
Citation: Wang, J.; Yin, Q.; Cao, L.;

Zhang, Y.; Li, W.; Wang, W.; Zhou, G.;

Huo, Z. Enhancing Winter Wheat

Soil–Plant Analysis Development

Value Prediction through Evaluating

Unmanned Aerial Vehicle Flight

Altitudes, Predictor Variable

Combinations, and Machine Learning

Algorithms. Plants 2024, 13, 1926.

https://doi.org/10.3390/

plants13141926

Academic Editor: Vittorio Rossi

Received: 9 May 2024

Revised: 11 June 2024

Accepted: 9 July 2024

Published: 12 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

Enhancing Winter Wheat Soil–Plant Analysis Development
Value Prediction through Evaluating Unmanned Aerial Vehicle
Flight Altitudes, Predictor Variable Combinations, and Machine
Learning Algorithms
Jianjun Wang 1,2 , Quan Yin 1,2 , Lige Cao 3, Yuting Zhang 1,2, Weilong Li 1,2, Weiling Wang 1,2, Guisheng Zhou 4

and Zhongyang Huo 1,2,*

1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and
Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China;
wangjianjun@yzu.edu.cn (J.W.); mx120220725@stu.yzu.edu.cn (Q.Y.); mz120221323@stu.yzu.edu.cn (Y.Z.);
mx120220735@stu.yzu.edu.cn (W.L.); 007465@yzu.edu.cn (W.W.)

2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University,
Yangzhou 225009, China

3 College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou 233100, China;
1338220301@ahstu.edu.cn

4 Joint International Research Laboratory of Agriculture and Agricultural Product Safety, Yangzhou University,
Yangzhou 225009, China; gszhou@yzu.edu.cn

* Correspondence: zyhuo@yzu.edu.cn

Abstract: Monitoring winter wheat Soil–Plant Analysis Development (SPAD) values using Unmanned
Aerial Vehicles (UAVs) is an effective and non-destructive method. However, predicting SPAD values
during the booting stage is less accurate than other growth stages. Existing research on UAV-based
SPAD value prediction has mainly focused on low-altitude flights of 10–30 m, neglecting the potential
benefits of higher-altitude flights. The study evaluates predictions of winter wheat SPAD values
during the booting stage using Vegetation Indices (VIs) from UAV images at five different altitudes
(i.e., 20, 40, 60, 80, 100, and 120 m, respectively, using a DJI P4-Multispectral UAV as an example,
with a resolution from 1.06 to 6.35 cm/pixel). Additionally, we compare the predictive performance
using various predictor variables (VIs, Texture Indices (TIs), Discrete Wavelet Transform (DWT))
individually and in combination. Four machine learning algorithms (Ridge, Random Forest, Support
Vector Regression, and Back Propagation Neural Network) are employed. The results demonstrate
a comparable prediction performance between using UAV images at 120 m (with a resolution of
6.35 cm/pixel) and using the images at 20 m (with a resolution of 1.06 cm/pixel). This finding
significantly improves the efficiency of UAV monitoring since flying UAVs at higher altitudes results
in greater coverage, thus reducing the time needed for scouting when using the same heading overlap
and side overlap rates. The overall trend in prediction accuracy is as follows: VIs + TIs + DWT >
VIs + TIs > VIs + DWT > TIs + DWT > TIs > VIs > DWT. The VIs + TIs + DWT set obtains frequency
information (DWT), compensating for the limitations of the VIs + TIs set. This study enhances the
effectiveness of using UAVs in agricultural research and practices.

Keywords: winter wheat; SPAD value; vegetation indices; texture indices; discrete wavelet transform;
machine learning; flight altitudes

1. Introduction

The SPAD (Soil–Plant Analysis Development) value represents the relative chlorophyll
content and is significant in crop cultivation and breeding to evaluate crops’ photosynthetic
capacity and nutritional health. It provides important indicators for rapid fertilization
diagnoses and crop variety screenings [1–3]. Winter wheat is one of the vital staple crops
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in China, and is essential for maintaining national food security and driving economic
development [4]. Therefore, the accurate and efficient monitoring of winter wheat SPAD
values holds immense importance.

Advancements in remote sensing (RS) technology have led to numerous studies
confirming that monitoring winter wheat SPAD values through RS is the most effective
and non-destructive method available [5–7]. In particular, optical sensors carried by
unmanned aerial vehicles (UAVs) can obtain RS images with a fine spatial (cm level) and
spectral resolution. They can adjust flight altitude and coverage area according to specific
requirements, providing detailed spectral and spatial information on winter wheat [8].
When using a fixed focal length for UAV image acquisition, the spatial resolution decreases
with the increase in UAV flight altitude. Researchers generally believe that a higher
spatial resolution usually means more detailed information on winter wheat growth [9,10].
Therefore, when obtaining UAV images, there is a tendency to lower the flight altitude as
much as possible [11–13]. For example, the widely used DJI Phantom 4 multispectral UAV
(DJI, Inc., Shenzhen, China) typically sets the flight altitude at 10–30 m (with a resolution
of 0.52–1.59 cm/pixel) in studies predicting winter wheat SPAD values [14–16]. However,
a higher spatial resolution requires lower UAV flight altitude, often resulting in a longer
image acquisition time.

At present, UAVs’ primary limitation is the battery capacity and net weight, as a high
battery capacity and limited battery net weight result in increased flight duration [17]. An
ordinary UAV can usually operate safely for about 10–20 min, and recharging becomes
necessary if the battery’s charge drops below 10% [18]. Since UAVs typically need to
hover to capture images, a lower flight altitude means more hovering points, significantly
increasing the flight time and making it difficult to collect more field images with limited
batteries. Moreover, a longer flight time increases the likelihood of encountering lighting
changes. While the utilization of UAVs for crop monitoring is growing swiftly, a significant
challenge arises due to the varying illumination caused by fluctuating solar radiation and
cloud cover. The incident spectral irradiance captured by UAV-mounted sensors blends
plant properties and solar spectral irradiance. Consequently, image data acquired under
variable illumination can yield misleading crop information [19]. For example, vegetation
indices (VIs) derived from UAV images for crop monitoring and phenotyping can be
affected by these variations. Discrepancies observed in these image data may stem from
genuine crop variability or changing lighting conditions. Although certain VIs are less
affected by brightness, they are inadequate for handling variable sunlight, given that cloud
cover alters brightness and modifies the illumination’s spectral attributes.

