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Abstract: Accurate peach detection is essential for automated agronomic management, such as
mechanical peach harvesting. However, ubiquitous occlusion makes identifying peaches from
complex backgrounds extremely challenging. In addition, it is difficult to capture fine-grained peach
features from a single RGB image, which can suffer from light and noise in scenarios with dense small
target clusters and extreme light. To solve these problems, this study proposes a multimodal detector,
called CRLNet, based on RGB and depth images. First, YOLOv9 was extended to design a backbone
network that can extract RGB and depth features in parallel from an image. Second, to address the
problem of information fusion bias, the Rough–Fine Hybrid Attention Fusion Module (RFAM) was
designed to combine the advantageous information of different modes while suppressing the hollow
noise at the edge of the peach. Finally, a Transformer-based Local–Global Joint Enhancement Module
(LGEM) was developed to jointly enhance the local and global features of peaches using information
from different modalities in order to enhance the percentage of information about the target peaches
and remove the interference of redundant background information. CRLNet was trained on the Peach
dataset and evaluated against other state-of-the-art methods; the model achieved an mAP50 of 97.1%.
In addition, CRLNet also achieved an mAP50 of 92.4% in generalized experiments, validating its
strong generalization capability. These results provide valuable insights for peach and other outdoor
fruit multimodal detection.

Keywords: deep learning; granularity refinement; intelligent agriculture; multimodal detection;
peach detection models

1. Introduction

Peach is a tropical fruit grown in large quantities and is an excellent source of vitamins
and sugar [1]. At present, peach picking relies on manual labor, which has a low efficiency
and high cost [2]. The use of machine vision technology to achieve automatic peach
picking using a machine can reduce labor costs and increase productivity [3–6]. Due
to the unstructured growing environment of peaches, the image content acquired by
the picking robot is varied and complex; for example, under the shade of branches and
changing light [7]. Hence, the accurate recognition and localization of peaches are the key
factors enabling the robot to complete the task [8,9]. Therefore, excellent visual detection
algorithms [10,11] are crucial.

Methods based on traditional image processing techniques have been widely used in
peach detection tasks [12,13]. These methods mainly extract image features through the
manual formation of rules and the use of decision-level fusion of multiple classifiers to
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achieve the localization and classification of different kinds of peaches [14]. However, these
methods are highly susceptible to environmental changes and have shortcomings such
as a poor generalization ability and robustness. In recent years, deep learning algorithms
have developed rapidly in the field of image processing [15]. Many researchers have
chosen to use convolutional neural networks (CNNs) to achieve peach detection [9,16–18].
Among the CNN-based methods [19–21], the You Only Look Once (YOLO) [8,22–24] series
works best. YOLOv3 is the first end-to-end real-time detection model better than the
contemporaneous detection algorithms, such as Fastest-Rcnn [25], Single Shot MultiBox
Detector (SSD) [26], and so on. In contrast to the two-stage detection algorithm, YOLOv3
uses a network called Darknet53 for feature extraction, then proceeds to multi-scale fusion
of the extracted features, and, finally, the detector head decouples the multi-scale features
to classify and localize the object. On the basis of this, YOLOv5 [8] introduced the C3
module with rich information flow and the SPPF [27] module that performs multi-scale
feature fusion to further improve the performance of the network. To allow the network
to be more flexible, YOLOv8 [23] uses an anchorless detection header and no longer
needs to generate pre-selected boxes via clustering. YOLOv9 [24] uses a backbone called
GELAN for feature extraction; the network has powerful feature extraction capabilities
while maintaining lightness and speed, and GELAN provides support for Programmable
Gradient Information (PGI), which improves the detection accuracy.

However, there are many challenging tasks when detecting peaches in real-world
environments, such as obscuration, overlap, and constantly changing light; therefore, using
only an RGB camera as a source of data is not desirable [28]. With the development of sen-
sor technology, more information (e.g., depth and Inf) provides us with new perspectives
to solve the problem [29]. Qing et al. [30] spliced the RGB peach image, depth peach image,
and infrared peach image to obtain a five-channel fused image and used the YOLOv5s
detector to detect the fused image, and they achieved an mAP50 of 88.9% for bagged peach
detection. Similarly, Nguyen et al. [31] processed RGB images using depth images and then
used the processed images for detection. However, these input-level multimodal detections
only fused the multimodal information at the pixel level, neglecting the processing of
high-level semantic information. To solve this problem, many researchers have attempted
the feature-level fusion of multimodal information to break the barrier between the highly
different types of information. Sun et al. [32] proposed a noise-tolerant feature fusion net-
work, which performs feature extraction on an RGB image and a depth image, respectively,
through a two-stream network, and then designed an attention-based fusion module to
achieve the fusion of different modal information while filtering noise. They achieved an
mAP50 of 93.1% in citrus detection. Some researchers have achieved excellent accuracy
while preserving speed through expanding the single-stage detector. Cho et al. [19] used an
end-to-end multimodal detector, YOLOv3, for tomato and branching point detection. The
backbone of the network was expanded to a dual stream, which allowed for simultaneous
feature extraction for RGB and depth. The different modal features were summed and fed
into the common neck and head sections, achieving an mAP50 of 89.6%. This expansion was
the same as in Sharma et al. [33]. As end-to-end detection networks grow, more competitive
feature extraction backbones continue to emerge. Wu et al. [34] extended YOLOv7 to dual
streams to simultaneously process RGB and depth images and designed a single-direction
fusion module based on spatial attention to achieve the accurate detection of tea buds,
reaching 91.12% at mAP50 with guaranteed real-time performance.

Although existing multimodal detectors have achieved better results in various fields,
there are still two problems to be solved in fruit detection tasks, such as those involving
peaches: (1) Due to the different imaging principles of various sensors, different types of
images have large variation, as shown in Figure 1; hence, simply combining the features of
different modalities cannot adequately fuse the high-level semantic information, and the
advantages of multimodal information cannot be fully utilized. (2) In a normal lighting en-
vironment, as shown in Figure 1a, the information of different modalities is complementary.
However, the light in the orchard is uncontrolled, as shown in Figure 1b,c, and there is a
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large amount of light pollution information in the RGB information in extreme dark light
and glare scenarios, and inputting the pollution information into the feature extraction
block will introduce too much redundant information into the network, crowding out the
favorable information, resulting in the limitation of the model’s performance.

(f)

(c)(b)

(e)

(a)

(d)

Figure 1. Difficult scenes for peach detection: (a) with normal light, (b) with dark light at night, and
(c) with the presence of glare. (d–f) are depth images of the same scene in (a–c).

To solve the problem of simple fusion methods not adequately fusing high-level
semantic information, Zhang et al. [35] designed a fusion module named FFM, which can
fuse RGB and depth information by cross attention; however, there is no further processing
after the cross-attention computation, and too many MLP layers also introduce a higher
computational burden. Many researchers have also fused information using lightweight
attention mechanisms. Fang et al. [36] used spatial attention and channel attention to fuse
differential mode features and common mode features, respectively, based on the idea of
divide and conquer; however, the attention-based approach is more about micro-tuning
the different modal information from the channel or spatial dimensions, and it has limited
fusion capability for semantic information. In view of these problems, the present study
develops a gradual fusion module called RFAM, which can first perform cross-modal
semantic aggregation of RGB and depth using a Transformer; then, it post-processes the
aggregated features using a shared MLP layer at a lower cost. Finally, a novel pixel-by-pixel
multi-dimensional attention is designed to fine-tune the aggregated features.

To address the issue of the model performance limitations caused by uncontrolled
lighting and to enhance the robustness of the model for detection in uncontrolled lighting
environments, this study designed a global–local joint enhancement module named LGEM.
This module uses depth images, which are robust in complex environments, to restore
the RGB images affected by light pollution. To ensure the efficiency of the enhancement
module and avoid adding an excessive computational burden while achieving structural
enhancement, the module first uses lightweight MLP layers to compress the mixed modal
features, obtaining enhancement weights with local information. Then, it employs Trans-
former layers with global receptive fields to model the structure of the local information
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weights, which have a channel count of one, thereby restoring the overall structure of the
RGB image with minimal computational cost.

