Wild-Edible Allium Species from Highlands of Eastern Anatolia: Phytochemical Composition and In Vitro Biological Activities
Abstract
:1. Introduction
2. Results
2.1. In Vitro Biotherapeutic Potential
2.1.1. Extraction Yields
2.1.2. Total Phenolic Contents and Antioxidant Activities
2.1.3. Enzyme Inhibition Activities
2.1.4. Phytochemical Composition
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Chemicals
4.3. Preparation of Samples for Analysis
4.3.1. Ethanol Extract
4.3.2. Herbal Infusion Extract
4.4. Antioxidant Capacity
4.4.1. Folin-Ciocalteu Reducing (FCR)
4.4.2. Ferric Reducing Antioxidant Power (FRAP)
4.4.3. Oxygen Radical Absorbance Capacity (ORAC)
4.5. Enzyme Inhibitory Activities
4.5.1. α-Glucosidase Inhibitory Activity
4.5.2. α-Amylase Inhibitory Activity
4.5.3. Pancreatic Lipase Inhibitory Activity
4.6. Phytochemical Profile
4.6.1. Identification and Quantification of Phenolic Compounds
4.6.2. Identification and Quantification of Fatty Acid (FA) Compounds
4.7. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalar, A.; Mukemre, M.; Unal, M.; Ozgokce, F. Traditional medicinal plants of Ağrı Province, Turkey. J. Ethnopharmacol. 2018, 226, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Fırat, M. The Ethnobotanical Usage of Some East Anatolian (Turkey) Allium L. Species. Manas J. Agric. Vet. Life Sci. 2015, 5, 80–86. [Google Scholar]
- Ekşi, G.; Özkan, A.M.; Koyuncu, M. Garlic and onions: An eastern tale. J. Ethnopharmacol. 2020, 253, 112675. [Google Scholar] [CrossRef]
- Rahman, M.S. Allicin and Other Functional Active Components in Garlic: Health Benefits and Bioavailability. Int. J. Food Prop. 2007, 10, 245–268. [Google Scholar] [CrossRef]
- Corzo-Martínez, M.; Corzo, N.; Villamiel, M. Biological properties of onions and garlic. Trends Food Sci. Technol. 2007, 18, 609–625. [Google Scholar] [CrossRef]
- Santhosha, S.G.; Jamuna, P.; Prabhavathi, S. Bioactive components of garlic and their physiological role in health maintenance: A review. Food Biosci. 2013, 3, 59–74. [Google Scholar] [CrossRef]
- Poojary, M.M.; Putnik, P.; Kovačević, D.; Barba, F.; Lorenzo, J.; Dias, D.; Shpigelman, A. Stability and extraction of bioactive sulfur compounds from Allium genus processed by traditional and innovative technologies. J. Food Compos. Anal. 2017, 61, 28–39. [Google Scholar] [CrossRef]
- Lanzotti, V. The analysis of onion and garlic. J. Chromatogr. 2006, 1112, 3–22. [Google Scholar] [CrossRef]
- Putnik, P.; Gabrić, D.; Roohinejad, S.; Barba, F.; Granato, D.; Mallikarjunan, K.; Lorenzo, J.; Kovačević, D.B. An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem. 2019, 276, 680–691. [Google Scholar] [CrossRef]
- Fredotović, Ž.; Puizina, J.; Nazlić, M.; Maravić, A.; Ljubenkov, I.; Soldo, B.; Vuko, E.; Bajić, D. Phytochemical Characterization and Screening of Antioxidant, Antimicrobial and Antiproliferative Properties of Allium × cornutum Clementi and Two Varieties of Allium cepa L. Peel Extracts. Plants 2021, 10, 832. [Google Scholar] [CrossRef]
- Schmidt, J.S.; Nyberg, N.; Staerk, D. Assessment of constituents in Allium by multivariate data analysis, high-resolution α-glucosidase inhibition assay and HPLC-SPE-NMR. Food Chem. 2014, 161, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Dalar, A.; Mükemre, M. Traditional Medicinal Plants of Van Province, Eastern Anatolia; NOVA Science Publishers Inc.: New York, NY, USA, 2020; pp. 51–162. [Google Scholar]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Kim, M.; Jo, S.; Jang, H.; Lee, M.; Kwon, Y. Antioxidant activity and α-glucosidase inhibitory potential of onion (Allium cepa L.) extracts. Food Sci. Biotechnol. 2010, 19, 159–164. [Google Scholar] [CrossRef]
