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Abstract: Processes of water retention and movement and the hydraulic conductivity are altered in the
rhizosphere. The aim of this study was to investigate the physical-hydric properties of soil aggregates
in the rhizosphere of annual ryegrass (Lolium multiflorum) cropped in a Kandiudalfic Eutrudox, taking
into account aspects related to soil aggregate stability. Soil aggregates from rhizosphere soil (RZS)
and soil between plant rows (SBP) were used to determine soil water retention curves (SWRCs) and
saturated hydraulic conductivity (Ksat). In addition, properties related to soil aggregate stability, such
as water-dispersible clay, soil organic carbon (SOC), and microbial activity, were also assessed. The
higher microbial activity observed in the RZS was facilitated by increased SOC and microbial activity,
resulting in improved soil aggregation (less water-dispersible clay). For nearly all measured matric
potentials, RZS had a higher water content than SBP. This was attributed to the stability of aggregates,
increase in SOC content, and the root exudates, which improved soil water retention. The increase in
total porosity in RZS was associated with improved soil aggregation, which prevents deterioration of
the soil pore space and results in higher Ksat and hydraulic conductivity as a function of the effective
relative saturation in RZS compared to SBP.

Keywords: β-glucosidase; annual ryegrass; dehydrogenase; easily extractable glomalin-related soil
protein; hydraulic conductivity; Lolium multiflorum; microbial biomass carbon; soil aggregate stability;
soil water retention curve

1. Introduction

The rhizosphere soil is the zone of soil surrounding a living root that is influenced by
root activity and represents a complex plant–soil interface [1]. The dynamic nature of the
rhizosphere creates biophysical and chemical gradients that differ significantly from those
observed in the bulk soil [2–4]. Because of these differences, the rhizosphere soil has been
the subject of several studies [5–9]. However, the physical-hydric processes mediated by
the roots in the rhizosphere have received limited consideration, especially in tropical soils.

Previous studies have demonstrated that structural changes in the rhizosphere soil
can occur as a result of the rearrangement of its particles, which can modify its aggre-
gates and affect the water uptake and dynamics, gas exchange, and water content in the
rhizosphere [4,7,10,11]. Thus, processes, such as water retention and movement, and the
hydraulic conductivity property must also be altered in the rhizosphere. Understanding
soil hydraulic properties is critical for assessing environmental impacts in agricultural
systems and for better planning and management of water resources [12,13].
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A key challenge for agriculture in the 21st century is to optimize the use of water
resources [5]. Since water and nutrients must pass through the rhizosphere before being
taken up by roots, and since approximately 40% of terrestrial precipitation passes through
the rhizosphere [2,14], managing the physical-hydric properties of the rhizosphere to
enhance plant resilience to various abiotic stresses may be a solution [5,15]. To do this, it is
essential to know and understand the hydraulic properties of the soil in the rhizosphere.

Some models demonstrate the influence of the mucilage (i.e., a polymeric gel re-
leased by most plant roots) on the hydraulic properties of the rhizosphere soil [9,16–18].
However, in order to develop these models, researchers often use mucilage derived from
chia (Salvia hispanica) seeds as a proxy for natural mucilage in sandy soils. Apparently,
the presence of mucilage in soil enhances the water retention capacity and reduces the
evaporative flux [7,17,19]. Additionally, it has been observed that mucilage decreases satu-
rated hydraulic conductivity (Ksat) while increasing unsaturated hydraulic conductivity
(K) [7,17,19–21]. During drying and rewetting cycles, mucilage induces a distinct hysteretic
behavior. Specifically, the rhizosphere remains moist for a longer period during drying and
rehydrates more slowly than the bulk soil during rewetting [7,17,18,22,23].

A previous study evaluated the soil water retention in aggregates from the rhizosphere
soil of maize (Zea mays), wheat (Triticum aestivum), and barley (Hordeum vulgare) cropped in
a silty clay loam soil and reported lower water retention for aggregates from the rhizosphere
soil of barley than from the bulk soil [10]. They believed that changes in the contact angle
between water and soil and surface tension could influence changes in water retention
behavior. Nevertheless, they stressed the need for further studies to validate the effect of
root activity on the contact angle. To the best of our knowledge, currently no study has
reported the effects of roots and their rhizosphere on the physical-hydric properties of a
tropical soil.

