idso, Reginato and Pinter Jr [8]
developed a theoretical model of the CWSI. The formula is as follows:

CWSI =
γ(1 + rc

ra
)− γ∗

∆ + γ(1 + rc
ra
)

(17)

γ = 0.665 × 101.3 × (
293 − 0.0065Z

293
)

5.26
(18)

γ∗ = γ × (1 +
rc

ra
) (19)

∆ = 45.03 + 3.014T + 0.05345T2 + 0.00224T3 (20)

T =
Tc + Ta

2
(21)

ra =
4.72[ln( z−d

z0
)]

2

(1 + 0.54u)
(22)

where the CWSI is crop water stress index; γ is psychrometric coefficient (Pa·◦C−1); rc is
canopy resistance (s·m−1); ra is aerodynamics resistance (s·m−1); ∆ is slope of the water
vapor pressure curve (Pa·◦C−1); Z is height above sea level (m); d is zero-plane displacement
(m), d = 0.63 h; z0 is roughness (m), z0 = 0.13 h; h is crop height (m); u is reference height
wind speed (m·s−1); z is reference height (m), z = 2; and rc is canopy resistance (s·m−1),
displayed in Table 4.

Table 4. rc of winter wheat at different fertility stages [38].

Growth Period rc (s·m−1)

Regreening stage-jointing stage 13.01
Jointing stage-tasseling stage 18.03
Tasseling stage-filling stage 26.85

3.4.8. CWSI Empirical Model

The CWSI empirical model was first constructed by Idso et al. [7]. The formula is as
follows:

CWSI =
(Tc − Ta)− NWSB

NTB − NWSB
(23)

CTD = Tc − Ta (24)

VPD = 0.6108 × exp(
17.27 × Ta
Ta + 237.7

)× (
100 − RH

100
) (25)
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VPG = 0.6108 × exp(
17.27 × Ta
Ta × 237.7

)− 0.6108 × exp(
17.27 × (Ta + b)
(Ta + b) + 237.7

) (26)

NWSB = a × VPD + b (27)

NTB = a × VPG + b (28)

where Tc is canopy temperature (◦C); Ta is atmospheric temperature (◦C); NWSB is lower
bound (no water stress); NTB is upper bound (no transpiration); CTD is canopy air tem-
perature differential (◦C); and a, b are the slope and intercept of CTD and VPD linear fits,
respectively.

Solar radiation intensifies during the period from 13:00 to 15:00, when the discrepancy
between crop and soil water supply conditions becomes more pronounced, and the linear
relationship between the canopy temperature difference (CTD) and vapor pressure deficit
(VPD) is distinct [39]. Consequently, this study opts for a linear fitting of the CTD and VPD
specifically for the 13:00–15:00 interval. The results are presented in Figure 29.
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3.4.9. Evaluation Indicators

In this study, the accuracy of the CWSI inversion of photosynthetic parameters, both
before and after time-lag corrections, is assessed using the coefficient of determination (R2).
An R2 value closer to 1 indicates a higher inversion accuracy.

Similarly, the prediction accuracy of the machine learning algorithm is evaluated
through the coefficient of determination (R2) and the root-mean-square error (RMSE),
with R2 values nearing 1 and RMSE values approaching 0 denoting enhanced prediction
accuracy.