Previous studies have begun to explore whether crop parameters can be effectively
predicted at higher flight altitudes. For example, Xu et al. [20] collected original images
at the flight altitude of 200 m, employing a DJI M600Pro UAV equipped with a Rikola
hyperspectral camera (Senop Ltd., Oulu, Finland). They resampled original images at
multiple spatial resolutions (26, 39, 52, 65, 78, 91, and 100 cm/pixel) to simulate images
collected at various higher flight altitudes, exploring the “appropriate monitoring scale
domain” for predicting above-ground biomass (AGB) of rice. However, predicting SPAD
values (physiological parameters of crops) at different flight altitudes obviously differs
from predicting AGB (morphological characteristics of crops) at different flight altitudes.
More importantly, according to the “Interim Regulations on the Management of Unmanned
Aircraft Flights”, implemented in China in 1 January 2024, the maximum altitude in light
and small flight areas is capped at 120 m [21]. The study by Xu et al. [20] on original images
collected at a UAV flight altitude of 200 m seems to lack practical value within China.
Therefore, the current study should explore the highest possible flight altitude within
120 m (using a DJI P4-Multispectral UAV as an example, with a resolution of 1.06 cm/pixel)
that can accurately estimate the SPAD values of winter wheat. This will facilitate rapid
fertilization diagnosis in large-scale farmland and efficient variety selection in breeding
fields with a large number of experimental plots.
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Moreover, the booting stage is a stage where the vegetative and reproductive growth
of winter wheat occur simultaneously, exerting the most significant influence on final yield
and quality [22]. In the Yangtze River’s middle and lower reaches and the Huang-Huai-Hai
Plain in China, the sowing period of winter wheat usually occurs from mid-September to
late November, the tillering stage typically occurs from early December to early March of
the following year (Duration ≈ 100 days), the jointing–booting stage usually occurs from
mid-March to early April (Duration ≈ 30 days), the heading stage typically occurs from
mid-April to early May (Duration ≈ 25 days), and the maturity stage usually occurs from
early May to late May (Duration ≈ 20 days) [23,24]. The booting stage of winter wheat
typically occurs in late March or early April. This stage is the peak photosynthesis and
nutrient absorption period in winter wheat. Plants require a lot of nutrients and water
to support their growth and development, as well as the formation of spikes and grains.
During the booting stage, winter wheat has weaker resistance to adversity, and drought,
high temperatures, pests, and diseases can significantly affect growth, development, and
yield formation [25]. Therefore, the timely and efficient monitoring of SPAD values during
winter wheat booting is crucial to ensuring final yield. In previous studies, spectral indices
comprised of linear or nonlinear combinations of spectral reflectances at various bands
were the most commonly used method for predicting SPAD values during the wheat
booting stage [22,26]. However, several studies have reported that the accuracy of SPAD
value prediction during the winter wheat booting stage is lower than predictions during
other growth stages [27,28]. Yin et al. [16] concluded that, compared to the other growth
stages, the model developed for predicting winter wheat booting stage SPAD values
exhibits underestimation issues. Wang et al. [26] reported that the accuracy of SPAD value
prediction varied significantly across growth stages, with the accuracy improving in the
following sequence: booting stage < heading stage < milk filling stage < flowering stage.

Optical RS, as a passive RS method, often faces saturation and insufficient sensitivity
issues when using VIs to predict SPAD values in the reproductive growth stage of winter
wheat [29]. Moreover, spectral heterogeneity, where weak plants within high-density
areas and strong plants within low-density areas exhibit similar spectral characteristics,
further restricts the efficacy of VIs [30]. Therefore, predicting SPAD values during the
winter wheat booting stage (a stage where nutritional and reproductive growth occur
simultaneously) using VIs may lead to significant uncertainty. To overcome the limitations
of VIs, researchers have begun to explore the potential of texture indices (TIs) in predicting
the SPAD values of winter wheat. TIs describe the variability between target pixels and
their neighboring pixels, offering insights into vegetation’s spatial dimension and reflecting
the canopy structure. TIs improve the ability to detect subtle changes in canopy structure
compared to VIs. Yin et al. [16] demonstrated the potential of TIs in predicting the SPAD
values of winter wheat. Additionally, the fusion of VIs and TIs can improve the accuracy of
the estimated SPAD values of winter wheat during the booting stage compared to using
VIs or TIs alone. Nevertheless, the improvement in SPAD value predictions during the
winter wheat booting stage obtained through the fusion of VIs and TIs is still limited.

VIs convey the spectral characteristics of RS images, whereas TIs capture the spa-
tial information within RS images. Wavelet variables obtained through discrete wavelet
transform (DWT) capture the frequency and spectral details within RS images to some ex-
tent [31,32], thereby compensating for the limitations associated with using solely spectral
or spatial variables. This is one of the reasons why we attempt to introduce wavelet vari-
ables to predict SPAD values during the winter wheat booting stage. DWT is an effective
signal-processing technique that decomposes the original spectral signal into low-frequency
and high-frequency signals [33–35], effectively separating useful information from noise
and using existing information [36]. The extensive literature searches we conducted indicate
that there is currently no research using DWT to predict crop SPAD values remotely.

In summary, this study aims to (1) assess whether higher flight altitudes (40 to
120 m, using a DJI P4-Multispectral UAV as an example, with a resolution from 2.12 to
6.35 cm/pixel) can accurately predict SPAD values during the winter wheat booting stage
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compared to a baseline altitude of 20 m (using a DJI P4-Multispectral UAV as an example,
with a resolution of 1.06 cm/pixel); (2) assess the different potentials of VIs, TIs, and
DWT in predicting SPAD values during the winter wheat booting stage; and (3) assess
whether various combinations of predictor variables (VIs + DWT, TIs + DWT, VIs + TIs,
and VIs + TIs + DWT) can enhance the prediction of SPAD values during the winter wheat
booting stage.

2. Materials and Methods
2.1. Study Site and Experiment Design

The one cultivation period experiment was carried out at the Jingxian Farm in Jiangyan
District, Taizhou City, Jiangsu Province, China (32◦34′23.43′ ′ N, 120◦5′25.80′ ′ E) during the
winter wheat cultivation period of 2022–2023 (Figure 1). The experimental site is situated
in a rice–wheat rotation zone within the Yangtze River’s middle and lower reaches, charac-
terized by a subtropical climate. This region’s annual average rainfall and temperature are
approximately 1185.7 mm and 16.7 ◦C, respectively.
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Figure 1. Study site and experimental design: (a) the geographical location of Jiangyan; (b) the
NDVI image of the experimental field on 11 April 2023; (c) distribution of the plots and the various
treatments. Note: N0 (0 kg/mu), N10 (10 kg/mu), N16 (16 kg/mu), and N22 (22 kg/mu) correspond
to nitrogen fertilizer application rates of 0 kg/ha, 150 kg/ha, 240 kg/ha, and 330 kg/ha, respectively.

Experiment 1 involved four winter wheat varieties: Yangmai22 (YM22), Yangmai25
(YM25), Yangmai39 (YM39), and Ningmai26 (NM26). Each variety included four nitrogen
treatment groups: a control group (0 kg/ha, N0) and treatment groups with nitrogen
application rates of 150 kg/ha (N10), 240 kg/ha (N16), and 330 kg/ha (N22). Based on the
growth stage of the winter wheat, the nitrogen application regime was divided into basal
fertilizer, tillering fertilizer, jointing fertilizer, and booting fertilizer in a ratio of 5:1:2:2. The
experiment utilized a split-plot design, with main plots corresponding to four nitrogen
application rates treatments and subplots corresponding to four winter wheat varieties.
Each experimental plot was replicated three times, totaling 48 plots.

Experiment 2 involved two winter wheat varieties: YM22 and YM39. Each variety
was subjected to four different nitrogen application methods (Figure 2): broadcasting (M1),
furrow application (M2), and two types of spaced furrow application (M3 and M4). Both
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urea and resin-coated urea were used as nitrogen fertilizers at a rate of 240 kg/ha. The
experiment also used a split-plot design, with the varieties as the main plots and fertilizer
types as the subplots. Like Experiment 1, each combination was replicated three times,
totaling 24 plots.
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Figure 2. Four different nitrogen application methods (Experiment 2): (a) M1; (b) M2; (c) M3;
(d) M4. Note: M1, M2, M3, and M4 each consist of 16 seed furrows, with a row spacing of 25 cm and
a seeding depth of 3 cm. For M2, M3, and M4, the fertilizer application depth is 5 cm. M2 includes
17 fertilizer furrows, where resin-coated urea and urea are applied as a mixed strip between rows,
with a fertilizer application depth of 5 cm and a seeding-to-fertilizer distance of 12.5 cm. M3 includes
17 fertilizer furrows, with resin-coated urea and urea applied separately between rows. M4 comprises
eight fertilizer furrows, with resin-coated urea and urea applied as a mixed strip within the inter-
row spaces.