Although particular attention has been given to the mucilage—recognized as the main
driver of changes in the physical-hydric properties of the rhizosphere soil—the exudation
of all organic compounds from the roots (i.e., root exudates) can induce changes in these
properties [6,24–26]. This exudation is associated with an increase in carbon deposition and
soil aggregation in the rhizosphere [27]. However, it depends on several factors, including
soil (e.g., soil structure, soil texture, pH, and presence of microorganisms) and plant (e.g.,
plant species and age) characteristics [2,27,28].

Root exudates are composed of amino acids and amides, phenolic acids, coumarins,
enzymes, sugars, organic acids, and others [29]. On the one hand, organic acids, which are
present in large amounts in some root exudates, may weaken the soil particles [28,30]. On
the other hand, sugars that include polysaccharides may contribute to the stabilization of
soil particles [28]. An increase in the carbon content of the rhizosphere soil of a consortium
of black oats (Avena strigosa) and vetch (Vicia sativa), which did not result in an increase
in aggregate stability was reported in an Oxisol [27]. This was likely due to the high
concentration of organic acids in the root exudates produced by vetch.

The observation of structural differences may be more challenging in highly stable soils,
such as those found in tropical regions, which typically have high levels of exchangeable
aluminum and iron oxides due to the high level of weathering, providing high structural
stability. The formation of well-developed and stable microstructure in these soils is a con-
sequence of the distribution of surface charges on kaolinite minerals and their coexistence
with oxides [31]. Nevertheless, a previous study stressed changes in soil aggregates from
the rhizosphere of annual ryegrass (Lolium multiflorum) in a tropical soil with a high degree
of weathering (Rhodic Hapludox) due to an increase in organic carbon in the rhizosphere
soil [27]. Therefore, this crop is likely an effective model for investigating the influence of
roots and their rhizosphere.

The application of in situ methods to determine soil hydraulic properties remains
challenging due to the limitations of the methodological approach, costs, and the time-
consuming nature of conducting experiments, especially in the rhizosphere soil [8,32]. Since
the rhizosphere is a few millimeters around the root, obtaining direct measurements of
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the physical-hydric properties is very difficult, even using modern technologies [15,33].
Consequently, indirect methods, which primarily employ the soil–water retention curve
approach and rely on the application of several empirical equations [34–37], can prove to
be highly informative in elucidating intricate interactions among the root system, soil, and
hydrological environment.

The hypothesis of this study is that:

(i). The aggregates from the rhizosphere (RZS) of annual ryegrass present higher organic
carbon content and microbial activity than aggregates from the soil between plant
rows (SBP) (i.e., bulk soil);

(ii). Organic carbon input and microbial activity lead to higher aggregate stability in the
RZS than in SBP;

(iii). Organic carbon input, microbial activity and aggregate stability in the RZS increase
the RZS porosity, particularly micropores;

(iv). The increase in micropores and aggregate stability, supported by the effect of organic
carbon input and microbial activity, enhances the water retention capacity in the RZS;

(v). Due to the residual effect of the mucilage, Ksat is lower in the RZS than in the SBP;
(vi). K reflects soil quality and is higher in the RZS than in the SBP.

Thus, the objective of this study is to investigate the physical-hydric properties in the
soil aggregates of the annual ryegrass rhizosphere, taking into account soil aspects related
to the soil aggregate stability such as water-dispersible clay, soil organic carbon (SOC), and
microbial activity. To achieve this objective:

(i). The SOC content and microbial parameters [microbial biomass carbon (MBC), β-
glucosidase (BG), dehydrogenase (DH), easily extractable glomalin-related soil protein
(EE-GRSP)] were determined;

(ii). The aggregate stability was assessed by readily dispersible clay (RDC);
(iii). The frequency and percentage of pores were obtained from the soil water retention

curves (SWRCs);
(iv). The water retention capacity was also obtained from the SWRCs;
(v). Ksat was determined by a constant head permeameter method;
(vi). K was derived from the water retention characteristics, with Ksat as the relative hy-

draulic conductivity, (Kr) as a function of the effective relative saturation (ω), and K
as a function of the ω.