Specifically, this research makes the following contributions:
(1) In response to the problem that peach detection cannot achieve higher accuracy

using individual RGB images, this study developed a multimodal detection framework
called CRLNet, which can simultaneously use RGB images and Depth images to perform
peach detection tasks.

(2) In order to achieve a higher detection accuracy, information from different modali-
ties can be fully mixed. This study developed a feature fusion module called RFAM. Firstly,
the transformer is used to spatially aggregate multimodal features with significant differ-
ences. Then, a cross modal coordinate attention mechanism is used to fine tune the initially
aggregated features pixel by pixel, achieving fine-grained fusion of multimodal features.

(3) In order to alleviate the negative impact of uncontrolled lighting on detection
tasks in orchards, a feature enhancement module called LGEM was been developed to
perform multi-scale restoration on contaminated image features. Firstly, the multimodal
features are compressed using the MLP layer to obtain a local enhanced weight map.
Then, a self attention mechanism is used to construct a global structural enhanced weight
map. Finally, spatial weight maps of different scales are used to repair and enhance the
multimodal features.

(4) Compared with seven state-of-the-art single-mode detectors and four state-of-
the-art multimodal detectors, CRLNet showed the most competitive performance, mAP50
reached 97.1%, Precision reached 94.8%, and Recall reached 88.2%. In addition, CRLNet
still performed the best in the detection task of bagged peaches, proving its excellent
generalization ability.

2. Material and Methods
2.1. Acquisition of Datasets

The focus of this paper is peach, with a specific focus on the various stages of growth
during the actual orchard production process. Data were obtained from a multimodal peach
dataset in an unstructured environment collected by Anhui Agricultural University in 2021
(https://download.scidb.cn/download?fileId=62cc068edd6f884c9c9b9c7d (accessed on
9 July 2022)). The dataset comprises multimodal images of peaches in outdoor unstructured
environments at the stages of combing, bagging, and picking. These images were captured
using RGB, depth, and infrared modalities. Additionally, images of the fruit were captured
at each stage under a range of conditions, including sunny and cloudy days, day and
night, with and without bagging, and with or without motion blur. A total of 1000 sets
of aligned RGB, depth, and IR images of young peaches were selected from the publicly
available multimodal peach dataset. The images were divided into four categories: False,
Leaf, Branch, and Fruit. Each category represented a specific type of shading situation: no
shading, shading by leaves, shading by branches, and shading by other fruits, respectively.

2.2. CRLNet

Existing network designs fail to address the issue of significant information loss
during the process of feature extraction in a single layer. The feature extraction network
of YOLOv9 is equipped with ELAN blocks, which provide a comprehensive stream of
gradient information, enabling the network to perform feature extraction on the input
image without loss. In order to enhance the network’s capacity for gradient information,
auxiliary information streams are incorporated into the network, thereby conferring a more
robust learning ability. In light of the impressive performance exhibited by YOLOv9, it was
selected for further investigation in this study. Specifically, CRLNet replicated the backbone
used for feature extraction and processed the input RGB and depth images in parallel. In
order to allow the network to suppress disturbances such as flare and noise during feature
extraction, the LGEM was embedded in the same stage of the backbone. Then, the RGB and
depth features were extracted from the dual-stream backbones, respectively. They were

https://download.scidb.cn/download?fileId=62cc068edd6f884c9c9b9c7d
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fused using the RFAM, followed by inputting the obtained adequately blended features
into the ELAN-SPP of YOLOv9 for multi-scale feature fusion and, finally, predicting the
detection boxes and categories using the detection head of YOLOv9. For the auxiliary
stream part, it was found that the RGB possessed richer information, and the RGB was
used as the input to the auxiliary stream.

The overall network architecture is presented in Figure 2a, where the numbers in the
CBS indicate the number of channels of the outputs, the convolutional kernel size, and the
number of module repetitions, respectively, from left to right. The four numbers in the
ELAN module indicate from left to right the c2, c3, and c4 used for computation in the
ELAN module, where the fourth number indicates the number of module repetitions. The
numbers in the ELAN-SPP from left to right indicate the c2, c3, and the number of module
repetitions used for computation, respectively. The arrays in the CBLinear module indicate
the features that CBLinear processed into an array shape using linear transformation.
Slience denotes the placeholder function, which is responsible for holding the input RGB
information. Cblinear denotes the division of the features into equal parts using linear
transformation, with the number of channels in each part determined by the numerical
part under the module. CBFuse denotes the same scale at which the input features were
first upsampled and then spliced on the channels. The yellow line in the figure indicates
the visible information stream transmitted through the network, the blue line indicates
the depth information, the black line indicates the fused multimodal information, and the
dashed line indicates the information of the auxiliary stream.

The overall structure of the network consists of a dual-stream backbone and an auxil-
iary information flow, and the GELAN-based multimodal backbone is named dual GELAN.
In the Dual-GELAN section, the number of channels of the input image is continuously
expanded, and at different stages of the expansion, the features of different modalities are
augmented using the LGEM. At the same time, the features of different stages are fused
using the RFAM and then input into the shared detection head. Finally, the detection head
uses the fused multimodal information to regress the categories of the objects and the
bounding box to obtain the final detection result for a peach. In experiments, it was found
that the best detection accuracy was achieved with RGB images under a single modal input;
so, it was constructed as an auxiliary stream using RGB images to achieve further accuracy
improvement using a smaller amount of computation. In the auxiliary stream, the features
extracted from the dual-stream backbone are blended using RFAM and then fed into the
CBLinear module; then, the blended features are separated into several features of different
sizes using linear transformation. Finally, the separated features are fed into different stages
of the auxiliary stream in order to enhance the information content of the auxiliary stream.
The computational flow of CRLNet’s backbones is presented in Algorithm 1.

Figure 2d shows the overall workflow of the multimodal detection network proposed
in this study. Firstly, the multimodal images are captured by the RGB and depth sensors;
then, the multimodal images are input into the two-stream network equipped with RFAM
and LGEM to perform the feature extraction. After that, the extracted fused features are
input into the detection head to obtain the detection results, and finally, based on the results
of the detection, the peach tree is pruned to ensure that the peach is not shaded.
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auxiliary branch information flow. (b) Overall structure of the LGEM. (c) Overall structure of the
RFAM. (d) Workflow for using CRLNet in orchards.
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Algorithm 1 Calculation process of CRLNet

Require: RGB images and Depth images
Ensure: size(RGB) = size(Depth)

1: for i = 1 to 3 do
▷ Feature extraction:

2: RGB, Depth← backboneStagei
RGB , backboneStagei

Depth
▷ LGEM:

3: Local ← concat(RGB, Depth)
4: ELocal ← LN(MLP(Local))
5: q, k, v← Flatten(ELocal), Flatten(ELocal), Flatten(ELocal)

6: Attention← so f tmax
(

q·kT√
dk

)
· v

7: EGlobal ← Conv1→1(Upsampling(Attention))
8: RGB, Depth← RGB⊗ EGlobal , Depth⊗ EGlobal

▷ RFAM:
9: q1, k1, v1 ← Flatten(RGB), Flatten(RGB), Flatten(RGB)

10: q2, k2, v2 ← Flatten(Depth), Flatten(Depth), Flatten(Depth)

11: Attention1 ← so f tmax
(

q1·kT
2√

dk

)
· v2

12: Attention2 ← so f tmax
(

q2·kT
1√

dk

)
· v1

13: RGBR, DepthR ← Reshape(MLP(Attention1)), Reshape(MLP(Attention2))
14: RGBw, RGBh ← Maxpoolw(RGBR), Maxpoolh(RGBR)
15: Depthw, Depthh ← Maxpoolw(DepthR), Maxpoolh(DepthR)
16: RDwhwh ← concat(RGBw, Depthw, Trans(RGBh), Trans(Depthw))
17: RGBw, Depthw, Trans(RGBh), Trans(Depthh)← split(MLP(RDwhwh))
18: Fusedi ← RGBR ⊛ RGBw ⊛ RGBh + DepthR ⊛ Depthw ⊛ Depthh
19: end for

2.3. Local–Global Joint Enhancement Module (LGEM)

The overall structure of the LGEM is shown in Figure 2b, which consists of a local
feature enhancement module in the first half and a global feature enhancement module
in the second half. For the local feature enhancement module, it first fuses the features of
different modalities:

