Structure-Based Design, Virtual Screening, and Discovery of Novel Patulin Derivatives as Biogenic Photosystem II Inhibiting Herbicides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Model-Based Ligand Design and Molecular Docking of Patulin and Its Derivatives
2.2. Prediction of Toxicity of Patulin’s Derivatives by Computational Analysis
2.3. Verification of the Molecular Models of Real Candidates’ Binding to D1 Protein
3. Materials and Methods
3.1. Software
3.2. The Preparation of Ligands
3.3. The Preparation of Protein Data
3.4. Interaction Model of Patulin Binding to D1 Protein of A. thaliana
3.5. Model-Based Ligand Design and Molecular Docking of Patulin Derivatives
3.6. Prediction of Toxicity of Patulin Derivatives by Computational Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sparks, T.C.; Sparks, J.M.; Duke, S.O. Natural product-based crop protection compounds-origins and future prospects. J. Agric. Food Chem. 2023, 71, 2259–2269. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Sun, S.; Kong, W.; Li, M.; Li, S. Eudistomins γ-inspired design and divergent optimization of heteroaryl ketones for new antifungal leads. J. Agric. Food Chem. 2024, 72, 11928–11937. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Qiang, S. Recent advances in tenuazonic acid as a potential herbicide. Pestic. Biochem. Physiol. 2017, 143, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Sadybekov, A.V.; Katritch, V. Computational approaches streamlining drug discovery. Nature 2023, 616, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Moretti, R.; Meiler, J. Recent advances in automated structure-based de novo drug design. J. Chem. Inf. Model. 2024, 64, 1794–1805. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.R. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 2015, 66, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Zabret, J.; Bohn, S.; Schuller, S.K.; Arnolds, O.; Möller, M.; Meier-Credo, J.; Liauw, P.; Chan, A.R.; Tajkhorshid, E.; Langer, J.D.; et al. Structural insights into photosystem II assembly. Nat. Plants 2021, 7, 524–538. [Google Scholar] [CrossRef]
- Gisriel, C.J.; Wang, J.; Liu, J.; Flesher, D.A.; Reiss, K.M.; Huang, H.; Yang, K.; Armstrong, W.H.; Gunner, M.R.; Batista, V.S.; et al. High-resolution cryo-electron microscopy structure of photosystem II from the mesophilic cyanobacterium, Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. USA 2022, 119, e2116765118. [Google Scholar] [CrossRef]
- Oettmeier, W. Herbicide resistance and supersensitivity in photosystem II. Cell. Mol. Life Sci. CMLS 1999, 55, 1255–1277. [Google Scholar] [CrossRef]