- Snoussi, M.; Trabelsi, N.; Dehmeni, A.; Benzekri, R.; Bouslama, L.; Hajlaoui, B.; Al-sieni, A.; Papetti, A. Phytochemical analysis, antimicrobial and antioxidant activities of Allium roseum var. odoratissimum (Desf.) Coss extracts. Ind. Crops Prod. 2016, 89, 533–542. [Google Scholar] [CrossRef]
- Mollica, A.; Zengin, G.; Locatelli, M.; Picot-Allain, C.; Mahomoodally, M.F. Multidirectional investigations on different parts of Allium scorodoprasum L. subsp. rotundum (L.) Stearn: Phenolic components, in vitro biological, and in silico propensities. Food Res. Int. 2018, 108, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Nickavar, B.; Yousefian, N. Inhibitory Effects of Six Allium Species on α-Amylase Enzyme Activity. Iran. J. Pharm. Res. 2009, 8, 53–57. [Google Scholar]
- Tang, X.; Olatunji, O.; Zhou, Y.; Hou, X. Allium tuberosum: Antidiabetic and hepatoprotective activities. Food Res. Int. 2017, 102, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Vlase, L.; Pârvu, M.; Parvu, E.A.; Toiu, A. Chemical constituents of three Allium species from Romania. Molecules 2012, 18, 114–127. [Google Scholar] [CrossRef]
- Simin, N.; Orčić, D.; Četojević-Simin, D.; Mimica-Dukić, N.; Anačkov, G.; Beara, I.; Mitic-Culafic, D.; Božin, B. Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae). LWT Food Sci. Technol. 2013, 54, 139–146. [Google Scholar] [CrossRef]
- Singh, P.; Mahajan, V.; Shabeer, T.P.; Banerjee, K.; Jadhav, M.; Kumar, P.; Gopal, J. Comparative evaluation of different Allium accessions for allicin and other allyl thiosulphinates. Ind. Crops Prod. 2020, 147, 112215. [Google Scholar] [CrossRef]
- Fratianni, F.; Ombra, M.N.; Cozzolino, A.; Riccardi, R.; Spigno, P.; Tremonte, P.; Coppola, R.; Nazzaro, F. Phenolic constituents, antioxidant, antimicrobial and anti-proliferative activities of different endemic Italian varieties of garlic (Allium sativum L.). J. Funct. Foods 2016, 21, 240–248. [Google Scholar] [CrossRef]
- Truscheit, E.; Frommer, W.; Junge, B.; Müller, L.; Schmidt, D.D.; Wingender, W. Chemistry and biochemistry of microbial α-Glucosidase inhibitors. Angew. Chem. Int. Ed. Engl. 2010, 20, 744–761. [Google Scholar] [CrossRef]
- Vocadlo, D.J.; Davies, G.J. Mechanistic insights into glycosidase chemistry. Curr. Opin. Chem. Biol. 2008, 12, 539–555. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.I.I.; Vattem, D.A.; Shetty, K. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac. J. Clin. Nutr. 2006, 15, 107–118. [Google Scholar] [PubMed]
- Exteberria, U.; Garza, A.L.; Campiόn, J.; Martinez, J.A.; Milagro, F.I. Antidiabetic effects of natural plant extracts via inhibition of carbonhydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin. Ther. Targets 2012, 16, 269–297. [Google Scholar]
- Garza, A.L.; Milagro, F.; Boqué, N.; Campión, J.; Martínez, J. Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Medica 2011, 77, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.; Yen, G. Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes. J. Agric. Food Chem. 2007, 55, 8404–8410. [Google Scholar] [CrossRef]