In total, the experimental field was divided into 72 plots. The first 48 plots (starting
from the south side of the experimental area) were assigned to Experiment 1, and the
subsequent 24 plots were assigned to Experiment 2. Phosphorus (P2O5) and potassium
(K2O) fertilizers were applied at a rate of 135 kg/ha each as basal fertilizer. Each plot
was manually furrowed for sowing with a row spacing of 25 cm, covering an area of
12 m2 per plot. The sowing date was 8 November 2022. The basic seedling density was
240 × 108 plants/ha (28.8 × 108 plants/12 m2 plot).

2.2. Data Acquisition and Processing
2.2.1. UAV Images Acquisition and Preprocessing

The research used the DJI P4-Multispectral UAV to acquire multispectral RS data dur-
ing the winter wheat booting stage, capturing spectral bands: red band (R): 650 nm ± 16 nm;
green band (G): 560 nm ± 16 nm; blue band (B): 450 nm ± 16 nm; near-infrared band (NIR):
840 nm ± 26 nm; Rededge (RE): 730 nm ± 16 nm. The data collection occurred at noon on
11 April 2023 (155 days after sowing (DAS)) under stable lighting conditions.

We employed the DJI GS Pro 2.0 iOS app (DJI, Inc., Shenzhen, China) to plan UAV
flight missions and capture spectral images along predefined flight paths. Concurrently,
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high-definition RGB image data were synchronized. The UAV flew at an altitude of 20 m
(with a resolution of 1.06 cm/pixel), with the sensor lens oriented vertically downward and
an overlap rate of 80% for both heading and side views, with a flight duration of 39 min.
The collected radiometric calibration panels and multispectral images of the winter wheat
booting stage were imported into DJI Terra 2.3 software (DJI, Inc., Shenzhen, China) for
image processing, resulting in the synthesis of original UAV images (20 m) for the winter
wheat booting stage.

Subsequently, the original images with a flight altitude of 20 m (with a resolution of
1.06 cm/pixel) were resampled to multiple spatial resolutions in ENVI 5.6 software (ITT
Exelis; Boulder, CO, USA) to simulate RS images captured at multiple UAV flight altitudes.
The resampling was performed using the nearest neighbor algorithm, which selects the
nearest pixel values to interpolate the original pixels to multiple sizes, ensuring grayscale
recombination within the image [37].

In resampling, nearest neighbor interpolation assigns the pixel values of each point in
the target image to the closest points in the source image, ensuring that mixed pixels are not
generated [38]. This method does not modify the numerical value of the pixels, referred to
as the digital number, and is widely used for resampling because of the speed with which
it can be implemented and its sheer simplicity [39,40]. The study resampled the original
UAV images to resolutions corresponding to flight altitudes of 40 m (with a resolution
of 2.12 cm/pixel), 60 m (with a resolution of 3.18 cm/pixel), 80 m (with a resolution of
4.23 cm/pixel), 100 m (with a resolution of 5.29 cm/pixel), and 120 m (with a resolution
of 6.35 cm/pixel). This was performed to align with the regulations of China’s Interim
Measures for the Management of Unmanned Aircraft Flights [21], which came into effect
on 1 January 2024, setting the upper limit for flights in light and small airspaces at a true
altitude of 120 m.

2.2.2. In Situ Wheat SPAD Measurements

During UAV data collection, simultaneous field measurements of SPAD values were
conducted on 11 April 2023. We employed the SPAD-502Plus handheld chlorophyll meter
(Konica Minolta, Tokyo, Japan) to measure 72 plots within the study area. The main
specifications of the SPAD-502Plus handheld chlorophyll meter can be found in Table 1 [41].
The maximum temperature on the day of field SPAD value data collection was 27 ◦C, the
minimum temperature was 11 ◦C, and there was no condensation, complying with the
usage specifications of the SPAD-502Plus handheld chlorophyll meter, ensuring accurate
SPAD value data acquisition.

Table 1. Specifications of the SPAD-502Plus handheld chlorophyll meter.

Main Specifications Specification Parameters

Measurement principle The difference in optical density at two wavelengths *
Measurement range 0 to 99.9 SPAD units

Sample area 2 × 3 mm
Measurement time Approximately 2 s per sample
Sample thickness Maximum 1.2 mm

Accuracy ±1.0 SPAD units

Operating temperature 0–50 ◦C, relative humidity up to 85% (at 35 ◦C), no
condensation

* Note: The SPAD-502Plus measures the absorbance of chlorophyll at two wavelengths (650 nm and 940 nm) to
estimate chlorophyll content.

A five-point sampling method was employed within each plot. One sampling point
was located at the center of the plot, and the remaining four points were positioned near
the four corners of the plot. At each sampling point, 10 flag leaves were randomly selected,
resulting in a total of 50 flag leaves per plot. SPAD values were measured at three evenly
spaced points (top, middle, and base portions of the flag leaf) on each leaf using the SPAD-
502Plus handheld chlorophyll meter. Each flag leaf was measured three times, avoiding
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the leaf stem. Subsequently, the average SPAD value of the 50 flag leaves was calculated as
the field-measured SPAD value for that plot.

2.3. Acquisition of RS Variables
2.3.1. Selection of VIs

VIs amalgamate variations in reflectance across various wavelengths, thereby partially
mitigating the impact of background factors on vegetation spectral properties. This process
enhances the precision of expressing SPAD values using RS data [42]. In this experiment, the
spectral reflectance (R, G, B, NIR, Rededge) of 72 plots was extracted in ENVI 5.6 software,
and VIs (Table 2) were constructed through linear or nonlinear combinations.

Table 2. Twenty-two VIs were used in this study for predicting SPAD values during the winter wheat
booting stage.

Vis Formulation References

R, G, B, RE, NIR / /
RVI NIR/R [43]
GCI (NIR/G) − 1 [44]

RECI (NIR/RE) − 1 [44]
TCARI 3 × [(RE − R) − 0.2 × (RE − G) × (RE/R)] [45]
NDVI (NIR − R)/(NIR + R) [46]

GNDVI (NIR − G)/(NIR + G) [47]
GRVI (G − R)/(G + R) [43]
NDRE (NIR − RE)/(NIR + RE) [48]
NDREI (RE − G)/(RE + G) [49]
SCCCI NDRE/NDVI [50]

EVI 2.5 × (NIR − R)/(1 + NIR − 2.4 × R) [51]
EVI2 2.5 × (NIR − R)/(NIR + 2.4 × R + 1) [52]

OSAVI (NIR − R)/(NIR − R + L) (L = 0.16) [53]
MCARI [(RE − R) − 0.2 × (RE − G)] × (RE/R) [54]

TCARI/OSAVI TCARI/OSAVI [55]
MCARI/OSAVI MCARI/OSAVI [54]

WDRVI (a × NIR − R)/(a × NIR + R) (a = 0.12) [55]

2.3.2. Extraction of TIs

The Gray-Level Co-occurrence Matrix (GLCM), reported by Haralick in 1973 [56],
stands out as the most widely adopted texture extraction method. Its popularity stems from
variables like rotation invariance, multiscale applicability, and computational efficiency [57].
Our study extracted eight GLCM-TIs from the original spectral band images of UAV
multispectral data in ENVI. The extraction process employed a window size of 7 × 7 and a
direction of (2, 2), generating 40 TIs calculated across all original spectral bands.