Local = concat(RGB, Depth), (1)

where RGB denotes the features extracted from the RGB branch of the dual-stream network,
and Depth denotes the features extracted from the depth branch of the dual-stream network.
Next, the blended features are compressed using an MLP layer of a pure CNN:

ELocal = MLP(Local), (2)

where MLP(·) denotes the multilayer perceptron, and ELocal is the weight used for local
feature enhancement. It is worth noting that ELocal ∈ Rb,1,h,w, Local ∈ Rb,2c,h,w, and
RGB, Depth ∈ Rb,c,h,w. In a concrete step, the inputs to the MLP layer are defined as x, the
outputs are defined as y, and the specific calculation process of MLP is

y = LN
(

Conv c
2→1

(
ReLU

(
Conv c

2→
c
2

(
Conv2c→ c

2
(x)
))))

⊕ Conv2c→1(x), (3)

where the first term of the equation represents the channel of the feature compressed to
1 after a series of convolutional layers, LN(·) represents layer normalization, ReLU(·)
represents the activation function, and Convp→q denotes a convolutional layer with input
channel p, output channel q, convolutional kernel size 3, step size 1, and padding 1. The
second term of the equation represents the residual, which avoids the potential loss of
information that exists in the MLP during the compression of the channel, and ⊕ denotes
the addition of corresponding positions in space.
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The above steps use a purely convolutional structure to obtain ELocal , and due to the
limitations of the convolution operation itself, ELocal can only focus on localized detailed
information. The advent of the Transformer [37] compensates for the lack of convolutional
operations. However, the Transformer architecture has a high computation cost, which
leads to a reduction in the speed of the network. Therefore, this study transformed the
underlying Transformer architecture and proposed a global feature enhancement module
as the second part of the LGEM. Specifically, the local weights are first transformed to
compress them into vectors:

q, k, v = Flatten(ELocal), Flatten(ELocal), Flatten(ELocal), (4)

where Flatten(·) denotes replanning the shape of the feature. Specifically, the pre-planning
dimension is Rb,c,h,w, and the post-planning dimension is Rb,1,c,h∗w. Next, self-attention is
computed on the planned vector:

Attention = so f tmax
(

q · kT
√

dk

)
· v. (5)

Then, the features after the computation of self-attention are upsampled, and a
miniature MLP layer is used to add further transformations to the results after the self-
attention computation:

EGlobal = Conv1→1(Upsample(Attention)), (6)

where Upsample(·) is the inverse of Flatten. Finally, the enhanced features are obtained by
augmenting the RGB and depth features using the global weight map:

RGBE, DepthE = RGB⊗ EGlobal , Depth⊗ EGlobal . (7)

The heat maps of the feature maps before enhancement and after enhancement are
presented in Figure 2b. It can be seen that, after the LGEM processing, the information of
different modalities becomes more delicate. The RGB part of the network focuses more
attention on the peach, and the depth map part focuses attention on the part where the
depth information is concentrated.

2.4. Rough–Fine Hybrid Attention Fusion Module (RFAM)

Using simple summation or splicing on channels does not mix the features of different
modalities well. Numerous studies have shown that designing a reasonable architecture to
fuse features of different modalities can better exploit the multimodal information [36,38].
In this study, the RFAM was designed to fuse features of different modalities based on
the framework of coarse fusion first and fine fusion later. Figure 2c illustrates the overall
architecture of the RFAM. First, the input features are spread as vectors:

q1, k1, v1 = Flatten(RGB), Flatten(RGB), Flatten(RGB) (8)

q2, k2, v2 = Flatten(Depth), Flatten(Depth), Flatten(Depth). (9)

Next, the cross-attention of the different modalities is calculated:

Attention1 = so f tmax

(
q1 · kT

2√
dk

)
· v2 (10)

Attention2 = so f tmax

(
q2 · kT

1√
dk

)
· v1. (11)
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Then, two mutually independent MLPs are used to add further transformations to the
self-attention computed features, followed by reshaping the transformed features into the
same shape as the input to obtain the coarsely fused visible and depth features:

RGBR, DepthR = Reshape(MLP(Attention1)), Reshape(MLP(Attention2)), (12)

where RGBR and DepthR denote the RGB and depth features after coarse fusion, respec-
tively. Reshape(·) is the inverse of Flatten(·). Specifically, defining the input features of the
MLP layer here as x and the output features as y, it can be concluded that

y = LN
(

Conv c
2→c

(
ReLU

(
Conv c

2→
c
2

(
Convc→ c

2
(x)
))))

⊕ Convc→c(x). (13)

Next, the fine-tuning of the coarsely fused features continues by first performing
maximum pooling on the H dimension and the W dimension for RGBR and DepthR,
respectively, such that the information in different dimensions is compressed into vectors,
and the specific process can be formulated as

RGBw, RGBh = Maxpoolw(RGBR), Maxpoolh(RGBR) (14)

Depthw, Depthh = Maxpoolw(DepthR), Maxpoolh(DepthR), (15)

where RGBw and RGBh denote the RGB feature vectors compressed in the w and h di-
mensions. Depthw and Depthh denote the same operation taken for depth features, where
RGBw, Depthw ∈ Rb,c,w,1, and RGBh, Depthh ∈ Rb,c,1,h. Next, the last two dimensions of
RGBh and Depthh are exchanged and then spliced with RGBw and Depthw to obtain the
blended feature vector:

RDwhwh = concat(RGBw, Depthw, Trans(RGBh), Trans(Depthw)), (16)

where RDwhwh denotes the feature vector after blending, and Trans(·) denotes swapping
the last two dimensions of the matrix. Immediately after that, an MLP layer identical to
the rough fusion is used to add learnable parameters to the blended feature vectors; then,
the processed blended feature vectors are separated, and the processes of separation and
merging are reversible:

RGBw, Depthw, Trans(RGBh), Trans(Depthh) = splite(MLP(RDwhwh)). (17)

In this way, the features of different modalities are blended at different granularities;
finally, the learned parameters are used for the final step of fine fusion:

Fused = RGBR ⊛ RGBw ⊛ RGBh + DepthR ⊛ Depthw ⊛ Depthh, (18)

where ⊛ denotes the matrix multiplication. The RFAM first uses cross attention to coarsely
fuse features from different modalities, followed by fine-tuning the coarsely fused features
using different dimensions of attention. The usefulness of the RFAM is demonstrated
in the experiments; moreover, the RFAM module can be generalized to any multimodal
fusion problem.

3. Experimental Results and Analysis

This section begins with a description of the experimental setting in Section 3.1; the
metrics used to quantitatively compare the different methods are presented in Section 3.2;
the model results are presented and analyzed in Section 3.3; the ablation experiments are
described in Section 3.3.6, confirming the validity of the RFAM and the LGEM; the method
of the present work is compared with the state-of-the-art methods in Section 3.3.7; and
generalization experiments are described in Section 3.3.8.
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3.1. Experimental Environment

The experimental environment is shown in Table 1, and the training data were pro-
cessed using mosaic enhancement to ensure that the peaches were uniformly distributed
anywhere in the image. The mosaic enhancement was turned off in the last 30 training
rounds, which sped up the convergence of the model. The mosaic enhancement was
performed simultaneously on both the RGB and depth images to ensure that the enhanced
image remained strictly aligned.

Table 1. Experimental environment and training parameters for this study.