2. Results
2.1. Soil Parameters Related to Soil Aggregation

Soil physical [readily dispersible clay (RDC)], microbiological [microbial biomass
carbon (MBC), β-glucosidase (BG), dehydrogenase (DH), easily extractable glomalin-related
soil protein (EE-GRSP)], and chemical (SOC) parameters showed superior soil conditions
for RZS compared to SBP (Table 1), indicating the positive effect of annual ryegrass on the
soil. Only DH activity did not present differences between RZS and SBP. This parameter
was not found to be correlated with other microbiological parameters (MBC and EE-GRSP)
(Figure 1). All microbiological parameters showed significant positive correlations with
SOC (r = 0.68 to 0.93) and significant negative correlations with RDC (r = −0.52 to −0.90).
Additionally, the SOC was also negatively correlated with RDC (r = −0.86).

Table 1. Readily dispersed clay (RDC), microbiological parameters (MBC, BG, DH, EE GRSP), and
soil organic carbon (SOC) for rhizosphere soil (RZS) and soil between plants (SBP).

Parameters Unit RZS SPB

RDC NTU/(g L−1) 0.41 ±0.77 b 0.82 ±1.49 a
MBC mg g−1 0.98 ±0.04 a 0.76 ±0.06 b
BG mg PNF kg−1 soil h−1 175.50 ±7.55 a 100.54 ±6.15 b
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Table 1. Cont.

Parameters Unit RZS SPB

DH µg TPF g−1 soil 24 h−1 3.27 ±0.03 a 3.14 ±0.05 a
EE-GRSP mg g−1 46.69 ±2.07 a 35.79 ±3.24 b

SOC g kg−1 42.16 ±0.86 a 35.84 ±0.60 b
RDC: readily dispersible clay; MBC: microbial biomass carbon; BG: β-glucosidase; DH: dehydrogenase; EE-GRSP:
easily extractable glomalin-related soil protein; SOC: soil organic carbon. Letters show differences between
aggregates from the rhizosphere (RZS) and aggregates from the soil between plants (SBP) at the 5% level of
significance by the t-test. Data are mean ± standard error, n = 5.
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Figure 1. Correlation matrix with the plotted significance test. Negative and positive correlations are
shown as red and blue circles, respectively. Size and color intensity of the circles are proportional to
the correlation coefficients. The values of the correlation coefficients are shown in the color intensity
bar. Crosses were added to correlations that were not considered significant at the 0.95 confidence
level. RDC: readily dispersible clay [NTU/(g L−1)]; MBC: microbial biomass carbon (mg g−1); BG:
β-glucosidase (mg PNF kg−1 soil h−1); DH: dehydrogenase (µg TPF g−1 soil 24 h−1); EE-GRSP: easily
extractable glomalin-related soil protein (mg g−1); SOC: soil organic carbon (g kg−1).

2.2. Soil Hydraulic Properties

The SWRC parameters are presented in Table 2. The values of the coefficient of
determination (R²) (greater than 0.99) and of the root mean square error (RMSE) (less than
0.01) indicate a good fit between observed and fitted data by the van Genuchten model,
for both RZS and SBP environments. Considering the 95% confidence interval, the SWRCs
differed between RZS and SBP. For the majority of the measured matric potentials (Ψm),
the RZS had higher volumetric soil water content (θ) than the SBP (Figure 2). The results
showed that θ corresponding to the field capacity (θFC) and to the permanent wilting point
(θPWP) were higher (p < 0.05) in the RZS than in the SBP. However, no significant differences
in the available water contents (θAWC) were observed between treatments (Figure 3a).

The value of the most frequent equivalent radius (rmax) for both RZS and SBP were
in the mesopore class, with a higher size in the RZS (40.98 µm) than in the SBP (32.69 µm)
(Figure 4). The class with a higher number of pores was the micropore class for both RZS
and SBP (Figure 3b). RZS had a higher (p < 0.05) porosity (0.584 ± 0.006 m3 m−3) than SPB
(0.510 ± 0.006 m3 m−3), with higher porosity in all the classes (Figure 3b).
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Table 2. Parameters obtained from Equation (2) fitted to the soil–water retention curve (SWRC) data
for rhizosphere soil (RZS) and soil between plants (SBP).