- Nishimura, M.; Muro, T.; Kobori, M.; Nishihira, J. Effect of Daily Ingestion of Quercetin-Rich Onion Powder for 12 Weeks on Visceral Fat: A Randomised, Double-Blind, Placebo-Controlled, Parallel-Group Study. Nutrients 2020, 12, 91. [Google Scholar] [CrossRef]
- Kamalakkannan, N.; Prince, P. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin. Pharmacol. Toxicol. 2006, 98, 97–103. [Google Scholar] [CrossRef]
- Vuković, S.; Moravčević, D.; Gvozdanović-Varga, J.; Dojčinović, B.; Vujošević, A.; Pećinar, I.; Kilibarda, S.; Kostić, A.Ž. Elemental Profile, General Phytochemical Composition and Bioaccumulation Abilities of Selected Allium Species Biofortified with Selenium under Open Field Conditions. Plants 2023, 12, 349. [Google Scholar] [CrossRef] [PubMed]
- Dávalos, A.; Gómez-Cordovés, C.; Bartolomé, B. Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J. Agric. Food Chem. 2004, 52, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.; Dommès, J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem. 2009, 113, 1226–1233. [Google Scholar] [CrossRef]
- Okada, Y.; Tanaka, K.; Sato, E.; Okajima, H. Kinetic and mechanistic studies of allicin as an antioxidant. Org. Biomol. Chem. 2006, 422, 4113–4117. [Google Scholar] [CrossRef] [PubMed]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Mol. J. Synth. Chem. Nat. Prod. Chem. 2017, 22, 358. [Google Scholar] [CrossRef] [PubMed]
- Iobbi, V.; Parisi, V.; Lanteri, A.P.; Maggi, N.; Giacomini, M.; Drava, G.; Minuto, G.; Minuto, A.; Tommasi, N.D.; Bisio, A. NMR Metabolite Profiling for the Characterization of Vessalico Garlic Ecotype and Bioactivity against Xanthomonas campestris pv. campestris. Plants 2024, 13, 1170. [Google Scholar] [CrossRef] [PubMed]
- Mai, T.T.; Thu, N.N.; Tien, P.G.; Chuyen, N.V. Alpha-glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. J. Nutr. Sci. Vitaminol. 2007, 53, 267–276. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, A.I.; Alvarez-Parrilla, E.; Diaz-Sanchez, A.G.; de la Rosa, L.A.; Nunez-Gastelum, J.A.; Vazquez-Flores, A.A.; Gonzalez-Aguilar, G.A. In vitro inhibition of pancreatic lipase by polyphenols: A kinetic, fluorescence spectroscopy and molecular docking study. Food Technol. Biotechnol. 2017, 55, 519–530. [Google Scholar] [CrossRef]
- Dalar, A.; Konczak, I. Phenolic contents, antioxidant capacities and inhibitory activities against key metabolic syndrome relevant enzymes of herbal teas from Eastern Anatolia. Ind. Crops Prod. 2013, 44, 383–390. [Google Scholar] [CrossRef]
- Baytop, T. Türkiye’de Bitkiler ile Tedavi (Geçmişte ve Bugün); Istanbul University Press: İstanbul, Türkiye, 1999. [Google Scholar]
- Dalar, A.; Türker, M.; Konczak, I. Antioxidant capacity and phenolic constituents of Malva neglecta Wallr. and Plantago lanceolata L. from Eastern Anatolia region of Turkey. J. Herb. Med. 2012, 2, 42–51. [Google Scholar] [CrossRef]
- Uzun, Y.; Dalar, A.; Konczak, I. Sempervivum davisii: Phytochemical composition, antioxidant and lipase-inhibitory activities. Pharm. Biol. 2017, 55, 532–540. [Google Scholar] [CrossRef] [PubMed]
Extract | A. kharputense | A. affine | A. shirnakiense | A. akaka | |
---|---|---|---|---|---|
Yield (%) | Ethanol | 12.5 ± 1 | 17.5 ± 1 | 11.3 ± 0 | 18.2 ± 1 |
Infusion | 16.8 ± 1 | 19.4 ± 2 | 14.8 ± 1 | 20.1 ± 1 | |
Total Phenolic Content (mg gallic acid E/g extract) | Ethanol | 43 ± 1b | 25.8 ± 1.4d | 33 ± 2c | 48 ± 3a |