2.3.3. Extraction of DWT

DWT is a signal processing technique that decomposes a signal into frequency com-
ponents of varying scales [58]. Unlike traditional transform methods such as Fourier
Transform, DWT provides both time and frequency domain information simultaneously,
making it advantageous in processing non-stationary signals and extracting local variables.

DWT decomposes a signal into different scales using a set of basic functions (wavelets).
In the decomposition stage, the signal undergoes separation into approximation coefficients
and detail coefficients across various frequency ranges [33]. The approximation coefficients
encapsulate the overall trend and low-frequency components of the signal, whereas the
detail coefficients capture specific local details and high-frequency components. This de-
composition allows for signal frequency characteristics to be analyzed at different scales,
leading to a better understanding of the signal structure and variables. DWT finds wide ap-
plication across signal processing, image processing, data compression, pattern recognition,
and other fields [59]. In image processing, DWT is used for tasks such as image com-
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pression, denoising, and variable extraction [60]. The study selected the bior 1.3 wavelet
basis function for decomposition, as illustrated in Figure 3. After DWT’s application to
the original single-band images, four sub-images are obtained: approximate sub-image
(LL), horizontal detail sub-image (LH), vertical detail sub-image (HL), and diagonal detail
sub-image (HH). Transforming each single-band image of UAV multispectral imagery into
wavelets resulted in 20 discrete wavelet variables being calculated.
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sents the first low-pass filter. L2 represents the second low-pass filter. L3 represents the third low-pass
filter. L4 represents the fourth low-pass filter. H1 represents the first high-pass filter. H2 represents
the second high-pass filter. H3 represents the third high-pass filter. H4 represents the fourth high-pass
filter. D1 represents the first downsampling. D2 represents the second downsampling. D3 represents
the third downsampling. D4 represents the fourth downsampling. LL represents an approximate
sub-image. LH represents a horizontal detail sub-image. HL represents a vertical detail sub-image.
HH represents a diagonal detail sub-image.

2.4. Variable Selection and Machine Learning Algorithms

This research employed Recursive Feature Elimination (RFE) for variable selection.
RFE progressively reduces the size of the variable set until a certain number of variables
is reached and optimal performance is achieved [61]. This approach helps to reduce
overfitting, improve model generalization, and identify the most critical variables for model
performance [62]. RFE was combined with cross-validation to enhance the robustness and
reliability of variable selection. In this study, cross-validated RFE was implemented using
the Random Forest (RF) estimator.

Furthermore, four machine-learning algorithms were employed to develop models
for predicting the SPAD values. These algorithms include Ridge Regression, RF, Support
Vector Regression (SVR), and Back Propagation Neural Network (BPNN). Each algorithm
possesses unique strengths in SPAD value prediction, addressing data complexity, and
handling nonlinear (or linear) relationships to improve prediction accuracy and stability.

Ridge Regression is a linear regression method used to handle cases where the number
of variables exceeds the number of samples or where there is multicollinearity among
variables [63]. It controls model complexity by adding an L2 regularization term to prevent
overfitting. Ridge Regression can effectively handle multicollinearity and noise in the
dataset, improving model generalization.

RF is a type of ensemble learning algorithm that utilizes multiple decision trees. Each
tree is built by randomly selecting subsets of variables and samples. The predictions
from these trees are then combined through voting or averaging to produce the final
prediction [64]. RF is known for its robustness and ability to generalize, effectively modeling
complex relationships within high-dimensional datasets. These characteristics make it a
suitable choice for predicting winter wheat SPAD values.
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SVR is a regression technique derived from support vector machines (SVM), aiming to
identify the maximum margin hyperplane within a high-dimensional variable space specif-
ically for regression purposes. It is suitable for modeling nonlinear data and can handle
nonlinear relationships by choosing appropriate kernel functions [65]. SVR can effectively
model nonlinear relationships and exhibits robustness against outliers in predicting winter
wheat SPAD values.

BPNN trains the model using the backpropagation algorithm to adjust weights to
minimize the loss function continuously. BPNN is suitable for complex nonlinear prob-
lems and can learn complex patterns and variables in the data [66]. In predicting winter
wheat SPAD values, BPNN can flexibly capture the dataset’s nonlinear relationships and
complex patterns.

For parameter optimization, this research used a combination of cross-validation
and grid search to optimize parameter combinations within a given parameter space,
thereby improving model performance and generalization [67], leading to better results in
predicting the SPAD values.

2.5. Dataset Splitting and Model Evaluation

The dataset was randomly divided into training and testing datasets in a ratio of 8:2,
and K-fold (K = 5) cross-validation was employed to enhance the model’s generalization
ability. The performance of the models was evaluated using four metrics: Coefficient of
Determination (R2), Root Mean Square Error (RMSE), Relative Root Mean Square Error
(RRMSE), and Ratio of Performance to Deviation (RPD). RPD aids in mitigating assessment
biases arising from varying units or data scales [68].

The formulas of R2, RMSE, RRMSE, and RPD are presented in Equations (1)–(4):

R2 =
∑(ŷi − ȳ)2

∑(yi − ȳ)2 (1)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(2)

RRMSE =
RMSE

_
y

(3)

RPD =
SD

RMSE
(4)

where yi is the measured SPAD value of sample i; ŷi is the predicted SPAD value of sample
i;

_
y is the mean SPAD value; n is the number of samples; SD is the standard deviation

between predicted and measured SPAD values.

3. Results
3.1. RS Variable Selection

In the RFE variable selection process, this study employed learning curves derived
from RFE to identify the appropriate number of RS variables. The RFE variable importance
rankings were employed to determine the optimal set for subsequent modeling.

Based on the RFE learning curves (Figure 4), the study identified the appropriate
number of VIs at multiple UAV flight altitudes. At 20 m altitude (with a resolution of
1.06 cm/pixel), the appropriate number of VIs was identified as 13. At 40 m (with a
resolution of 2.12 cm/pixel) and 60 m (with a resolution of 3.18 cm/pixel) altitudes, the
appropriate number of VIs remained consistent at 12. At altitudes of 80 m (with a resolution
of 4.23 cm/pixel), 100 m (with a resolution of 5.29 cm/pixel), and 120 m (with a resolution
of 6.35 cm/pixel), the optimal number of VIs was 11. These optimal sets of VIs are listed
in Table 3 and will serve as inputs for subsequent modeling. Across different altitudes,
the optimal Vis selected for modeling include G, B, NIR, RVI, GRVI, TCARI/OSAVI, and
WDRVI. Overall, the optimal number of selected VIs at different altitudes is roughly the
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same, but subtle differences exist in the specific VIs that were chosen. This suggests that VIs
at different altitudes may exhibit slight variations in reflecting the growth status of winter
wheat. Therefore, the modeling and analysis should use the appropriate VIs selected for
different altitudes. This result further emphasizes the significance of screening RS variables
at different altitudes to optimize the performance and accuracy of the model.
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Table 3. Optimal VIs selected at multiple UAV flight altitudes.

VIs
RFE

20 m 40 m 60 m 80 m 100 m 120 m

R
√ √

G
√ √ √ √ √ √

B
√ √ √ √ √ √

NIR
√ √ √ √ √ √

Rededge
√ √ √ √ √ √

RVI
√ √ √ √ √ √

GCI
√

RECI
√ √

NDVI
GNDVI

√ √

GRVI
√ √ √ √ √ √

NDRE
√

NDREI
√ √ √

SCCCI
√ √ √ √ √

OSAVI
√ √ √ √ √

EVI
EVI2

MCARI
√

TCARI
MCARI/OSAVI

√

TCARI/OSAVI
√ √ √ √ √ √

WDRVI
√ √ √ √ √ √

Note: “
√

” refers to the optimal variables that were used to develop the predictive models.