- Lancaster, C.R.D.; Michel, H. Refined crystal structures of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid. J. Mol. Biol. 1999, 286, 883–898. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Strasser, R.J.; Qiang, S. In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers. Plant Physiol. Biochem. 2014, 84, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Nakka, S.; Jugulam, M.; Peterson, D.; Asif, M. Herbicide resistance: Development of wheat production systems and current status of resistant weeds in wheat cropping systems. Crop J. 2019, 7, 750–760. [Google Scholar] [CrossRef]
- Ramalingam, S.; Bahuguna, A.; Kim, M. The effects of mycotoxin patulin on cells and cellular components. Trends Food Sci. Technol. 2019, 83, 99–113. [Google Scholar] [CrossRef]
- Liu, S.; Meng, S.; Wang, M.; Li, W.; Dong, N.; Liu, D.; Li, Y.; You, T. In-depth interpretation of aptamer-based sensing on electrode: Dual-mode electrochemical-photoelectrochemical sensor for the ratiometric detection of patulin. Food Chem. 2023, 410, 135450. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.; Soung, N.K.; Thimmegowda, N.R.; Jeong, S.J.; Jang, J.H.; Moon, D.O.; Chung, J.K.; Lee, K.S.; Kwon, Y.T.; Erikson, R.L.; et al. Patulin induces colorectal cancer cells apoptosis through EGR-1 dependent ATF3 up-regulation. Cell. Signal. 2012, 24, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Adrian, L.; Kashif, J.; Mohanad, Z.; Florian, L. Patulin-induced suicidal erythrocyte death. Cell. Physiol. Biochem. 2013, 32, 291–299. [Google Scholar]
- Sexena, N.; Ansari, K.M.; Kumar, R.; Dhawan, A.; Dwivedi, P.D.; Das, M. Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p53 and p21/WAF1 proteins in skin of mice. Toxicol. Appl. Pharmacol. 2009, 234, 192–201. [Google Scholar] [CrossRef]
- Madrigal-Santillán, E.; Morales-González, J.A.; Vargas-Mendoza, N.; Reyes-Ramírez, P.; Cruz-Jaime, S.; Sumaya-Martínez, T.; Pérez-Pastén, R.; Madrigal-Bujaidar, E. Antigenotoxic studies of different substances to reduce the DNA damage induced by aflatoxin B1 and ochratoxin A. Toxins 2010, 2, 738–757. [Google Scholar] [CrossRef]
- Glaser, N.; Stopper, H. Patulin: Mechanism of genotoxicity. Food Chem. Toxicol. 2012, 50, 1796–1801. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, C.; Xu, D.; Huang, K.; Li, Y.; Jiao, L.; Fu, B.; Li, S.; Li, Y. Patulin induces ROS-dependent cardiac cell toxicity by inducing DNA damage and activating endoplasmic reticulum stress apoptotic pathway. Ecotoxicol. Environ. Saf. 2024, 269, 115784. [Google Scholar] [CrossRef] [PubMed]
- Ismaiel, A.A.; Papenbrock, J. Thioredoxin Is a new target for the phytotoxicity of small lactone mycotoxins, patulin and penicillic acid on maize seedlings. Agriculture 2023, 13, 950. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, W.; Wang, H.; Wang, X.; Qang, S.; Kalaji, H.M.; Strasser, R.J.; Chen, S. Action mode of the mycotoxin patulin as a novel natural photosystem II inhibitor. J. Agric. Food Chem. 2021, 69, 7313–7323. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Z.; Liu, Q.; Zhang, D.; Xue, H.; Shang, S.; Bi, Y. Ozone application suppressed the blue mold development and maintained the main active ingredients content of postharvest fresh Codonopsis pilosula during storage. J. Fungi 2024, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Aouidate, A.; Wang, S.; Yu, Q.; Li, Y.; Yuan, S. Discovering anti-cancer drugs via computational methods. Front. Pharmacol. 2020, 11, 733. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yao, Q.; Guo, Y.; Zhang, Q.; Wang, Z.; Strasser, R.J.; Valverde, B.E.; Chen, S.; Qiang, S.; Kalaji, H.M. Structure-based ligand design and discovery of novel tenuazonic acid derivatives with high herbicidal activity. J. Adv. Res. 2022, 40, 29–44. [Google Scholar] [CrossRef]
- Yang, Q.; Guo, Y.; Wang, H.; Luo, Z.; Chen, Y.; Jiang, M.; Lu, H.; Valverde, B.E.; Qiang, S.; Strasser, R.J.; et al. Action of the fungal compound citrinin, a bioherbicide candidate, on photosystem II. Pest Manag. Sci. 2024, 80, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A. Quantifying the chemical beauty of drugs. Nat. Chem. 2012, 4, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Meier, S.; Hanif, M.; Adhireksan, Z.; Pichler, V.; Novak, M.; Jirkovsky, E.; Jakupec, M.A.; Arion, V.B.; Davey, C.A.; Keppler, B.K.; et al. Novel metal(II) arene 2-pyridinecarbothioamides: A rationale to orally active organometallic anticancer agents. Chem. Sci. 2013, 4, 1837–1846. [Google Scholar] [CrossRef]
- Liu, D.; Wang, C. Effect of substituents on hydrogen bond strength in hydrogen-bonded N-methylacetamide and uracil complexes. Acta Phys.-Chim. Sin. 2012, 28, 2809–2816. [Google Scholar]
- Duke, S.O.; Dayan, F.E. Clues to new herbicide mechanisms of action from natural sources. ACS Symp. Ser. 2013, 1141, 203–215. [Google Scholar]
- Balupuri, A.; Balasubramanian, P.K.; Cho, S.J. 3D-QSAR, docking, molecular dynamics simulation and free energy calculation studies of some pyrimidine derivatives as novel JAK3 inhibitors. Arab. J. Chem. 2020, 13, 1052–1078. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, J.; Hu, C.; Zhang, X.; Ma, B.; Zhang, P. In silico ADME and toxicity prediction of ceftazidime and its impurities. Front. Pharmacol. 2019, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- McKinley, E.R.; Carlton, W.W.; Boon, G.D. Patulin mycotoxicosis in the rat: Toxicology, pathology and clinical pathology. Food Chem. Toxicol. 1982, 20, 289–300. [Google Scholar] [CrossRef]
Chemical Structure | Compound No. | Substituent (R-) | QED | Interaction Energy (kal·mol−1) |
---|---|---|---|---|
D0 (patulin) | O | 0.488 | −25.383 | |
D1 | S | 0.566 | −29.405 | |
D2 | NH | 0.473 | −22.093 | |
D3 | N-CH3 | 0.518 | −26.871 | |
D4 | CH2 | 0.530 | −27.825 | |
D5 | CHCH3 | 0.567 | −29.641 | |
D6 | CHCH2CH3 | 0.651 | −34.373 | |
D7 | CHCl | 0.561 | −28.940 | |
D8 | CH-OH | 0.503 | −26.086 | |
D9 | CH-NH2 | 0.487 | −25.225 |
Chemical Structure | Compound No. | Substituent (R-) | QED | Interaction Energy (kal·mol−1) |
---|---|---|---|---|
D0 (patulin) | H | 0.488 | −25.383 | |