Infusion | 39 ± 2a | 18 ± 1d | 25 ± 1c | 32 ± 1b | |
FRAP (μmol Fe2+/g extract) | Ethanol | 836 ± 62a | 469 ± 10c | 572 ± 17b | 872 ± 5a |
Infusion | 640 ± 28a | 318 ± 5d | 384 ± 10c | 545 ± 8b | |
ORAC (μmol Trolox/g extract) | Ethanol | 1835 ± 46a | 1133 ± 12c | 1606 ± 29b | 1858 ± 1a |
Infusion | 1141 ± 30a | 723 ± 37b | 1185 ± 69a | 1115 ± 24a |
α-Amylase (IC-50; mg/mL) | |||||
Extract | A. kharputense | A. affine | A. shirnakiense | A. akaka | |
Ethanol | 6.2 ± 0.5b | 4.5 ± 0.7a | 4.8 ± 0.2a | 6.5 ± 0.4b | |
Infusion | 5.0 ± 0.3b | 4.0 ± 0.4a | 4.2 ± 0.1a | 4.7 ± 0.3b | |
Positive control (Acarbose) | 0.22 ± 0.03 | ||||
α-Glucosidase (IC-50; mg/mL) | |||||
Ethanol | 0.6 ± 0.1b | 0.9 ± 0.1d | 0.9 ± 0.0c | 0.5 ± 0.1a | |
Infusion | 0.7 ± 0.1a | 1.0 ± 0.0d | 1.0 ± 0.0c | 0.9 ± 0.0b | |
Positive control (Acarbose) | 0.081 ± 0.00 | ||||
Pancreatic lipase (IC-50; µg/mL) | |||||
Ethanol | 218 ± 8b | 413 ± 15d | 324 ± 13c | 195 ± 10a | |
Infusion | 258 ± 9a | 549 ± 12d | 452 ± 19c | 347 ± 10b | |
Positive control (Orlistat) | 76 ± 1.4 |
Compound | MS/MS | Concentration (mg/g Extract) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A. kharputense | A. affine | A. shirnakiense | A. akaka | |||||||
Leaf | Leaf | Leaf | Leaf | |||||||
[M + 1]+/[M − 1] | Fragments (m/z) (+/−) | Ethanol | Infusion | Ethanol | Infusion | Ethanol | Infusion | Ethanol | Infusion | |
Chlorogenic acid | -/353 | -/191 | 3.6 ± 0.1 | 3.9 ± 0.0 | 1.8 ± 0.0 | 1.2 ± 0.0 | 0.7 ± 0.0 | 0.6 ± 0.0 | 6.6 ± 0.4 | 2.4 ± 0.2 |
Hesperidin | /609 | /449,431 | 3.1 ± 0.0 | 3.2 ± 0.0 | 2.1 ± 0.0 | 1.9 ± 0.0 | 3.5 ± 0.0 | 3.0 ± 0.0 | 4.1 ± 0.2 | 3.9 ± 0.1 |
Rutin | 611/609 | 303/301 | 5.7 ± 0.2 | 4.2 ± 0.1 | 13.8 ± 0.2 | 4.2 ± 0.1 | 3.5 ± 0.1 | 6.8 ± 0.4 | 25 ± 1 | 13 ± 1 |
Isoquercitrin | -/463 | -/301 | 13.2 ± 0.2 | 7.8 ± 0.3 | 3.6 ± 0.2 | 2.4 ± 0.1 | 10.7 ± 0.6 | 4.5 ± 0.2 | 8.4 ± 0.2 | 4.8 ± 0.2 |
Quercetin | -/301 | -/227, 151 | 2.4 ± 0.0 | 1.5 ± 0.0 | 9.1 ± 0.5 | 1.7 ± 0.1 | 3.1 ± 0.1 | 1.3 ± 0.1 | 5.4 ± 0.2 | 0.8 ± 0.0 |
Allicin | 163/ | 121/- | 7.6 ± 0.0 | 7.4 ± 0.3 | 8.0 ± 0.1 | 7.3 ± 0.1 | 7.3 ± 0.1 | 7.0 ± 0.2 | 7.0 ± 0.2 | 6.1 ± 0.2 |
Compound | Retention Time | Concentration (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
A. kharputense | A. affine | A. shirnakiense | A. akaka | ||||||
Leaf | Leaf | Leaf | Leaf | ||||||
Ethanol | Infusion | Ethanol | Infusion | Ethanol | Infusion | Ethanol | Infusion | ||
Palmitic acid | 36.8 | 23.7 ± 2 | 51.3 ± 3 | 34.7 ± 3 | 34.3 ± 2 | 24.8 ± 2 | 100 ± 0 | 26.6 ± 1 | 24.9 ± 1 |
Stearic acid | 40.1 | 3.2 ± 0 | 33.0 ± 2 | 6.0 ± 0 | 42.4 ± 3 | 2.6 ± 0 | ND | 3.4 ± 0 | ND |
Oleic acid | 40.8 | 4.1 ± 0 | ND | 8.4 ± 1 | ND | 2.5 ± 0 | ND | ND | ND |
Linoleic acid | 42.2 | 18.7 ± 1 | T | 32.3 ± 2 | 14.0 ± 1 | 13.8 ± 1 | ND | 15.6 ± 1 | 21.0 ± 2 |
Linolenic acid | 43.6 | 42.6 ± 3 | 15.6 ± 1 | 18.3 ± 1 | T | 52.4 ± 3 | ND | 54.2 ± 4 | 53.9 ± 3 |
A. kharputense Freyn & Sint. | A. affine Ledeb. | A. shirnakiense L.Behçet & Rüstemoğlu | A. akaka S.G.Gmel. | |
---|---|---|---|---|
Location | Konalga village, Çatak, Van/Turkey on 12 May 2018 (Global Positioning System (GPS) coordinates: 37°50′1915″ N 43°08′1851″ E, 2454 m) | Konalga village, Çatak, Van/Turkey on 12 May 2018 (GPS coordinates: 37°50′1915″ N 43°08′1851″ E, 2454 m) | Konalga village, Çatak, Van/Turkey on 12 May 2018 (GPS coordinates: 37°50′1915″ N 43°08′1851″ E, 2454 m) | Konalga village, Çatak, Van/Turkey on 12 May 2018 (GPS coordinates: 37°50′1915″ N 43°08′1851″ E, 2454 m) |