Hardware environment

CPU 22 vCPU AMD EPYC 7T83 64-Core Processor
GPU RTX 4090 × 2(24 GB) × 1
RAM 30 GB

Hard disk System disk: 30 GB. Data disk: 50 GB

Software environment

Systems Ubuntu20.04
CUDA 11.8
Pytorch 2.0
Python 3.8

Parameters

Learning rate decay 0.0005
Warm-up epoch 3

Warm-up Lr 0.1
Momentum 0.975

Close mosaics epoch 30
Lr 0.01

Optimizer Adam
Epoch 200

Batch size 32
Size of input images 640 × 640

3.2. Evaluation Metrics

To make a quantitative comparison of CRLNet, P, R, and mAP were used as the
evaluation indices, where P denotes the accuracy rate, which is calculated by the formula

Precision =
TP

TP + FP
, (19)

where TP denotes that the model successfully detects positive samples as positive samples,
and FP denotes that the model predicts negative samples as positive samples. R denotes
the recall rate, which is calculated as follows:

Recall =
TP

TP + FN
, (20)

where FN is the probability that the model detects a positive sample as a negative sample.
The mAP is the AP of each category divided by the total number of categories, and the
specific formula for AP is

AP =
TP + TN

TP + TN + FP + FN
, (21)

where TN denotes the probability of correctly predicting a negative sample as a negative
sample, where the criterion for judging correct and incorrect is the IOU. When the IOU of
the prediction box and the GT box is greater than a set threshold, it is judged to be correctly
predicted; otherwise, it is judged to be incorrect. Based on different IOU thresholds, we can
obtain the mAP, where mAP50:95 represents the average result of the mAP calculated with a
step size of five, ranging from a threshold of 50 to 95.

In addition, to quantitatively compare the size of the models, we count the total number
of parameters required to train the models, Params, where a smaller number of parameters
indicates a lighter model. To visualize the speed of the network, we also count the time



Plants 2024, 13, 1980 11 of 27

taken by different models to process one or a pair of input images, denoted as Speed, where
Params consists of the number of parameters in the Conv and FC layers, respectively:

ParamsConv = (K× in + 1)× out, (22)

where K is the convolution kernel size, in is the number of feature channels in the input
convolution layer, and out is the number of feature channels in the output convolution
layer. Similarly, the number of parameters in the FC layer is calculated as

ParamsFC = (in + 1)× out, (23)

where in is the length of the feature vector of the input FC layer, and out is the length of the
feature vector of the output FC layer. The total Params are calculated as

Params = ParamsConv + ParamsFC. (24)

To make the measurement of the network speed more accurate, selected N samples
are counted as the total time T to process the samples, obtaining the time needed to process
each sample speed by calculating

speed =
T
N

, (25)

where T is in milliseconds.

3.3. Results and Analyses
3.3.1. Data Distribution

The dataset was divided into three distinct subsets, designated as training, validation,
and testing sets, in a ratio of 8:1:1. Figure 3 illustrates the data distribution of the dataset.
In Figure 3a, the top-left plot indicates the number of labels for each category, where “False”
indicates unshaded peaches, “Leaf” indicates peaches shaded by leaves, “Branch” indicates
peaches shaded by branches, and “Fruit” indicates peaches shaded by fruits; the top-right
corner shows the shapes of all the target frames. The ground truth in the YOLO format
consists of x, y, w, and h, where x and y denote the coordinates of the box, and w and h
denote the dimensions of the box. The horizontal coordinates of the bottom-left subplot
in Figure 3a indicate the values of x, and the vertical coordinates indicate the values of
y. The data in the plot indicate that the peaches of the dataset were concentrated in the
central region of the image. The lower-right subplot in Figure 3a indicates the value of
w in horizontal coordinates and the value of y in vertical coordinates, and the data in the
figure indicate that the target frame of peaches in the dataset was small. Figure 3b shows
the degree of association between x, y, w, and h in detail. In each of these subplots, the
horizontal and vertical coordinates indicate the specific value of each variable. Darker cells
indicate that the model learned the correlation between the two labels well. Light-colored
cells, on the other hand, indicate a weaker correlation.

The data presented in Figure 3 indicate that a significant proportion of the peaches in
the dataset were shaded by leaves, while only a small number were shaded by branches
and trunks. This uneven distribution of samples poses a challenge in achieving a higher de-
tection accuracy. In the analysis of the detection frame, it can be observed that the peaches
that require detection in this study are concentrated in the central region of the image, and
they possess a smaller target frame. It is also noteworthy that the young peaches are rela-
tively small, and the different occlusions tend to have similar morphological characteristics.
Furthermore, RGB-based detection algorithms tend to confuse different occlusions, and the
introduction of depth information can assist the model in more accurate classification.
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Figure 3. The distribution of data in the training dataset. (a) The number and size of different
categories of peaches in the dataset. (b) Modeling of the correlation between tags using the target
detection algorithm during training, where the darker the color, the higher the correlation.

3.3.2. Modal Combination Analysis

The research in this study combined RGB and depth. In fact, infrared data also exist in
the data used in the datasets, and this study carried out experiments on the combination
of different modes of information using these three types. The experimental data are
presented in Table 2, where the first three rows are unimodal information. The data show
that in the unimodal information combination, the RGB and RGB achieved a mAP50 of
95.73% because the RGB information was sufficient for most of the scenes. Depth and IR
only achieved mAP50 of 85.24% because these two types of information were more suitable
for complementing and extending the RGB information rather than being input as the
main information into the network. The multimodal combination of information again
confirmed the suitability of the depth and IR information as complementary information.
In the multimodal comparison, the combination of RGB and depth and the combination of
RGB and IR achieved a certain degree of improvement in accuracy; yet, the value of the
improvement did not fully confirm that the combination of RGB and depth had a great
advantage. However, when the module in CRLNet was embedded in a network, compared
with the combination of RGB and IR, the mAP50 and mAP50:95 increased by 1.93% and 8.3%,
respectively, in the combination of RGB and depth. This situation arises because infrared
images can detect information about objects that emit heat radiation, and it is clear that
the heat radiation from peaches was almost negligible. As crops emit limited heat, the
combination of RGB and depth is the most applicable in the field of agriculture. In areas
such as pedestrian detection, the combination of RGB and IR can provide a large boost.

A comparison of the detection results for different modal combinations is provided in
Figure 4. Wrongly detected and missed targets are marked with white boxes in the figure.
Coinciding with the data in Table 2, under the combination of Inf + Inf and Depth + Depth,
the mAP50 is only 85.91% and 83.43%, respectively, and the data in the figure also show
that the infrared image provided almost no information. The RGB images have almost no
missed or false detections in scenes with normal brightness, but when the environment
became harsh, the RGB image started to fail. The combination of RGB and depth achieved
stable and high-accuracy detection, and the accuracy of detection was further improved
after embedding the module in this study.
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Table 2. Comparison of data from modal combination experiments, where rows 1, 2, and 3 denote
RGB + RGB, Depth + Depth, and IR + IR, respectively. Bold indicates maximum value.

RGB Depth Inf Module mAP50 (All) mAP50:95 (All) mAP50 (False) mAP50 (Leaf) mAP50 (Branch) mAP50 (Fruit)

✓ 96.11% 62.51% 95.28% 96.05% 96.48% 96.42%
✓ 83.43% 45.33% 83.13% 83.52% 84.18% 82.90%

✓ 85.91% 47.82% 85.21% 85.34% 87.38% 85.69%
✓ ✓ 95.73% 62.01% 94.82% 95.59% 96.28% 96.21%
✓ ✓ 94.65% 61.50% 95.01% 94.69% 95.17% 93.63%

✓ ✓ 85.24% 47.62% 83.81% 84.40% 86.68% 86.18%
✓ ✓ ✓ 95.20% 61.14% 95.33% 95.07% 95.78% 94.62%
✓ ✓ ✓ 97.13% 69.44% 97.84% 98.63% 97.62% 94.44%

156.569

OursRGB+RGB Depth+Depth Inf+Inf RGB+Inf+ModuleRGB+InfInf+Depth

(b)

RGB+RGB

Depth+Depth

Inf+Inf

Inf+Depth

RGB+Inf

RGB+Inf+

LGEM+RFAM

Ours

(a) (c) (d)

Figure 4. Comparison of the detection results for different combinations of modes. (a) normal
brightness; (b) dense peach; (c) glare interference; (d) dark light.

To explore the feature expressiveness of the network under different types of input
information, Figure 5 shows the feature heat maps of several different classes of input
sources after feature extraction from the backbone network. The figure shows that for a
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single modal input, the network could not focus on the peach region. The combination
of RGB + Depth moved the network’s attention to the peach region, and the attention
was more focused after the embedding of the enhancement module. The embedding of
the fusion module allowed for more information to be introduced into the depth map,
and the number of peaches observed became larger. The method used in this study
allowed for full attention to be focused on the peach region and filtered out the distracting
background information.