D10 | CH3 | 0.523 | −27.349 | |
D11 | SH | 0.403 | −17.148 | |
D12 | S-CH3 | 0.601 | −31.482 | |
D13 | CO-CH3 | 0.448 | −19.228 | |
D14 | CHO | 0.330 | −15.742 | |
D15 | COOH | 0.428 | −18.243 | |
D16 | CO-OCH3 | 0.492 | −25.682 | |
D17 | NH2 | 0.432 | −18.782 | |
D18 | NH-COCH3 | 0.518 | −26.945 | |
D19 | Cl | 0.548 | −28.307 |
Chemical Structure | Compound No. | Substituent (R-) | QED | Interaction Energy (kal·mol−1) |
---|---|---|---|---|
D0 (patulin) | OH | 0.488 | −25.383 | |
D20 | O-CH3 | 0.470 | −21.481 | |
D21 | O-CH2CH3 | 0.481 | −24.653 | |
D22 | O-CH2CH2CH3 | 0.482 | −24.804 | |
D23 | OH | 0.487 | −25.092 | |
D24 | CHO | 0.396 | −16.454 | |
D25 | CO-CH3 | 0.422 | −17.838 | |
D26 | CO-Cl | 0.501 | −26.005 | |
D27 | COOH | 0.462 | −20.562 | |
D28 | CO-OCH3 | 0.477 | −23.965 | |
D29 | CH3 | 0.513 | −26.233 | |
D30 | CH2CH3 | 0.544 | −28.266 | |
D31 | CH2CH2CH3 | 0.605 | −32.148 | |
D32 | CH(CH3)2 | 0.573 | −30.184 | |
D33 | (CH2)3CH3 | 0.615 | −32.682 | |
D34 | CH(CH3)CH2CH3 | 0.631 | −33.048 | |
D35 | CH2CH(CH3)CH3 | 0.639 | −33.865 | |
D36 | Cl | 0.399 | −16.705 | |
D37 | CH2Cl | 0.505 | −26.158 | |
D38 | SH | 0.428 | −18.175 | |
D39 | S-CH3 | 0.578 | −30.349 | |
D40 | NH2 | 0.473 | −21.872 |
Chemical Structure | Compound No. | Substituent (R-) | QED | Interaction Energy (kal·mol−1) |
---|---|---|---|---|
D0 (patulin) | O | 0.488 | −25.383 | |
D41 | S | 0.536 | −27.948 | |
D42 | NH | 0.458 | −19.896 | |
D43 | N-CH3 | 0.515 | −26.719 | |
D44 | CH2 | 0.513 | −26.264 | |
D45 | CHCH3 | 0.540 | −28.108 | |
D46 | CHCH2CH3 | 0.617 | −32.846 | |
D47 | CHCl | 0.447 | −19.043 | |
D48 | CH-OH | 0.478 | −24.125 | |
D49 | CH-NH2 | 0.463 | −20.694 |
Chemical Structure | Compound No. | Substituent (R-) | QED | Interaction Energy (kal·mol−1) |
---|---|---|---|---|
D0 (patulin) | H | 0.488 | −25.383 | |
D50 | CH3 | 0.524 | −27.559 | |
D51 | CH2CH3 | 0.601 | −30.941 | |
D52 | CH2CH2CH3 | 0.671 | −35.015 | |
D53 | CH(CH3)2 | 0.634 | −33.339 | |
D54 | CH2Cl | 0.494 | −25.943 | |
D55 | OH | 0.474 | −22.563 | |
D56 | O-CH3 | 0.571 | −30.058 | |
D57 | O-CH2CH3 | 0.639 | −34.215 | |
D58 | CHO | 0.431 | −18.449 | |
D59 | CO-CH3 | 0.569 | −29.946 | |
D60 | COOH | 0.443 | −18.982 | |
D61 | CO-OCH3 | 0.425 | −18.076 | |
D62 | CO-OCH(CH3)2 | 0.414 | −17.576 | |
D63 | CO-OCH2CH3 | 0.458 | −19.648 | |
D64 | SH | 0.420 | −17.773 | |
D65 | S-CH3 | 0.522 | −26.93 | |
D66 | CH2-S-CH3 | 0.713 | −36.428 | |
D67 | (CH2)2-S-CH3 | 0.671 | −35.601 | |
D68 | NH2 | 0.459 | −20.083 |
Chemical Structure | Compound No. | Substituent (R-) | QED | Interaction Energy (kal·mol−1) |
---|---|---|---|---|
D0 (patulin) | H | 0.488 | −25.383 | |
D69 | CH3 | 0.523 | −27.408 | |
D70 | CH2CH3 | 0.604 | −31.806 | |
D71 | CH2Cl | 0.490 | −25.368 | |
D72 | OH | 0.464 | −21.156 | |
D73 | O-CH3 | 0.552 | −28.483 | |
D74 | CHO | 0.430 | −18.435 | |
D75 | CO-CH3 | 0.567 | −29.442 | |
D76 | COOH | 0.442 | −18.801 | |