3.4.10. Machine Learning Algorithms

In this study, various machine learning and deep learning methods were employed
to process and predict the crop water stress index (CWSI), including Genetic Algorithm
Optimized Support Vector Machines (GA-SVMs), Bayesian Optimized Long Short-Term
Memory Neural Networks (Bayes-LSTMs), Particle Swarm Algorithm Optimized Long
Short-Term Memory (PSO-LSTM), Convolutional Bi-directional Long Short-Term Mem-
ory Neural Networks (CNN-BILSTMs), Attention Mechanism Long Short-Term Memory
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Neural Networks (Attention-LSTMs), and Attention Mechanism Gated Recurrent Units
(Attention-GRUs). The GA-SVM optimizes SVM parameters using a genetic algorithm,
effectively enhancing the model’s classification and prediction performance, making it
suitable for small but complex datasets. PSO-LSTM employs particle swarm optimiza-
tion to find the optimal parameters for LSTM, improving prediction performance and
training efficiency, suitable for scenarios with a large parameter space. The CNN-BILSTM
combines a CNN and bi-directional LSTM to simultaneously extract spatial and tempo-
ral features, enhancing the prediction capability for complex long time-series data with
spatial dependencies. The Attention-LSTM incorporates an attention mechanism into
LSTM, enhancing the model’s focus on important time steps and improving prediction
accuracy, particularly for long time-series data with significant features. The Attention-
GRU introduces an attention mechanism into the GRU, simplifying the network structure
while improving the focus on important time steps, making it suitable for the efficient
prediction of long time-series data. Overall, the introduction of the attention mechanisms
(Attention-LSTM and Attention-GRU) significantly enhances the model’s ability to capture
important information, thus improving prediction accuracy. Bayes-LSTM enhances model
robustness by addressing parameter uncertainty. Both PSO-LSTM and GA-SVM improve
model performance through optimization algorithms, but are sensitive to initial settings
and optimization processes.

4. Discussions
4.1. Time-Lag Parameters between the Tc and Ta Calculated by Different Models

The essence of the peak-finding method is to find a suitable function for fitting [40],
and the time difference of the peak of the curve is the time-lag parameter between the
two series. In this study, the CCE equation was applied to fit the Tc of winter wheat
after S-G filter smoothing, and the ECS equation was applied to fit the Ta after S-G filter
smoothing. This is in general agreement with the time-lag parameter between the Tc and
Ta for summer maize obtained by Zhang et al. [34]. Considering that the time-lag effect
was the persistent influence of previous climatic conditions on current crop growth as a
result of the cumulative effects of meteorological factors and soil moisture content on the
crop [41,42], there were limitations in determining the time-lag parameter through isolated
points. Therefore, the time-lag parameter between the Ta and Tc was calculated using the
time-lag cross-correlation method [43]. The time-lag parameter calculated in this study was
about 32–44 min, consistent with the findings of Zhang et al. [44].

Meanwhile, this study innovatively utilized the time-lag mutual information method [45]
and gray time-lag correlation analysis [46] to calculate the time-lag parameter between the
Ta and Tc. The time-lag parameter calculated by the time-lag mutual information method
ranged from 42 to 58 min, while the gray time-lag correlation analysis-calculated time-lag
parameter ranged from 76 to 98 min. Additionally, the time-lag parameter between the Tc
and Ta in winter wheat calculated by the four methods all experienced a significant sudden
drop under the heavy water stress treatment. Pn, Tr, and gs all exhibited a decreasing trend
with diminishing soil moisture [47], and a sudden drop occurred during the severe water
stress treatment (T4) [2]. This phenomenon might be related to the soil moisture quench
value [5].

Mild water stress does not affect the normal life activities of the crop, and the physio-
logical activities of the plant are limited only when the degree of drought stress exceeds the
drought threshold. When the soil moisture threshold is reached, stomata are reduced or
closed, and water lost through stomatal transpiration and CO2 entering the chloroplasts
is reduced [48]. As a result, Pn, Tr, and gs undergo varying degrees of reduction [49]. Wu
et al. [50] found that, when the soil volumetric water content was lower than 60% of the field
holding capacity for a long period of time, leaf enlargement was restricted, the total leaf area
for light energy interception was reduced, and the gas exchange process of winter wheat
was limited, which was the reason for the sudden decrease in photosynthetic parameters
under severe water stress. At the same time, the decrease in stomatal conductance reduces
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crop transpiration, evaporative cooling was reduced, and canopy temperatures continue
to rise [51], reaching their peaks later, resulting in a decrease in the time-lag parameter
between the Tc and Ta in the heavy water stress treatment. Liu et al. [52] found that the
soil moisture quench value of winter wheat was about 43.5–52.2% of the soil water content,
which was consistent with the soil moisture treatments in this experiment, where there
were abrupt changes in photosynthetic and time-lag parameters.