(g)LGEM (h)Ours(d)RGB+RGB (e)RGB+Depth(c)Depth+Depth (f)RFAM(a)RGB (b)Depth

Figure 5. Extracted feature maps with different input information, where warmer colored regions
indicate that the network is focusing more attention on that region and the opposite is true for cooler
colored regions.

Existing consumer-grade sensors can capture RGB, depth, IR, and other images simul-
taneously. To explore the effect of more modalities on the peach detection accuracy, further
modalities were combined. Specifically, CRLNet was extended to three streams to process
the information from three models simultaneously. To allow for the module in this study to
accommodate information from more modalities, the RFAM and LGEM were adapted to
define three different modalities x, y, and z. Then, the fused information f was defined as

f = RFAM(RFAM(x, y), RFAM(x, z)) (26)

For the LGEM module, we adjusted Equation (1), which was defined as

Local = concat(x, y, z). (27)

Correspondingly, the input channels of the MLP layer changed. The specific metrics of
the three-stream network are presented in Table 3, and the data show that the three-stream
network did not improve the accuracy; in contrast, the final mAP50 is 1.3% lower than the
RGB + Depth combination. This is because in agriculture, images taken by IR cameras do
not reflect the information well, and extracting features using different feature extraction
networks and fusing them using the same fusion module will result in less informative IR
features interfering with the RGB and depth features, causing a decrease in accuracy. One
possible way to utilize the three streams of information would be to design an appropriate
fusion module to filter the IR information; another possible way would be to simultaneously
input the information from the three modalities into a single stream detection network
using input-level fusion. The best results can be achieved by selecting the appropriate
modal information and constructing the proper network structure according to the specific
application scenario.
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Table 3. Performance analysis of the three-stream network. Bold indicates maximum value.

LGEM RFAM Data Type mAP50 (All) mAP50:95 (All) mAP50 (False) mAP50 (Leaf) mAP50 (Branch) mAP50 (Fruit)

RGB + Depth + Ir 95.04% 61.41% 96.12% 95.03% 96.15% 92.87%
✓ RGB + Depth + Ir 96.01% 64.07% 95.59% 95.82% 96.88% 95.73%

✓ RGB + Depth + Ir 94.71% 63.02% 96.37% 95.85% 97.26% 89.35%
✓ ✓ RGB + Depth + Ir 95.76% 65.54% 96.21% 96.62% 95.70% 94.51%

3.3.3. Efficiency of the RFAM

The RFAM consists of a coarse fusion phase based on cross attention and a fine-tuning
phase based on multidimensional mixed attention. To illustrate the effectiveness of the
coarse–fine fusion strategy in the RFAM, the results of the ablation experiments conducted
on the RFAM are presented in Table 4, where NO denotes a multimodal network that
does not use any module, RAM denotes a multimodal network that uses only the coarse
fusion module, FAM is a network that uses only the fine fusion module, and RFAM is a
network that is embedded with the fusion module of this study. The data show that the
use of either fusion method alone leads to degradation in the network performance due
to the presence of a large amount of interfering information in the peach background. If
the multimodal information is fused without adopting an appropriate fusion strategy, the
fused features contain too much interfering information, thus leading to degradation in the
network accuracy. Furthermore, this phenomenon also shows that simple attention-based
fusion rules cannot achieve excellent results.

Table 4. Comparison of the accuracy of Rough Fusion, Fine Fusion, and the RFAM module. Bold
indicates optimal value.

Method All False Leaf Branch Fruit Params
mAP50 mAP50:95 mAP50 mAP50:95 mAP50 mAP50:95 mAP50 mAP50:95 mAP50 mAP50:95

NO 95.73% 62.01% 94.82% 69.66% 95.59% 62.46% 96.28% 58.05% 96.21% 57.89% 72.43 M
RAM 94.77% 60.49% 94.23% 68.71% 95.74% 61.28% 96.59% 56.31% 92.52% 55.69% 88.01 M
FAM 95.33% 61.40% 95.42% 69.44% 94.94% 56.74% 94.91% 56.74% 95.62% 57.24% 73.20 M

RFAM 94.84% 64.03% 95.73% 69.90% 95.69% 63.22% 96.61% 60.74% 94.89% 59.83% 89.04 M

In the fine fusion stage of the RFAM, a fusion method based on multidimensional
attention was proposed in order to exclude the positive effect of the attention mechanism
on the accuracy of the network and to confirm the effectiveness of the fine fusion stage
of this study. The FAM part of the network used in this study was replaced with several
different attention mechanisms in turn, and a comparison of their effectiveness is presented
in Table 5, where NO denotes a multimodal network without embedded modules. When
using ResCBAM [39] as a fine fusion strategy, mAP50:95 significantly decreased by 6.89% due
to the fact that too much attention computation corrupts the coarsely fused features. When
embedding SE [40] and ECA [41], which have relatively simple structures, compared with
single stream networks, mAP50:95 was increased by 4.47% and 3.26%, respectively; however,
they could not achieve the same effect as the FAM proposed in this study, which confirms
that the FAM part of the CRLNet is reasonable and effective in the peach detection task.

Table 5. Comparison of the accuracy of Fine Fusion using different attention replacements. Bold
indicates optimal value.

Method All False Leaf Branch Fruit
mAP50 mAP50:95 mAP50 mAP50:95 mAP50 mAP50:95 mAP50 mAP50:95 mAP50 mAP50:95

NO 95.73% 62.01% 94.82% 69.66% 95.59% 62.46% 96.28% 58.05% 96.21% 57.89%
ResCBAM [39] 90.91% 55.12% 93.80% 63.71% 93.89% 56.80% 91.33% 51.09% 84.41% 48.62%

SE [40] 96.58% 66.48% 96.42% 73.07% 96.74% 66.32% 97.27% 64.00% 95.75% 62.18%
ECA [41] 96.50% 65.27% 96.61% 72.31% 96.39% 65.20% 97.45% 61.82% 95.63% 62.04%

Ours 97.13% 69.44% 97.84% 75.73% 98.63% 72.94% 97.62% 65.63% 94.44% 63.29%
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3.3.4. Performance of CRLNet at Different Resolutions

The resolution of the detection model has a strong impact on the accuracy of the model.
The detection accuracy under 320 × 320, 480 × 480, and 640 × 640 input image sizes was
tested, respectively. As shown in Table 6, the mAP increased gradually as the resolution
increased. The model reached equilibrium when the resolution was 640 × 640, as shown
in Figure 6. There was no need to use higher-resolution images in this study because too
high a resolution leads to an increase in the computational complexity and a decrease in
the percentage of the model’s receptive field in the image, which can affect the model’s
detection ability.

Table 6. Comparison of the accuracy of image inputs with different resolutions. Bold indicates
optimal value.

Image Size mAP50 (All) mAP50:95 (All) mAP50 (False) mAP50 (Leaf) mAP50 (Branch) mAP50 (Fruit)

320 86.30% 54.51% 92.42% 92.18% 88.30% 72.39%
480 94.92% 63.01% 96.92% 95.08% 95.34% 91.33%
640 97.13% 69.44% 97.84% 98.63% 97.62% 94.44%

300 480 640
All(P) 0.888 0.918 0.96
All(R) 0.782 0.884 0.931
False(P) 0.912 0.952 0.953
False(R) 0.85 0.882 0.954
Leaf(P) 0.93 0.952 0.956
Leaf(R) 0.804 0.882 0.953
Branch(P) 0.806 0.886 0.984
Branch(R) 0.867 0.92 0.933
Fruit(P) 0.903 0.911 0.948
Fruit(R) 0.608 0.802 0.882

0
0.2
0.4
0.6
0.8

1
All(P)

All(R)

False(P)

False(R)

Leaf(P)

Leaf(R)

Branch(P)

Branch(R)

Fruit(P)

Fruit(R)

Indicators at Different Resolutions
300 480 640

Figure 6. P and R for different classes of CRLNet at different resolutions.