Local names | Soryaz | Pîvaza se | Guhbizin | Guhbizin |
Collector code | MM301 | MM337 | MM768 | MM767 |
Herbarium code | VPH338 | VPH314 | VPH329 | VPH351 |
Part used | Leaves | Leaves | Leaves | Leaves |
Medicinal use | Diabetes | Diabetes | Diabetes | Diabetes |
Medicinal utilization | Eaten fresh or infusion | Eaten fresh or infusion | Eaten fresh or infusion | Eaten fresh or infusion |
Food utilization | Eaten fresh or omelet with eggs | Eaten fresh or omelet with eggs | Eaten fresh or omelet with eggs | Eaten fresh or omelet with eggs |
Growth and developmental properties during harvest | Bulbs ovoid and 2–3 cm diam. Stem 30–50 cm long. 2–3 leaves on each plant, leaves broadly lanceolate-shaped, 18–35 mm broad, and aculeolate at margin. Spathe 2–3-lobed. Umbel many-flowered and 4–8 cm diam. Pedicels slender-shaped and straw-colored. Perianth segments cream, linear-shaped, 5–6 mm long, and somewhat reflexed. Filaments lanceolate base, as long as or longer than perianth. Anthers cream. | Bulb ovoid-shaped and 1–2 cm diam. Stem 15–40 cm long. Leaves 3–4 pieces, 3–4 mm broad, semicylindrical, canaliculate. Spathe 1 and valved. Umbel many-flowered, spherical and 2–3 cm diam. Pedicels unequal, slender-shaped, thickened base. Perianth segments whitish, linea; perianth narrowly campanulate-shaped. | Bulb globose and 3–3.5 × 3.5–4.5 cm diam. Stem 20–35 cm long, erect, and longer than leaves. Leaves ligulate-shape, plant 1–4 leaves, 12–20 cm long, and 4–7 cm wide. Spathe 3–4 valved, valves ovate; spathe shorter than umbel. Umbel globose-shaped, many flowered 5 cm diam. Pedicels to 23 mm long, greenish-purple. Perigon stellate with tepals brownish green, lanceolate, Perianth segments linear-lanceolate. Filaments included brown, purplish-brown. Anthers 2–2.5 mm long, slightly exserted, pale brown or greenish-brown. | Bulbs 2–3 cm diam. Leaves 1–3, elliptic-oblong 2–6 cm broad, glaucous, obtuse, and mucronate, scabrid on margin. Spathe is 1–2 cm long, has 2–4 lobes, and shorter than an umbrella. Umbrella with many flowers and erect, parallel branches that are hemispherical and measure 5–9 cm in diameter. Pedicels 2–3 cm long. Perianth campanulate-shaped. Perianth segments purplish-pink, narrowly elliptic-oblong and 7–8 mm lond. Filaments pinkish-purple. |
Wild photo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukemre, M. Wild-Edible Allium Species from Highlands of Eastern Anatolia: Phytochemical Composition and In Vitro Biological Activities. Plants 2024, 13, 1949. https://doi.org/10.3390/plants13141949
Mukemre M. Wild-Edible Allium Species from Highlands of Eastern Anatolia: Phytochemical Composition and In Vitro Biological Activities. Plants. 2024; 13(14):1949. https://doi.org/10.3390/plants13141949
Chicago/Turabian StyleMukemre, Muzaffer. 2024. "Wild-Edible Allium Species from Highlands of Eastern Anatolia: Phytochemical Composition and In Vitro Biological Activities" Plants 13, no. 14: 1949. https://doi.org/10.3390/plants13141949
APA StyleMukemre, M. (2024). Wild-Edible Allium Species from Highlands of Eastern Anatolia: Phytochemical Composition and In Vitro Biological Activities. Plants, 13(14), 1949. https://doi.org/10.3390/plants13141949