Parameters Unit RZS SPB

θs m3 m−3 0.584 ±0.0058 a 0.510 ±0.0062 b
θr m3 m−3 0.186 ±0.0023 a 0.171 ±0.0015 b
m 0.381 ±0.0021 a 0.381 ±0.0084 a
n 1.614 ±0.0054 a 1.615 ±0.0223 a
α m−1 5.081 ±0.2827 a 4.107 ±0.4106 a

R2 0.995 ±0.0007 0.995 ±0.0007
RMSE 0.010 ±0.0010 0.009 ±0.0008

θs: volumetric water content at saturation; θr: the residual soil water content; α, m and n: empirical parameters
of the model; R2: coefficient of determination; RMSE: root mean square error. Letters show differences between
aggregates from the rhizosphere (RZS) and aggregates from the soil between plants (SBP) at the 5% level of
significance by the t-test. Data are mean ± standard error, n = 3.
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n = 3.
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Figure 3. (a) Volumetric soil water content (θ) corresponding to the field capacity (θFC) and to the
permanent wilting point (θPWP), and the available water contents (θAWC) in the aggregates from the
rhizosphere soil (RZS) and aggregates from the soil between plant rows (SBP), and (b) pore size
distribution. Lowercase letters indicate differences between RZS and SBP, and uppercase letters
indicate differences between fractions of porosity for each treatment at the 5% significance level by
the t-test. Data are mean ± standard error, n = 3.
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Figure 4. Curves of radius frequency per logarithm of radius as a function of logarithm of radius for
aggregates from the rhizosphere soil (RZS) and aggregates from the soil between plant rows (SBP).

Saturated hydraulic conductivity (Ksat) was higher (p < 0.05) for SRZ (10.34 ± 1.80 mm h−1)
than for SBP (4.46 ± 0.60 mm h−1), but the relative hydraulic conductivity (Kr) as a function
of the effective relative saturation (ω) [Kr(ω)] curves showed no difference between RZS
and SBP (Figure 5a). On the other hand, considering the 95% confidence interval, the
hydraulic conductivity (K) as a function of ω [K(ω)] showed higher values for RZS than for
SBP (Figure 5b).
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Figure 5. (a) Relative hydraulic conductivity (Kr) as a function of the effective relative saturation (ω),
and (b) hydraulic conductivity (K) as a function of the effective relative saturation (ω) for aggregates
from the rhizosphere (RZS) and aggregates from the soil between plants (SBP). Data are mean ± 95%
confidence interval, n = 3.

3. Discussion

The RZS showed the highest (p < 0.05) microbial activity and mycorrhizal fungi
(BG, EE-GRSP) and the lowest RDC (i.e., the highest soil aggregation) (Table 1). The
improvement of microbial activity was mediated by the highest amount of soil organic
carbon (SOC) and microorganisms (MBC) in the RZS, which was also reflected in the
improvement of soil aggregation in the RZS (i.e., lowest RDC) (Figure 1). The same
observations for natural ecosystems were also observed for ryegrass crop: the RZS provides
a favorable environment for microbial activities due to the increased aggregate stability
and nutrient input, leading to an increase in enzyme activity and microbial biomass, thus
promoting soil carbon mineralization [38,39].

A higher RDC in the SPB than in the RZS (Figure 1) indicates the lowest stability
and structural quality of this environment. Soil aggregation is highly correlated with clay
dispersion, as flocculation of clay particles is a prerequisite for the formation of water-
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stable aggregates [40–42]. In turn, aggregate stability is modified by the root system as
demonstrated in previous works [27,43].

The cultivation of annual ryegrass is largely associated with improvements in soil
aggregation, which can be attributed to the architecture of the root system (high number of
fine roots), the high population of mycorrhizal hyphae, and the high exudation of polysac-
charides, which are known to contribute to the stabilization of soil particles [28,44–46].
Additionally, plants can exude other organic molecules from their roots, which act as
binding agents of soil particles [6,24,25].

The highest SOC content in the SRZ (Table 1) is related to the exudates released by the
roots, which represent the main carbon input to the rhizosphere, or even to the bioavailabil-
ity of the mineral-associated organic matter that can be mobilized and solubilized by low
molecular weight root exudates [45,47–49]. The increase in SOC in the SRZ (Table 1) was
reflected by the highest microbial activity in this environment, as shown by the positive
correlations between SOC and microbiological parameters (BG, DH, MBC, and EE-GRSP)
(Figure 1). On the other hand, the increase in microbial activity also reflects an increase in
SOC due to decomposition processes mediated by microorganisms, as demonstrated in
previous works [38,39].