D77 | CO-OCH3 | 0.523 | −27.143 | |
D78 | SH | 0.403 | −17.282 | |
D79 | S-CH3 | 0.601 | −31.521 | |
D80 | NH2 | 0.432 | −18.358 | |
D81 | Cl | 0.481 | −24.548 |
Compound No. | Rat Oral LD50 (mg/kg) | Rat Inhalational LD50 (mg/m3) | Skin Irritancy | Skin Sensitization | Ocular Irritancy | Ames Mutagenicity |
---|---|---|---|---|---|---|
D0 (patulin) | 55 (exp.) | - | - | - | - | Non-Mutagen (exp.) |
139.305 | 4338.681 | Moderate | Moderate | Severe | Non-Mutagen | |
D1 | 571.536 | 3601.752 | Mild | Weak | Severe | Non-Mutagen |
D3 | 993.933 | 10,833.50 | Mild | None | Mild | Non-Mutagen |
D4 | 607.153 | 4613.415 | Mild | Weak | Severe | Non-Mutagen |
D5 | 369.025 | 9291.594 | Mild | Weak | Severe | Non-Mutagen |
D6 | 587.353 | 21,647.80 | Mild | Weak | Mild | Non-Mutagen |
D7 | 281.027 | 3239.335 | Mild | Weak | Severe | Non-Mutagen |
D8 | 591.034 | 2774.117 | Mild | Weak | Severe | Non-Mutagen |
D10 | 148.169 | 9713.14 | Mild | Weak | Severe | Non-Mutagen |
D12 | 168.457 | 3494.71 | Mild | Weak | Severe | Non-Mutagen |
D16 | 327.657 | 5498.03 | Mild | Weak | Moderate | Non-Mutagen |
D18 | 414.29 | 8957.64 | Mild | None | Mild | Non-Mutagen |
D19 | 61.1887 | 3218.41 | Mild | Weak | Moderate | Non-Mutagen |
D26 | 156.119 | 2402.14 | Mild | Weak | Severe | Non-Mutagen |
D29 | 157.887 | 12,885.25 | Mild | Weak | Severe | Non-Mutagen |
D30 | 368.658 | 30,435.47 | Mild | Weak | Severe | Non-Mutagen |
D31 | 410.105 | 55,470.60 | Severe | None | Severe | Non-Mutagen |
D32 | 306.655 | 32,070.50 | Moderate | Weak | Severe | Non-Mutagen |
D33 | 422.363 | 54,391.60 | Moderate | None | Severe | Non-Mutagen |
D34 | 500.764 | 74,265.90 | Mild | Weak | Mild | Non-Mutagen |
D35 | 418.021 | 33,862.10 | Moderate | Weak | Mild | Non-Mutagen |
D37 | 103.857 | 3289.45 | Mild | Weak | Severe | Non-Mutagen |
D39 | 232.301 | 5588.03 | Mild | Weak | Mild | Non-Mutagen |
D41 | 174.595 | 3667.57 | Mild | Weak | Severe | Non-Mutagen |
D43 | 293.806 | 11,837.50 | Mild | Weak | Severe | Non-Mutagen |
D44 | 198.445 | 4834.81 | Mild | Weak | Severe | Non-Mutagen |
D45 | 223.607 | 9603.58 | Mild | Weak | Severe | Non-Mutagen |
D46 | 213.791 | 22,374.60 | Mild | Weak | Severe | Non-Mutagen |
D50 | 235.67 | 6575.84 | Mild | Weak | Severe | Non-Mutagen |
D51 | 358.416 | 15,407.70 | Mild | Weak | Severe | Non-Mutagen |
D52 | 411.583 | 27,890 | Mild | Weak | Severe | Non-Mutagen |
D53 | 343.009 | 16,124.70 | Mild | Weak | Severe | Non-Mutagen |
D54 | 78.2202 | 1649.27 | Mild | Weak | Severe | Non-Mutagen |
D56 | 285.465 | 5630.42 | Mild | Weak | Moderate | Non-Mutagen |
D57 | 311.297 | 10,151 | Mild | Weak | Moderate | Non-Mutagen |
D59 | 266.431 | 5320.76 | Mild | Weak | Moderate | Non-Mutagen |
D65 | 270.03 | 2804.60 | Mild | Weak | Severe | Non-Mutagen |
D66 | 315.52 | 2784.97 | Mild | Weak | Severe | Non-Mutagen |
D67 | 457.744 | 2395.11 | Mild | Weak | Mild | Non-Mutagen |