The appropriate number of RS variables determined through RFE variable selection
learning curves (Figures 4 and 5) under different variable sets (VIs, TIs, DWT, VIs + TIs,
VIs + DWT, TIs + DWT, and VIs + TIs + DWT) were found to be 13, 29, 18, 32, 33, 58, and
57, respectively. Subsequently, optimal RS variable sets for different variable combinations
were determined based on the RFE variable importance ranking. In the TIs variable set,



Plants 2024, 13, 1926 11 of 22

mean and correlation were selected as the optimal RS variables across different channels.
Within the DWT set, LL and HH were chosen as the optimal RS variables across different
channels. The selected RS variables in the VIs set are shown in Table 4. Details of the
specific selected RS variables in the TIs and DWT sets can be found in Table 4. The specific
lists of selected RS variables in the VIs + TIs and VIs + TIs + DWT sets are provided in
Table 5. These results provide important clues for subsequent modeling and analysis,
aiding in a deeper understanding of the relationship between the SPAD values and various
RS variables.
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Table 4. Optimal sets of RS variables selected from TIs set and DWT set.

Variable Set TIs R G B NIR Rededge

TIs

mean
√ √ √ √ √

variance
√ √ √ √

homogeneity
√ √ √ √

contrast
√ √ √

dissimilarity
√ √ √

entropy
√

second
moment

√ √ √ √

correlation
√ √ √ √ √

DWT

LL
√ √ √ √ √

LH
√ √ √ √

HL
√ √ √ √

HH
√ √ √ √ √

Note: The optimal variable set selected from the VIs set is shown in Table 4. “
√

” refers to the optimal variables
that were used to develop the predictive models.

3.2. Development and Validation of Winter Wheat Booting Stage SPAD Value Prediction Models at
Different UAV Flight Altitudes

In this study, we first examined the performance of predicting SPAD for winter wheat
by using UAV (DJI P4-Multispectral UAV) images at higher flight altitudes of 40 m (with
a resolution of 2.12 cm/pixel), 60 m (with a resolution of 3.18 cm/pixel), 80 m (with a
resolution of 4.23 cm/pixel), 100 m (with a resolution of 5.29 cm/pixel), and 120 m (with a
resolution of 6.35 cm/pixel), through a comparison with the prediction performance using
images at a baseline altitude of 20 m (with a resolution of 1.06 cm/pixel). Four different
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machine learning algorithms, including Ridge, RF, SVR, and BPNN, were employed in this
study. In this objective, we only used VIs as predictor variables.

Table 5. Optimal sets of RS variables selected from the VIs + TIs set, VIs + DWT set, TIs + DWT set,
and VIs + TIs + DWT set.

Variable Set Optimal Variables

VIs + TIs

R, NIR, RE, RVI, GCI, RECI, NDRE, SCCCI, OSAVI, EVI, EVI2, TCARI, MCARI/OSAVI,
TCARI/OSAVI, WDRVI, R-mean, R-variance, R-homogeneity, R-dissimilarity, R-correlation, G-mean,

G-secondmoment, G-correlation, B-homogeneity, B-contrast, B-dissimilarity, NIR-mean,
NIR-homogeneity, NIR-contrast, RE-mean, RE-secondmoment, RE-correlation

VIs + DWT
R, G, NIR, RE, RVI, GCI, GNDVI, NDRE, NDREI, SCCCI, EVI2, MCARI, TCARI, MCARI/OSAVI,
WDRVI, R_HH, R_HL, R_LH, R_LL, G_HH, G_LH, G_LL, B_HL, B_LH, B_LL, NIR_HH, NIR_HL,

NIR_LH, NIR_LL, RE_HH, RE_HL, RE_LH, RE_LL

TIs + DWT

R-mean, R-variance, R-homogeneity, R-contrast, R-dissimilarity, R-entropy, R-correlation, G-mean,
G-variance, G-homogeneity, G-contrast, G-dissimilarity, G-entropy, G-secondmoment, G-correlation,

B-mean, B-variance, B-homogeneity, B-contrast, B-dissimilarity, B-entropy, B-secondmoment,
NIR-mean, NIR-variance, NIR-homogeneity, NIR-contrast, NIR-dissimilarity, NIR-entropy,

NIR-secondmoment, NIR-correlation, RE-mean, RE-variance, RE-homogeneity, RE-contrast,
RE-dissimilarity, RE-entropy, RE-secondmoment, RE-correlation, R_HH, R_HL, R_LH, R_LL, G_HH,

G_HL, G_LH, G_LL, B_HH, B_HL, B_LH, B_LL, NIR_HH, NIR_HL, NIR_LH, NIR_LL, RE_HH,
RE_HL, RE_LH, RE_LL

VIs + TIs + DWT

R, NIR, RE, RVI, GCI, GNDVI, NDRE, NDREI, SCCCI, TCARI, MCARI/OSAVI, WDRVI, R-mean,
R-variance, R-homogeneity, R-contrast, R-entropy, R-correlation, G-mean, G-contrast, G-correlation,

B-mean, B-variance, B-homogeneity, B-contrast, B-dissimilarity, B-entropy, B-secondmoment,
NIR-mean, NIR-variance, NIR-dissimilarity, NIR-entropy, NIR-secondmoment, NIR-correlation,

RE-mean, RE-variance, RE-homogeneity, RE-contrast, RE-dissimilarity, RE-entropy,
RE-secondmoment, RE-correlation, R_HH, R_HL, R_LH, R_LL, G_LL, B_HH, B_HL, B_LH, B_LL,

NIR_HH, NIR_HL, NIR_LL, RE_HH, RE_LH, RE_LL

The performance of models based on VIs combined with multiple machine-learning
algorithms varied significantly at different UAV flight altitudes (Table 6). For instance,
the Ridge model performed best at 60 m altitude (with a resolution of 3.18 cm/pixel),
achieving an RPD of 2.2435. The RF model showed optimal performance at 20 m altitude
(with a resolution of 1.06 cm/pixel) with an RPD of 1.8232. Both SVR and BPNN models
performed best at 40 m altitude (with a resolution of 2.12 cm/pixel), with RPD values of
2.0617 and 1.8388, respectively. Overall, the Ridge and SVR models exhibited superior
accuracy in predicting winter wheat booting stage SPAD values at multiple UAV flight
altitudes compared to RF and BPNN models. Particularly, the Ridge model developed at
60 m flight altitude (with a resolution of 3.18 cm/pixel) emerged as the optimal model for
predicting the SPAD values based on VIs (with an R2 of 0.7821, RMSE of 1.4424, RRMSE of
0.0293, and RPD of 2.2435 on the test dataset). It is also noteworthy that at flight altitudes of
80 m (with a resolution of 4.23 cm/pixel) and 100 m (with a resolution of 5.29 cm/pixel), the
Ridge model achieved RPD values of 2.1459 and 2.1545, respectively. At a flight altitude of
120 m (with a resolution of 6.35 cm/pixel), the SVR model achieved an RPD value of 2.0547.