3.3.5. Analysis of Detectors of Different Sizes

The existing detectors are published in different sizes to cope with different deploy-
ment scenarios. In this study, two lightweight versions were provided, s and m, in addition
to the basic model by scaling the channels and width of the network at each layer. A
comparison of the metrics of the different versions is shown in Table 7. The data show
that at different scales, the model in this study achieved at least 5% and 5.97% mAP50:95
improvement compared to the single stream model in these two cases, respectively. More
specifically, further metric comparisons for different sizes of detectors are provided in
Figure 7. In different scenarios, suitable detectors can be chosen for different tasks. For
example, for a stationary peach detector with a stable power supply, the l version can be
used; for a small camera with insufficient voltage, the lightweight m version can be used;
for a UAV orchard inspection, the lightest s version can be used.
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Table 7. Comparison of the accuracy of different sizes of detectors. Bold indicates optimal value.

Modal Scale mAP50 (All) mAP50:95 (All) mAP50 (False) mAP50 (Leaf) mAP50 (Branch) mAP50 (Fruit) Params Speed

RGB 0.25 94.92% 61.45% 95.22% 94.93% 95.45% 94.14% 21.23 M 9.33 ms
RGB 0.5 95.50% 62.33% 94.83% 88.51% 90.67% 90.21% 29.36 M 9.71 ms
RGB 1 96.11% 62.51% 95.28% 96.05% 96.48% 96.42% 60.12 M 13.42 ms

Depth 0.25 83.02% 45.01% 83.34% 83.33% 82.67% 82.91% 21.23 M 9.33 ms
Depth 0.5 83.04% 45.78% 83.91% 84.01% 81.60% 82.72% 29.36 M 9.71 ms
Depth 1 83.42% 45.81% 83.80% 84.45% 83.33% 82.01% 60.12 M 13.42 ms

RGB + Depth 0.25 94.51% 66.45% 97.89% 97.03% 92.34% 91.00% 27.01 M 16.21 ms
RGB + Depth 0.5 95.93% 68.33% 97.72% 97.81% 96.02% 92.11% 40.11 M 18.74 ms
RGB + Depth 1 97.13% 69.44% 97.84% 98.63% 97.62% 94.44% 90.03 M 31.11 ms

S 0.25

L 1.0
M 0.5

Fals
e(P
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e(R

)
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af(
R)

Comparison of the accuracy among different sizes

Figure 7. Comparison of P and R metrics for different sizes of detectors.

3.3.6. Ablation Experiment

To confirm that the model in this study is the optimal solution for engineering in
terms of the data selection, module design, and architecture design, ablation experiments
were conducted on CRLNet, and the experimental design and related data are shown
in Table 8. In the unimodal mode, the RGB image provided the most abundant feature
information. However, the multimodal model had a significant advantage over the uni-
modal model. Simple channel splicing feature fusion methods may introduce low-quality
depth information that interferes with the spectra, which, in turn, leads to a reduction
in the detection accuracy. The LGEM was designed to improve the quality of the RGB
and depth information simultaneously. In addition, an RFAM based on the transformer
architecture was designed, and it effectively integrates the advantageous information from
both modalities. These results highlight the importance of feature-level fusion-based ap-
proaches in multimodal detection tasks in agricultural scenes. Through embedding the
LGEM and RFAM into the dual-stream detection model designed based on YOLOv9, the
overall performance of CRLNet significantly improved, especially in the mAP50:95 metric,
which improved by 6.93%. In addition, to complement and corroborate the data in Table 8,
we also present the variation curves of the P, R, and F1 values of the different methods
at different confidence levels in Figure 8, where the blue curves represent the average
accuracy of all categories, and the curves of different colors represent the specific accuracy
of different categories. In the legend section, the best metrics achieved by the different
methods at the best confidence level are shown. The data show that CRLNet can achieve
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the best accuracy under lower confidence thresholds, proving that ours method can achieve
accurate localization and classification of different classes of peaches.
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Figure 8. P, R, and F1 transformation curves for different methods at different confidence levels.
where the horizontal coordinate of each subplot indicates the specific value of the confidence level
and the vertical coordinate indicates the specific value of the indicator. Different colors indicate
different categories, and the data in the legend indicate the best indicator at the best confidence level.
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Table 8. Ablation study of the detection network on the peach dataset, where the dual-stream
YOLOv9 is used as the baseline, and M1 and M2 are RGB + RGB and Depth + Depth, respectively.
M3–M6 are the combination of RGB + Depth. Bold indicates optimal value.

RGB Depth LGEM RFAM mAP50 (All) mAP50:95 (All) mAP50 (False) mAP50 (Leaf) mAP50 (Branch) mAP50 (Fruit)

M1 ✓ 96.11% 62.51% 95.28% 96.05% 96.48% 96.42%
M2 ✓ 83.43% 45.33% 83.13% 83.52% 84.18% 82.90%
M3 ✓ ✓ 95.73% 62.01% 94.82% 95.59% 96.28% 96.21%
M4 ✓ ✓ ✓ 94.81% 64.01% 95.44% 95.32% 95.37% 93.01%
M5 ✓ ✓ ✓ 94.84% 64.03% 95.73% 95.69% 96.61% 94.89%
M6 ✓ ✓ ✓ ✓ 97.13% 69.44% 97.84% 98.63% 97.62% 94.44%

Typically, networks with a larger number of parameters tend to have convergence
problems, and different input data may impact the convergence of the model. To verify
that the modules as well as the data used in this study did not have a negative impact on
the convergence of the model, we show the graph of the variation in the training loss for
different data combinations and different module combinations in Figure 9. The data in the
figure show that comparing the different input sources, the combination of RGB + Depth
achieved the lowest loss value, and the combination of Depth + Depth achieved the highest
loss value, which also matches the data from the accuracy analysis. In the comparison of
embedding different modules, the model in this study achieved the lowest loss and the
fastest convergence speed, which confirms that it has a positive impact on the convergence
speed and accuracy of the network. The loss profile shows a rapid drop in the last 30 training
rounds; this was due to the mosaic enhancement technique being turned off.

Figure 9. Plot of the training loss variation for different data combinations and different module
combinations.

3.3.7. Comparative Experiments with State-of-the-Art Algorithms

CRLNet was tested on the multimodal peach dataset and compared with other state-of-
the-art target detection algorithms. The single-stream target detection frameworks include
YOLOv3, YOLOv5, YOLOv6, YOLOv8, YOLOv9, and RT-DETR, and the dual-stream
detection frameworks compared include CMASF [34], AFM [32], SCA [42], and MIA [43].
All of these single-stream comparison algorithms used the standard version, and for a
fair comparison, the state-of-the-art detection model YOLOv9 was used as the baseline
model for these dual-stream comparison algorithms with the embedded modules, as
proposed in the original paper. As can be seen from Table 9, the highest accuracy in the
comparison of unimodal networks was achieved using RGB images, which in most cases
reflects the scene information well. Compared to YOLOv9, which has the best accuracy in
unimodal networks, CRLNet was improved by 1.02% and 6.93% on mAP50 and mAP50:95,
respectively. In addition, compared to the SCA, the detection network with the second best
accuracy in multimodality, CRLNet, achieved a 1.65% and 5.33% improvement in mAP50
and mAP50:95, respectively. This indicates that CRLNet detected peaches more accurately
and was more robust to different IOU thresholds. CRLNet also achieved a better balance
between detection accuracy and computational complexity without introducing too many
additional parameters, which can still satisfy real-time detection.
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Table 9. Comparison between mainstream target detection algorithms, both unimodal and multimodal.
Bold indicates optimal value.