4.2. Reasons for Different Changes in the Magnitude of the Accuracy of the CWSI Inversions of Pn,
Tr, and gs before and after Corrections of the Time-Lag Effect

After considering the time-lag effect, the magnitudes of correlations between the
CWSI and Pn, Tr, and gs varied inconsistently, which might be related to the different
major environmental factors affecting Pn, Tr, and gs [29], as well as their distinct critical
soil moisture thresholds. When the crop was not subjected to water stress, environmental
factors had a small and negligible effect on Pn, Tr was mainly limited by solar radiation,
and gs was primarily limited by photosynthetically active radiation and crop canopy
temperature. When crops were subjected to water stress, Pn was mainly limited by relative
humidity and atmospheric temperature, Tr was chiefly limited by saturated water-vapor
pressure difference, and gs was predominantly limited by saturated water-vapor pressure
difference and wind speed [53]. Meanwhile, Pn, Tr, and gs showed different sensitivities to
soil water deficit. The critical soil moisture thresholds for Pn, Tr, and gs were 62%, 60%,
and 58% for maize at the seedling stage and 51%, 53%, and 48% at the nodulation stage,
respectively. This indicated that crop photosynthetic parameters were sensitive to soil
moisture in the order of gs > Tr > Pn [14], consistent with the magnitude of the CWSI
correlation with Pn, Tr, and gs obtained in this study [18]. At the same time, this might
result in a varying degree of improvement in the correlation between the CWSI and Pn, Tr,
and gs before and after accounting for time-lag effects (gs > Tr > Pn).

4.3. Outlook

Physiological parameters of plants at different growth stages exhibit varying sensi-
tivities to soil moisture [14]. This suggests that the photosynthetic parameters of winter
wheat at different fertility stages show differential sensitivities to the CWSI under varying
water stress conditions. The impact of water stress on the crop’s gas exchange processes is
minimal during the regrowth period, with little variation in Pn, Tr, and Gs across different
water stress levels. However, the inhibitory effects of persistent water stress during the
nodulation–irrigation period are more pronounced, indicating a more significant decrease
in Pn, Tr, and gs in winter wheat under severe water stress [54]. Therefore, there are
significant seasonal variations in the correlation of the CWSI with Pn, Tr, and gs in winter
wheat subjected to different moisture treatments. In this study, the impact of the time-lag
effect on the accuracy of the CWSI inversion of photosynthesis parameters is investigated
only for the entire reproductive period. The influence of time lag between the Ta and Tc on
the accuracy of the CWSI inversion of photosynthesis parameters during each reproductive
phase is not discussed and requires further study.

5. Conclusions

In this study, we investigate the impact of the time-lag effect between the Tc and Ta on
the correlation between the CWSI and photosynthetic parameters. The main conclusions
are: (1) The magnitude of the time-lag parameter between the Tc and Ta in winter wheat,
calculated by the four methods for the entire reproductive period, follows the order: gray
time-lag correlation analysis > time-lag peak-seeking method > time-lag mutual information
method > time-lag cross-correlation method. All time-lag parameters of severe water stress
treatment experience a sudden decrease. (2) The CWSI empirical model is more sensitive
to the time-lag effect than the theoretical model. Time-lag correction, particularly using
the time-lag mutual information method, significantly improves the correlation between
the CWSI and photosynthetic parameters. (3) The GA-SVM machine learning algorithm
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provides the highest prediction accuracy for daily changes in the CWSI empirical model
corrected with the time-lag mutual information method (R2 = 0.982, RMSE = 0.017).
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