Of particular note is that, at different flight altitudes, VIs can be employed with specific
machine-learning algorithms to develop winter wheat booting stage SPAD value prediction
models with a very good performance (RPD > 2.0). For example, at 120 m (with a resolution
of 6.35 cm/pixel) altitude, despite the slightly lower performance of the RF and BPNN
models (with RPDs of 1.6635 and 1.7720 on the test set, respectively), the Ridge and RF
models still demonstrate an outstanding performance (with RPDs of 2.0237 and 2.0547 on
the test set, respectively). This indicates that at a flight altitude of 120 m (with a resolution of
6.35 cm/pixel), UAV-based models combining VIs with certain machine learning methods
can develop highly effective winter wheat booting stage SPAD value prediction models.
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Table 6. Comparison of modeling accuracy of VIs at different UAV flight altitudes.

Altitude Model
Train Test

R2 RMSE RRMSE RPD R2 RMSE RRMSE RPD

20 m

Ridge 0.7400 1.6298 0.0327 1.9787 0.7092 1.6858 0.0343 1.9196
RF 0.9364 0.6119 0.0123 5.2705 0.6777 1.7750 0.0361 1.8232

SVR 0.8038 1.4159 0.0284 2.2777 0.7635 1.5204 0.0309 2.1284
BPNN 0.6640 1.8529 0.0371 1.7405 0.6609 1.8206 0.0370 1.7775

40 m

Ridge 0.7994 1.4317 0.0287 2.2526 0.7755 1.4813 0.0301 2.1864
RF 0.9628 0.6163 0.0123 5.2328 0.6098 1.9530 0.0397 1.6570

SVR 0.7921 1.4576 0.0292 2.2125 0.7479 1.5696 0.0319 2.0617
BPNN 0.6920 1.7741 0.0355 1.8178 0.6831 1.7599 0.0358 1.8388

60 m

Ridge 0.7961 1.4433 0.0289 2.2345 0.7871 1.4424 0.0293 2.2435
RF 0.9735 0.5208 0.0104 6.1920 0.6131 1.9447 0.0395 1.6640

SVR 0.7722 1.5256 0.0306 2.1139 0.7203 1.6533 0.0336 1.9574
BPNN 0.7010 1.7480 0.0350 1.8450 0.6817 1.7637 0.0359 1.8348

80 m

Ridge 0.8060 1.4079 0.0282 2.2906 0.7673 1.5080 0.0307 2.1459
RF 0.9606 0.6344 0.0127 5.0837 0.5924 1.9961 0.0406 1.6212

SVR 0.7413 1.6257 0.0326 1.9837 0.7078 1.6900 0.0344 1.9148
BPNN 0.7006 1.7491 0.0350 1.8438 0.6773 1.7760 0.0361 1.8221

100 m

Ridge 0.7884 1.4704 0.0295 2.1932 0.7692 1.5020 0.0305 2.1545
RF 0.9605 0.6355 0.0127 5.0746 0.6201 1.9270 0.0392 1.6793

SVR 0.7944 1.4493 0.0290 2.2251 0.7350 1.6094 0.0327 2.0107
BPNN 0.6922 1.7735 0.0355 1.8185 0.6617 1.8185 0.0370 1.7795

120 m

Ridge 0.7797 1.5002 0.0301 2.1497 0.7384 1.5991 0.0325 2.0237
RF 0.9598 0.6410 0.0128 5.0315 0.6128 1.9453 0.0395 1.6635

SVR 0.7614 1.5613 0.0313 2.0656 0.7462 1.5749 0.0320 2.0547
BPNN 0.7043 1.7381 0.0348 1.8554 0.6588 1.8262 0.0371 1.7720

To further analyze the effectiveness of winter wheat booting stage SPAD value predic-
tion models developed based on VIs at multiple flight altitudes, Figure 6 presents scatter
plots comparing measured SPAD values with the predicted SPAD values for all optimal
models at multiple flight altitudes. The small errors observed between the predicted and
measured values highlight the effectiveness of predicting winter wheat booting stage SPAD
values using the developed models.
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3.3. Development and Validation of Winter Wheat Booting Stage SPAD Value Prediction Models
under Different Variable Combinations

In this study, we investigated and compared the SPAD prediction performance for
winter wheat between using individual types of predictor variable and using various
combinations of predictor variables. Three different types of predictor variables were used
in this study, encompassing VIs, TIs, and DWT variables. The same four machine learning
algorithms were employed for the prediction. In this objective, we only used the images at
an altitude of 20 m (with a resolution of 1.06 cm/pixel).

The performance differences in the winter wheat booting stage SPAD value prediction
models developed based on different types of predictor variable were obvious (Table 7).
For the VIs set, the winter wheat booting stage SPAD value prediction model developed
using the SVR model exhibited the best performance (with an R2 of 0.7635, RMSE of 1.5204,
RRMSE of 0.0309, and RPD of 2.1284 on the test dataset). Similarly, within the TIs set, the
prediction model developed using the SVR model demonstrated the best performance
(with R2 of 0.7812, RMSE of 1.4623, RRMSE of 0.0297, and RPD of 2.2130 on the test dataset).
For the DWT set, the prediction model developed using RF achieved the best performance
(with R2 of 0.7023, RMSE of 1.7057, RRMSE of 0.0347, and RPD of 1.8972 on the test dataset).
Overall, when developing winter wheat booting stage SPAD value prediction models using
a single variable set, the overall accuracy ranking is TIs > VIs > DWT.

Table 7. Comparison of modeling accuracy under different variable combinations.

Variable Set Model
Train Test

R2 RMSE RRMSE RPD R2 RMSE RRMSE RPD

VIs

Ridge 0.7400 1.6298 0.0327 1.9787 0.7092 1.6858 0.0343 1.9196
RF 0.9364 0.6119 0.0123 5.2705 0.6777 1.7750 0.0361 1.8232

SVR 0.8038 1.4159 0.0284 2.2777 0.7635 1.5204 0.0309 2.1284
BPNN 0.6640 1.8529 0.0371 1.7405 0.6609 1.8206 0.0370 1.7775

TIs

Ridge 0.9160 0.9263 0.0186 3.4816 0.7212 1.6507 0.0336 1.9603
RF 0.9576 0.6580 0.0132 4.9015 0.6866 1.7502 0.0356 1.8489

SVR 0.8684 1.1594 0.0232 2.7816 0.7812 1.4623 0.0297 2.2130
BPNN 0.8889 1.0654 0.0213 3.0269 0.6265 1.9106 0.0388 1.6938

DWT

Ridge 0.6948 1.7658 0.0354 1.8263 0.6563 1.8327 0.0373 1.7657
RF 0.9502 0.7135 0.0143 4.5198 0.7023 1.7057 0.0347 1.8972

SVR 0.6838 1.7975 0.0360 1.7941 0.6744 1.7840 0.0363 1.8139
BPNN 0.7864 1.4772 0.0296 2.1831 0.5076 2.1937 0.0446 1.4752

VIs + DWT

Ridge 0.7372 1.6388 0.0328 1.9679 0.5324 2.1377 0.0435 1.5138
RF 0.9679 0.5724 0.0115 5.6345 0.7296 1.6258 0.0331 1.9904

SVR 0.7899 1.4651 0.0294 2.2012 0.7940 1.4189 0.0288 2.2807
BPNN 0.7399 1.6302 0.0327 1.9783 0.4418 2.3357 0.0475 1.3855

TIs + DWT

Ridge 0.8797 1.1102 0.0222 2.9048 0.7824 1.4582 0.0296 2.2191
RF 0.9570 0.6625 0.0133 4.8679 0.7151 1.6688 0.0339 1.9392