Model Datatype mAP50 mAP50:95 (All) mAP50 (False) mAP50 (Leaf) mAP50 (Branch) mAP50 (Fruit) Speed Parameters

YOLOv3 RGB 94.48% 60.62% 94.50% 95.56% 93.04% 94.94% 8.33 ms 10.37 M
YOLOv3 Depth 82.89% 77.82% 83.81% 85.89% 83.04% 78.82% 8.33 ms 10.37 M
YOLOv3 Ir 82.20% 44.43% 81.60% 78.12% 85.11% 84.03% 8.33 ms 10.37 M
YOLOv5 RGB 96.02% 61.33% 96.01% 96.32% 96.89% 94.78% 10.28 ms 53.13 M
YOLOv5 Depth 82.33% 79.45% 82.84% 83.93% 81.54% 80.91% 10.82 ms 53.13 M
YOLOv5 Ir 84.67% 46.23% 82.73% 83.78% 84.80% 87.33% 10.82 ms 53.13 M
YOLOv6 RGB 96.01% 61.01% 95.93% 95.48% 96.53% 95.92% 10.94 ms 11.09 M
YOLOv6 Depth 74.33% 39.12% 72.45% 68.34% 51.53% 70.82% 10.94 ms 11.09 M
YOLOv6 Ir 76.41% 41.50% 76.22% 73.93% 73.72% 81.92% 10.94 ms 11.09 M
YOLOv8 RGB 95.18% 61.11% 95.83% 94.82% 95.13% 94.89% 9.81 ms 43.61 M
YOLOv8 Depth 84.30% 45.56% 80.92% 78.44% 77.31% 84.30% 9.81 ms 43.61 M
YOLOv8 Ir 85.78% 46.32% 85.71% 83.92% 86.22% 87.34% 9.81 ms 43.61 M
YOLOv9 RGB 96.11% 62.51% 95.32% 96.09% 96.47% 96.43% 13.42 ms 60.12 M
YOLOv9 Depth 83.44% 45.78% 83.82% 84.50% 83.31% 82.01% 13.42 ms 60.12 M
YOLOv9 Ir 85.89% 47.23% 84.44% 85.37% 88.32% 85.44% 13.42 ms 60.12 M
RTDETR RGB 91.21% 57.77% 91.80% 90.45% 90.89% 91.42% 31.33 ms 41.94 M
RTDETR Depth 83.29% 41.01% 82.03% 81.92% 90.01% 79.11% 31.33 ms 41.94 M
RTDETR Ir 58.13% 29.52% 65.53% 58.72% 39.51% 68.82% 31.33 ms 41.94 M
C MASF RGB + Depth 95.21% 61.19% 95.44% 95.43% 95.22% 94.89% 25.44 ms 72.57 M

AF M RGB + Depth 95.02% 62.42% 95.45% 95.52% 96.13% 92.92% 29.40 ms 88.30 M
SCA RGB + Depth 95.48% 64.11% 93.56% 95.33% 95.91% 71.78% 24.21 ms 75.72 M
MIA RGB + Depth 95.67% 64.23% 92.71% 96.04% 96.03% 71.62% 24.82 ms 82.02 M
Ours RGB + Depth 97.13% 69.44% 97.84% 98.63% 97.62% 94.44% 31.11 ms 90.03 M

Similarly, the accuracy and recall of different models for detecting different categories
of peaches were compared and analyzed. Depending on the type of input data, the detection
models can be classified into four broad categories, namely, those using only RGB images,
those using only infrared images, and those using only depth images versus those using
mixed data. As can be seen in Figure 10, the red and blue dashed lines represent the
values of P and R obtained by CRLNet. CRLNet achieved the highest accuracy among
all models for different occlusion cases of peaches, with an average accuracy of 96.01%,
and CRLNet also achieved a significant improvement over other two-stream networks.
The experimental results show that CRLNet achieved impressive performance in both
precision and recall. This excellent performance is attributed to the design of our fusion
method, which effectively combines depth information to complement RGB image features,
enabling it to excel at challenging problems such as complex backgrounds, occlusions, and
targets of different scales.

In addition, to visually demonstrate the effectiveness of the models in this study, the
visual detection results of the state-of-the-art single-stream detector YOLOv9 compared to
other state-of-the-art dual-stream detectors are shown in Figure 11. typical scenes under
three different lighting conditions were selected: sunny days, glare, and artificial lighting
at night. The missed and false detections of the single-stream YOLOv9 and other dual-
stream algorithms relative to CRLNet are marked with green boxes and magnified to the
right of the image. For a fair comparison, all the dual-stream algorithms compared in the
experiments were implemented by embedding the modules of the original paper into the
extended YOLOv9. As can be seen in Figure 11a, all the algorithms achieved good detection
results under normal lighting on a sunny day, and the other algorithms (except for our
method), only missed a small peach at one location at the bottom of the image. Figure 11b
shows a sunny day scene with some peaches blended into the background, where CRLNet
successfully detects the peaches, unlike the other methods. Figure 11c shows a flare scene,
where the red flare caused by the lens directly facing the sunlight interferes with the color
characteristics of the peaches, and both the original YOLOv9 and some of the dual-stream
detection algorithms failed to detect them. Figure 11d shows the artificial lighting scene
at night, where all the methods except ours had different degrees of misdetection and
omission. This shows that CRLNet not only has good detection performance under normal
lighting conditions but also has a stronger feature capture and anti-interference ability than
other algorithms under extreme lighting conditions.
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Figure 10. Comparison of the accuracy (P) and recall (R) of each detection model for different
occlusion categories of peaches. The four color regions from left to right in each sub-figure correspond
to depth-only, IR-only, RGB-only, and mixed.

3.3.8. Generalization Experiment

Ripe peaches often need to be bagged during the picking period to prevent birds
from nibbling them, and it is equally important for picking robots to achieve the accurate
localization of bagged peaches. To verify the effectiveness of the CRLNet proposed in this
study in detecting bagged peaches, the bagged peach dataset (https://download.scidb.
cn/download?fileId=62cc068edd6f884c9c9b9c7d (accessed on 9 July 2022)). was used for
re-training and testing. The bagged peach dataset has only one category and has more
image pairs. The training process used the same data partitioning and training parameters
as the young peach detection, and to speed up the experiments, the s version of the detector
was used for training and validation. The performance indicators are shown in Table 10.
When embedding CMASF, MIA, and SCA, mAP50:95 actually decreased by 3.17%, 2.67%,
and 2.8%, respectively, confirming that these methods do not have strong generalization
capabilities. CMASF uses an attention-based approach to fusion, and the attention-based
approach is generic and therefore not overly affected when the data distribution changes.
The module in this study also used some attention mechanism in its design, and due to
the granularity refinement of the fusion rules used in this study, CRLNet still showed
state-of-the-art performance in the detection of bagged peaches, once again demonstrating
its robustness and generalizability.

https://download.scidb.cn/download?fileId=62cc068edd6f884c9c9b9c7d
https://download.scidb.cn/download?fileId=62cc068edd6f884c9c9b9c7d
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Figure 11. Visualization of the state-of-the-art single- and dual-stream detection algorithms on the
peach dataset: (a) normal brightness; (b) dense peach; (c) dark light; (d) glare interference.

Table 10. Comparison of the detection accuracy on the bagged peach dataset. Bold indicates
optimal value.

Model P R mAP50 mAP50:95

YOLOv9-RGBD 82.10% 81.02% 87.49% 60.89%
AFM 85.33% 83.21% 89.12% 64.67%

CMASF 82.44% 78.93% 86.03% 57.72%
MIA 81.18% 80.12% 86.31% 58.22%
SCA 80.73% 79.24% 85.89% 58.12%
Ours 88.78% 86.92% 92.43% 70.02%

4. Discussion

Accurate positioning of peaches is crucial for automated orchard management. A large
number of studies have demonstrated that accurate positioning of peaches can be achieved
using deep learning-based approaches, among which YOLO-based methods have been
most widely used [1,7–9]. With further research, a large number of studies have shown
that higher accuracy can be achieved by using multimodal data for peach detection [16].
These methods that use multimodal data usually select a suitable single-stream detector
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for expansion, followed by expanding the backbone of the single-stream detector into a
dual-stream to adapt to the multimodal inputs, and then fusing the multimodal features
using summation or channel splicing immediately afterwards, and finally using a common
detector head to regress the fused features to obtain the final detection results. These
studies have neglected the negative impact of unbalanced multimodal information on
the model during the fusion process. In addition, uncontrolled light in orchards has not
received sufficient attention. To this end, this study proposes CRLNet, selects the advanced
unimodal detector YOLOv9 for expansion, and designs RFAM, a multimodal feature fusion
module with progressive granularity, along with LGEM, which mitigates the interference
of uncontrolled light. These enhancements achieve the best results across various peach
detection tasks.