D69 | 228.207 | 9713.14 | Mild | Weak | Severe | Non-Mutagen |
D70 | 159.021 | 20,286.60 | Mild | Weak | Severe | Non-Mutagen |
D71 | 59.1671 | 2143.11 | Mild | Weak | Severe | Non-Mutagen |
D73 | 124.718 | 7143.39 | Mild | Weak | Severe | Non-Mutagen |
D75 | 122.299 | 6986.65 | Mild | Weak | Severe | Non-Mutagen |
D77 | 409.641 | 5498.03 | Mild | Weak | Moderate | Non-Mutagen |
D79 | 142.33 | 3494.71 | Mild | Weak | Severe | Non-Mutagen |
Com. | Mol. Formula | Chemical Structure | QED | Bonding Donors | Bonding Acceptors | Interactions | Bound Distance (Å) | Interaction Energy (kal·mol−1) |
---|---|---|---|---|---|---|---|---|
D0 (patulin) | C7H6O4 | 0.488 | D0 O2 D1-Phe255 D1-Ser264 D1-Phe265 | D1-His252 NH D0 C4 D0 C3 D0 C6 | Hydrogen Bond Pi-alkyl Hydrophobic Alkyl Hydrophobic Alkyl Hydrophobic | 2.38 3.83 4.22 3.51 | −25.383 | |
D3 | C8H9NO3 | 0.518 | D3 O2 D1-Phe255 D1-Ser264 D1-Phe265 | D1-His252 NH D3 C4 D3 C3 D3 C6 | Hydrogen Bond Alkyl Hydrophobic Pi-alkyl Hydrophobic Alkyl Hydrophobic | 2.27 3.17 3.42 3.57 | −26.871 | |
D6 | C10H12O3 | 0.651 | D6 O2 D1-Phe255 D1-Ser264 D1-Leu271 | D1-His252 NH D6 C3 D6 C9 D6 C6 | Hydrogen Bond Pi-alkyl Hydrophobic Alkyl Hydrophobic Alkyl Hydrophobic | 2.13 3.52 3.39 4.25 | −34.373 | |
D34 | C11H14O3 | 0.631 | D34 O2 D1-Phe255 D1-Phe260 D1-Ala263 D1-Leu271 | D1-His252 NH D34 C11 D34 C10 D34 C10 D34 C11 | Hydrogen Bond Pi-alkyl Hydrophobic Pi-alkyl Hydrophobic Alkyl Hydrophobic Alkyl Hydrophobic | 2.18 3.21 3.30 3.44 3.58 | −33.048 | |
D67 | C10H12O4S | 0.671 | D1-His215 D67 O2 D1-Leu271 D1-His272 D1-Leu275 | D67 C8 D1-His252 NH D67 C9 D67 C11 D67 C11 | Alkyl Hydrophobic Hydrogen Bond Alkyl Hydrophobic Alkyl Hydrophobic Alkyl Hydrophobic | 3.09 2.06 3.15 3.42 3.33 | −35.601 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, J.; Ji, Y.; Guo, Y.; Liu, Q.; Chang, Y.; Qiang, S.; Chen, S. Structure-Based Design, Virtual Screening, and Discovery of Novel Patulin Derivatives as Biogenic Photosystem II Inhibiting Herbicides. Plants 2024, 13, 1710. https://doi.org/10.3390/plants13121710
Wang H, Zhang J, Ji Y, Guo Y, Liu Q, Chang Y, Qiang S, Chen S. Structure-Based Design, Virtual Screening, and Discovery of Novel Patulin Derivatives as Biogenic Photosystem II Inhibiting Herbicides. Plants. 2024; 13(12):1710. https://doi.org/10.3390/plants13121710
Chicago/Turabian StyleWang, He, Jing Zhang, Yu Ji, Yanjing Guo, Qing Liu, Yuan Chang, Sheng Qiang, and Shiguo Chen. 2024. "Structure-Based Design, Virtual Screening, and Discovery of Novel Patulin Derivatives as Biogenic Photosystem II Inhibiting Herbicides" Plants 13, no. 12: 1710. https://doi.org/10.3390/plants13121710
APA StyleWang, H., Zhang, J., Ji, Y., Guo, Y., Liu, Q., Chang, Y., Qiang, S., & Chen, S. (2024). Structure-Based Design, Virtual Screening, and Discovery of Novel Patulin Derivatives as Biogenic Photosystem II Inhibiting Herbicides. Plants, 13(12), 1710. https://doi.org/10.3390/plants13121710