SVR 0.9008 1.0068 0.0202 3.2031 0.7909 1.4294 0.0291 2.2639
BPNN 0.8403 1.2773 0.0256 2.5248 0.6043 1.9665 0.0400 1.6455

VIs + TIs

Ridge 0.8651 1.1742 0.0235 2.7465 0.7959 1.4124 0.0287 2.2919
RF 0.9687 0.5658 0.0113 5.7003 0.7651 1.5152 0.0308 2.1357

SVR 0.8816 1.1000 0.0220 2.9319 0.8148 1.3455 0.0274 2.4050
BPNN 0.8996 1.0126 0.0203 3.1847 0.6819 1.7631 0.0358 1.8354

VIs + TIs + DWT

Ridge 0.8959 1.0315 0.0207 3.1265 0.8208 1.3233 0.0269 2.4455
RF 0.9664 0.5860 0.0117 5.5029 0.8050 1.3805 0.0281 2.3440

SVR 0.8504 1.2364 0.0248 2.6083 0.8390 1.2544 0.0255 2.5798
BPNN 0.8316 1.3117 0.0263 2.4586 0.7025 1.7051 0.0347 1.8978

When combining multiple variable sets, the winter wheat booting stage SPAD value
prediction model developed using SVR in the VIs + TIs set exhibited the best performance
(with an R2 of 0.8148, RMSE of 1.3455, RRMSE of 0.0274, and RPD of 2.4050) on the test
dataset. For the VIs + DWT set, the model developed using SVR also demonstrated the
best performance (with an R2 of 0.7940, RMSE of 1.4189, RRMSE of 0.0288, and RPD of
2.2807) on the test dataset. For the TIs + DWT set, the model developed using SVR also
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demonstrated the best performance (with an R2 of 0.7909, RMSE of 1.4294, RRMSE of
0.0291, and RPD of 2.2639) on the test dataset. Similarly, in the VIs + TIs + DWT set, the
model developed using SVR also demonstrated the best performance (with an R2 of 0.8390,
RMSE of 1.2544, RRMSE of 0.0255, and RPD of 2.5798) on the test dataset.

The overall accuracy of the winter wheat booting stage SPAD value prediction models
developed using different variable sets follows the order: VIs + TIs + DWT > VIs + TIs >
VIs + DWT > TIs + DWT > TIs > VIs > DWT. Models developed by combining multiple
variable sets performed notably better than those developed using a single variable set.

Furthermore, compared to the common use VIs + TIs set, the winter wheat booting
stage SPAD value prediction model developed using the VIs + TIs + DWT set not only
showed improved accuracy but also demonstrated a more stable performance (Figure 7).
Under the VIs + TIs + DWT set, models developed using any machine learning algorithm
performed excellently (except for the BPNN model, where Ridge, RF, and SVR models all
had R2 values greater than 0.8). The winter wheat booting stage SPAD value prediction
model developed using SVR in the VIs + TIs + DWT set, which achieved an RPD of 2.5798
on the test set, is particularly noteworthy. This model is the only one among the different
developed models to achieve an RPD > 2.5 on the test dataset, demonstrating an excellent
prediction performance. This further underscores the importance of combining the DWT
set for winter wheat booting stage SPAD value prediction.
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4. Discussion
4.1. Comparison of SPAD Value Prediction Accuracy at Varying UAV Flight Altitudes

In this study, we first examined the performance of predicting SPAD for winter wheat
by using UAV (DJI P4-Multispectral UAV) images at higher flight altitudes of 40 m (with
a resolution of 2.12 cm/pixel), 60 m (with a resolution of 3.18 cm/pixel), 80 m (with a
resolution of 4.23 cm/pixel), 100 m (with a resolution of 5.29 cm/pixel), and 120 m (with
a resolution of 6.35 cm/pixel) through a comparison with the prediction performance
when using images at a baseline altitude of 20 m (with a resolution of 1.06 cm/pixel).
Four different machine learning algorithms, including Ridge, RF, SVR, and BPNN, were
employed in this study. In this objective, we only used VIs, which have been commonly
used as predictor variables in similar previous studies. To enhance the reliability of the
study results, winter wheat with various canopy structures was created by planting differ-
ent varieties of winter wheat and applying different nitrogen fertilizer treatments within
different plots (Figures 1 and 2).

Within the flight altitude of 120 m (40 to 120 m, with a resolution from 2.12 to
6.35 cm/pixel), models for predicting winter wheat SPAD values during the booting stage
were successfully developed using VIs combined with specific machine learning regres-
sions (Ridge and SVR, using the flight altitude of 120 m (with a resolution of 6.35 cm/pixel)
as an example), with RPD values exceeding 2.0. According to Viscarra Rossel et al. [68],
models with RPD values exceeding 2.0 demonstrate a very good prediction performance,
exceeding our expectations. Compared to the flight altitude of 20 m (with a resolution of
1.06 cm/pixel), the UAV at higher altitudes (40 to 120 m, with a resolution from 2.12 to
6.35 cm/pixel) were still able to capture clear spectral band reflectance values, facilitating
the prediction of winter wheat SPAD values. Comparable findings were reported by Yang
et al. [69] and Njane et al. [9], who suggested that VIs-based models are less affected by
variations in UAV flight altitude within the range of 20–100 m (using a DJI P4-Multispectral
UAV as an example, with a resolution from 1.06 to 5.29 cm/pixel).

The flight altitude of UAVs typically determines the flight duration, image pixel size,
and the coverage area of fields [70]. While previous studies have suggested that a higher
spatial resolution (lower flight altitude) allows for more detailed crop growth information
and a more accurate prediction of crop parameters [10–12], particularly in terms if biomass
and plant height [9], this conclusion is not contradictory to our findings. This is because
images captured by UAVs are taken from above, and as UAV flight altitude increases, the
height of the UAV and its coverage area cause plants farther from the UAV to appear smaller
in the images, making it difficult to accurately predict morphological characteristics such
as the volume (biomass) and height (plant height) of crops [71]. However, the prediction
of SPAD values (physiological parameters of crops) using VIs at different flight altitudes
differs significantly from predicting the morphological characteristics of crops using VIs at
different UAV flight altitudes.
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Moreover, a similar accuracy in predicting winter wheat SPAD values during the
booting stage was achieved at higher flight altitudes (40 to 120 m, with a resolution
from 2.12 to 6.35 cm/pixel) compared to the flight altitude of 20 m (with a resolution
of 1.06 cm/pixel), indicating that higher UAV flight altitudes are a preferable option,
facilitating the prediction of winter wheat SPAD values. This is because higher flight
altitudes save time and battery during field missions, allowing for the collection of more
plot images under limited battery conditions. Additionally, shorter flight activities reduce
the likelihood of encountering lighting changes, avoiding the provision of misleading
information about winter wheat due to images obtained under variable illumination.

4.2. Influence of Multiple Variable Sets on Winter Wheat SPAD Value Prediction during the
Booting Stage

In this study, we investigated and compared the SPAD prediction performance for
winter wheat when using individual types of predictor variable and using various com-
binations of predictor variables. Three different types of predictor variables were used in
this study, encompassing VIs, TIs, and DWT variables. The same four machine learning
algorithms (Ridge, RF, SVR, and BPNN) were employed for the prediction. In this objective,
we only used the images at an altitude of 20 m (with a resolution of 1.06 cm/pixel).