In this study, the well-known single-stream detectors YOLOv3 [22], YOLOv5 [16],
YOLOv6 [44] YOLOv8 [23], YOLOv9 [24], and RT-DETR [45] were selected for metrics
comparisons with the dual-stream detectors CMASF [34], AFM [32], SCA [42], and MIA [43].
The data are shown in Table 9. In the comparison using different modalities, the best
detection accuracy is achieved using RGB images alone, which is due to the fact that RGB
images can present enough scene information in most scenes. In the single stream detector
comparison, owing to the powerful feature extraction backbone GELAN, YOLOv9 achieves
the best detection accuracy with an mAP50 of 96.11%. In the comparison of dual-stream
detectors, MIA fusion using mixed attention achieved the best accuracy with an mAP50 of
95.67%; however, it was not as high as using YOLOv9 alone because of the large number
of uncontrolled light interferences in the dataset taken for this study, which caused the
conventional fusion module to fail. Owing to the strong effects of LGEM and RFAM,
CRLNet achieved an mAP50 of 97.13%, a 1.02% improvement compared to the best single-
stream detector. On the more stringent mAP50:95 comparison, the CRLNet accuracy reached
69.44%, which is a 6.93% improvement compared to the best single-stream detector, proving
the effectiveness of the method in this study on the task of accurate peach localization.

Real orchard scenes are often affected by uncontrolled lighting, and existing research
has focused on the characteristics of the peaches themselves, ignoring the effects of the
scene on the detector. When harsh sunlight interferes in the scene, some regions in the RGB
image cannot be recognized in the image with the naked eye, let alone using the detector for
automatic detection. Therefore, we design LGEM based on joint local-global enhancement,
which uses a lightweight CNN and a preliminary mixture of multimodal features for
initial local modeling of the scene, followed by the introduction of a Transformer layer
with global sensing capability for overall structure-selective enhancement, so as to repair
the contaminated information in RGB. Similar conclusions have been reached in related
studies [38].

Widely differing multimodal features are often not well fused by simple summation
or on-channel splicing [46]. Existing work has recognized this and designed a number of
attention-based fusion rules for blending multimodal information [32,34,42,43]. However,
it is shown in the experimental section that these attention-based approaches did not
perform satisfactorily in the peach detection task effect. This is due to the large overall
target of peaches and the long distance between different peaches, the spacing region
between two peaches does not have any information in the Depth image, resulting in
a large number of voids in the Depth image. Furthermore, contaminated regions with
insufficient information are present in the RGB image, which is affected by uncontrolled
lighting. Simply using an attention mechanism to model multimodal information that is
unbalanced, highly varied, and with significant missing information does not result in
reasonable fusion weights. For example, CMASF [34] performs well in the intensive tea leaf
detection task due to the fact that there is not a lot of null information in the Depth image
of tea leaves. In this study, through the RFAM module, cross-modal feature aggregation
is first performed for both RGB information and Depth information using a Transformer,
which fills in the missing regions in both modalities at a semantic level. This is immediately
followed by fine-tuning of the initially aggregated features using fusion rules based on
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the attention mechanism. In the analysis of existing studies, it was found that using one
type of attention alone does not fuse features from different modalities as well as possible.
For example, SCA [42], which uses both spatial and channel attention, achieves better
detection accuracy than CMASF [34], which uses spatial attention alone. This is due to the
fact that one type of attention alone cannot perform comprehensive feature screening. In
addition, weight learning using a mixture of features is superior to weight learning using
separate features of either modality. For example, MIA [43] achieves better results than
AFM [32], which is due to the fact that weight learning using features of any one modality
alone leads to an unbalanced bias of the fused features towards one modality, resulting
in the advantage of multimodal information not being fully exploited. Therefore, in this
study, we designed a fine fusion module based on coordinate attention mechanism, which
firstly performs preliminary feature extraction for features of different modalities, followed
by aggregation of features of different dimensions, and finally obtains the fusion weights
through the learning of the aggregated features, which achieves fine-tuning of the coarse
fusion features, thus achieving better detection accuracy. Similar studies have achieved
similar results [35].

LGEM fixes light-polluted RGB features by combining global structural information
and local detail information, which makes up for the shortcomings of existing studies in
dealing with uncontrolled light problems and significantly improves the detection accuracy
of CRLNet. The data in Table 8 show that the mAP50:95 increased by 1.5% after embedding
LGEM. To further improve the detection accuracy, this study summarizes the features of
existing studies and proposes a granularity progressive fusion module RFAM with the
powerful feature aggregation capability of the Transformer. Unlike existing attention-based
fusion modules, RFAM first uses a Transformer to perform the initial spatial aggregation,
followed by the fusion of the features using coordinate attention. Fine-tuning the data
in Table 8 shows that mAP50:95 increased by 1.52% after embedding RFAM. When the
two modules proposed in this study are embedded simultaneously, mAP50:95 increases by
6.93%, indicating that the two modules are not only effective, but also promote each other.

CRLNet achieved excellent results on the peach detection task. In future work, the
algorithm can be combined with automated mechanical equipment to achieve automated
pruning and fruit collection in the orchard. Specifically, the detection method proposed
in this study can be used to accurately locate peaches, followed by accurate automated
harvesting and pruning using a robotic arm. In the process of positioning, images are
collected by configuring an aligned RGB camera and Depth camera on the robotic arm,
followed by inputting the collected images into CRLNet to obtain the detection results, and
finally manipulating the robotic arm to move by using the detection results with the control
algorithm. In addition, the method in this paper can also be used for yield prediction
in production. There are many peach trees in the orchard, and different peach trees do
not have the same yield, so predicting the parameters before fruit ripening and assigning
the right amount of manual or automated mechanical equipment to each peach tree can
improve the operational efficiency of the orchard. Specifically, an aligned multimodal
camera can be set up next to a fruit tree to automatically collect images of a pair of peach
trees every day, followed by uploading the collected images to the server side, then using
CRLNet to detect the different fruit tree images, and finally, each detection box is then
counted to obtain the production for each fruit tree. Although this study shows strong
results on the peach detection task, the method in this study only takes into account the
uncontrolled light problem in the orchard scene, and overexposure due to heavy rain,
fog, and strong direct sunlight are common problems in the real working environment.
When these extreme environments occur, the amount of information in the RGB image is
drastically reduced, which leads to an increase in the imbalance between the information of
the two modalities and, therefore, brings about a degradation in the detection performance
of CRLNet. Subsequent research will proceed to design a reasonable image preprocessing
network to regulate the amount of information in the captured image and optimize it at the
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input side, to solve the problem of peach recognition in extreme scenarios, and to further
expand the practical value and application scenarios of CRLNet.

5. Conclusions

This study proposes a novel method for orchard peach recognition based on RGB and
depth images. CRLNet, which accommodates multimodal image inputs, was designed
by extending the state-of-the-art single-stream detector YOLOv9. To address the issue of
uncontrolled lighting conditions in orchards, the Local–Global Enhanced Module (LGEM)
was proposed, as well as filtering out interference from strong light and hollow noise—an
aspect rarely considered in previous studies. This significantly improved the final detection
accuracy. To fully utilize multimodal information, unique differential mode information
was preserved and redundant common mode information suppressed. The Rough-Fine
Fusion Module (RFAM) was embedded, which leverages cross-attention and coordinate
attention mechanisms to precisely fuse multimodal features with significant differences,
further enhancing the detection accuracy. During the experimental phase, CRLNet achieved
an mAP50 of 97.13% on the testing set, demonstrating the model’s effectiveness in peach
detection. Additionally, ablation studies confirmed the efficacy of both the LGEM and
RFAM, as well as their interaction. In the generalization experiments, CRLNet achieved
an mAP50 of 92.43% on a bagged peach dataset, proving the model’s robust generalization
capability. Comparative experiments further showed that CRLNet outperformed other
networks, effectively improving fruit recognition in orchard operations.

To further optimize the precise localization of fruits in complex scenarios, future
research will continue to explore data preprocessing techniques, such as image brightness
adjustment, to enhance the model’s robustness under uncontrolled lighting conditions.
Additionally, future work should establish a large-scale fruit dataset and employ continual
learning techniques to expand the model’s fruit detection capabilities, thereby increasing
its practical value. Implementing these strategies will significantly improve the model’s
stability and usability, providing more efficient technical support for automated pruning,
thinning, and harvesting in fruit cultivation.
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