The differences in model performance based on different variable sets were significant.
Generally, when only one variable set was used to develop winter wheat SPAD value
prediction models, the overall accuracy was as follows: TIs > VIs > DWT. This study found
that models developed with the TIs set achieved higher accuracy in predicting winter wheat
SPAD values during the booting stage than the VIs commonly used in previous studies.
This may be because, under different nitrogen fertilizer treatments, some plots still had
small winter wheat plants with more exposed soil. This condition potentially disrupted
the canopy spectra’s responsiveness to SPAD value characteristics. TIs are sensitive to
boundaries between soil and green plants [72], and accordingly, TIs (especially those under
the R channel) demonstrated a stronger correlation with winter wheat SPAD values.

Although the accuracy of DWT in predicting winter wheat SPAD values slightly lagged
behind that of TIs and VIs, acceptable prediction models could still be developed. The LL,
HH, HL, and LH channels under different bands showed some degree of correlation with
winter wheat SPAD values. This is because DWT effectively separates useful information
from weak information, thereby utilizing existing information [36], which is a key rationale
for introducing DWT in this study.

The overall accuracy of winter wheat SPAD value prediction models developed with
different variable combinations was as follows: VIs + TIs + DWT > VIs + TIs > VIs + DWT
> TIs + DWT > TIs > VIs > DWT. Models combining multiple variable sets performed
significantly better than models developed with a single variable set. Although the accuracy
of predicting winter wheat SPAD values using the VIs + TIs set was higher than that of
using any single variable set alone, the overall improvement in accuracy was not significant.
This may be because these two variable sets are already closely related to SPAD values.
Therefore, their combination did not produce particularly significant synergistic effects [73].

Furthermore, compared to the VIs + TIs set, models developed with the VIs + TIs
+ DWT set not only showed improved accuracy but also demonstrated a more stable
performance in predicting winter wheat SPAD values. The main reason for this may be
that the VIs + TIs + DWT set combines the spectral (VIs), frequency (DWT), and spatial
information (TIs) of multispectral images, compensating for the shortcomings of using
only spectral and spatial variables [74]. Under the VIs + TIs + DWT set, prediction models
developed with any machine learning algorithm performed excellently.

Notably, under the VIs + TIs + DWT set, the prediction model developed with SVR
achieved an RPD of 2.5798 on the test set. This model was the only one built under different
variable combinations with an RPD exceeding 2.5 on the test set, demonstrating an excellent
prediction performance [68]. This further underscores the importance of combining the
DWT set for predicting winter wheat SPAD values. Combining VIs, TIs, and DWT can
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achieve a better prediction of winter wheat SPAD values during the booting stage, serving
as an alternative to advanced cameras or longer lenses.

4.3. Performance Comparison of Four Machine Learning Models

Under different UAV flight altitudes, VIs combined with specific machine learning
models were able to develop highly accurate models for predicting winter wheat SPAD
values. Ridge and SVR models demonstrated distinct advantages over RF and BPNN
models at different altitudes, exhibiting notable stability and accuracy. Across different
variable sets (VIs, TIs, VIs + TIs, VIs + DWT, TIs + DWT, VIs + TIs + DWT), models
developed by SVR performed best in predicting the SPAD values during the booting stage.
This suggests that SVR models are more suitable for predicting winter wheat SPAD values
during the booting stage. This may be attributed to the objective of the SVR optimization
problem, which aims to minimize training errors while maximizing the margin, resulting
in models that are typically globally optimal [75] and enabling SVR to better generalize to
new data in some cases.

Some studies have suggested that RF models outperform SVR models in predicting
crop parameters. For instance, Osco et al. [76] found that RF models could more accurately
predict leaf nitrogen content (LNC) in maize compared to SVR models. Likewise, Zha
et al. [77] demonstrated that RF models outperformed SVR and Artificial Neural Network
models in estimating the rice nitrogen nutrition index (NNI). However, given the excellent
performance of SVR models in this study, especially their achieving the highest accuracy in
VIs, TIs, VIs + TIs, and VIs + TIs + DWT sets, the superiority of RF models may require
further research verification.

Additionally, in this research, the optimal number of input variables for the models
was identified using the RFE learning curve. It was observed that increasing the number
of input variables beyond a specific point did not improve accuracy; instead, it led to a
decrease in accuracy. This finding underscores the importance of identifying the optimal
number of input variables to reduce information redundancy, ultimately enhancing model
efficiency and prediction accuracy.

4.4. Limitations and Future Directions

We will actually fly the UAV to obtain images at 40 m (with a resolution of 2.12 cm/pixel),
60 m (with a resolution of 3.18 cm/pixel), 80 m (with a resolution of 4.23 cm/pixel), 100 m
(with a resolution of 5.29 cm/pixel), and 120 m (with a resolution of 6.35 cm/pixel) in
future research. In this way, we can obtain raw UAV images at different flight altitudes,
rather than resampled images. This will reduce uncertainties resulted from the use of
different resampling algorithms. In addition, it can provide the time used for monitoring
the field at different altitudes as evidence when discussing the effectiveness of flying at
elevated altitudes.

Additionally, given that previous studies have highlighted the lower accuracy in predict-
ing SPAD values during the winter wheat booting stage compared to other growth stages, this
study concentrated solely on this stage, with plans for future research to encompass additional
growth stages. Moreover, this study relied on data from a single year of experimentation,
emphasizing the need for further validation in subsequent research endeavors.

Furthermore, neglecting the significant vertical gradients in SPAD values and treating
the canopy as a uniform plane can compromise the robustness of canopy RS and diminish
its practical applicability, as suggested by earlier studies [78]. Future research will consider
the issue of the uneven vertical distribution of SPAD values and use advanced sensors
such as LiDAR to obtain more winter wheat SPAD value-related characteristics to address
these issues.

5. Conclusions

This study demonstrates that VIs combined with specific machine learning algorithms
can achieve similar accuracy in predicting winter wheat SPAD values during the booting
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stage at higher flight altitudes (40 to 120 m, using a DJI P4-Multispectral drone as an
example, with a resolution from 2.12 to 6.35 cm/pixel) to the flight altitude of 20 m (with
a resolution of 1.06 cm/pixel). The result suggests that the flight altitude of 120 m (with
a resolution of 6.35 cm/pixel) is an alternative that can achieve comparable results to a
lower flight altitude at 20 m (with a resolution of 1.06 cm/pixel) with a balanced tradeoff
between accuracy and efficiency. This allows for the collection of more field images under
limited battery conditions. It also avoids providing misleading information about winter
wheat due to images being obtained under variable illumination, thereby facilitating the
large-scale monitoring of winter wheat in actual agricultural production.

The overall accuracy of winter wheat SPAD value prediction models developed with
different variable sets was VIs + TIs + DWT > VIs + TIs > VIs + DWT > TIs + DWT > TIs >
VIs > DWT. Models developed with the TIs set achieved a higher accuracy in predicting
winter wheat SPAD values than the VIs commonly used in previous studies, presenting a
promising alternative approach. Additionally, although the accuracy of DWT in predicting
winter wheat SPAD values slightly lagged behind that of TIs and VIs, acceptable prediction
models could still be developed.

Models combining multiple variable sets performed significantly better than models
developed with a single variable set. Furthermore, compared to the commonly used VIs
+ TIs set in previous studies, the VIs + TIs + DWT set used in this study combined the
spectral (VIs), frequency (DWT), and spatial (TIs) information of multispectral images. This
combination compensates for the limitations of solely using spectral and spatial variables.
The resulting winter wheat SPAD value prediction models not only showed improved
accuracy but also demonstrated a more stable performance. This provides more meaningful
technical support for the RS prediction of winter wheat SPAD values, facilitating more
sophisticated field management practices in precision agriculture.
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