The increase in SOC was positively correlated with the increase in the BG and DH
activity (Figure 1), as these are soil enzymes related to the carbon cycle. BG is involved in
the enzymatic degradation of cellulose, while DH is involved in microbial oxidation [50,51].
However, DH activity was the only parameter that did not differ between RZS and SPB
(Table 1). Our evaluation was carried out 176 days after sowing, a period when DH activity
cannot be stressed in the RZS. A previous study showed that the increase in DH in the RZS
occurred 75 days after sowing for different plant species due to the higher root exudation
observed during this period [52].

Compounds released by the roots are readily utilized by rhizosphere microorganisms
to facilitate essential processes such as growth and respiration [3,53]. Consequently, roots
regulate the microbial community in the rhizosphere through the exudation of various
compounds [54,55]. This regulation, in turn, enhances the microbial degradation of SOC,
which is primarily driven by the production of extracellular enzymes by microorganisms
stimulated by the presence of plants [54].

The SOC and all microbiological parameters (BG, DH, MBC, EE-GRSP) were neg-
atively correlated with RDC (Figure 1). The association of plants with microorganisms
favors a higher index of aggregate stability in the RZS in response to greater enzymatic
activity [56–58]. The increase in organic carbon in the rhizosphere, through exudation,
leads to an increase in the abundance of decomposing microorganisms, which contributes
to greater aggregate stability [59,60].

In addition, the association of roots with fungi also contributes to the soil aggregation
process [56,61]. As such, as EE-GRSP is a glycoprotein synthesized mostly by arbuscu-
lar mycorrhizal fungi [62], it is able to detect the presence of mycorrhizal hyphae and
shows a strong positive relationship with soil aggregation and enzyme activities in the
rhizosphere [56,63,64].

Regarding the soil hydraulic properties, for the majority of the measured Ψm, the RZS
had a higher θ than SBP (Figure 2), thereby demonstrating its superior water retention
capacity. The greater number of micropores in the RZS than in the SBP (Figure 3b) leads to
the highest water retention capacity in these soil aggregates, as micropores are textural pores
responsible for increased soil water retention [65]. The higher organic carbon content in this
environment (Table 1) also contributes to an increase in the water retention capacity [12,66].

It has been reported that the decomposed soil organic matter (SOM) improves the
water retention due to factors such as low bulk density, high porosity, and high specific
surface area of these composts [66]. Furthermore, SOM is the main factor influencing the
differences in soil water retention under comparable clay content or textural conditions [67],
as in the case of this study.
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It is also evident that the mucilage exuded by the roots has the capacity to absorb large
amounts of water, increasing the water retention capacity of the soil [5,9,18,68]. Even if the
assessment was not performed with active roots, the changes promoted by annual ryegrass
residues in the soil can remain in the soil for some time [41].

Although disturbed samples were used to determine SWRCs (Figure 2) and conse-
quently to assess θFC, θPWP, and θAWC (Figure 3a) and pore size distribution (Figure 3b),
recent and more advanced studies that allow in situ visualization of the root–soil interface
through 3D X-ray computed tomography analysis show that total porosity increases in the
RZS [58,69,70]. The occurrence of the highest porosity in the RZS is thought to be due to
root growth, and increases in both larger and smaller pores have been observed [10,71].
Recent studies also found that root-mediated physical and biological processes could also
increase the RZS porosity through enhancing aggregation [4,72].

Therefore, the observed increase in the SRZ porosity may be attributed to an improve-
ment in soil aggregate stability due to the best microbial activity (Table 1), as degradation
of soil structural stability can lead to the deterioration of the soil hydraulic network, i.e., the
network of soil pores [42]. These results show that the access to physical-hydric properties
with classical and indirect methodologies corroborates with the most advanced studies.

The highest θ for almost all Ψm in the RZS (Figure 2) resulted in higher (p < 0.05) θFC
and θPWP in the RZS than in the SBP (Figure 3a). Therefore, θAWC did not show differences
between treatments (Figure 3a), as the RZS and the SBP did not show differences in θ in
SWRC between Ψm −4.0 to −33.0 kPa (Figure 2). These results do not accurately reflect the
actual θAWC to the plants, as a study comparing SWRC from disturbed and undisturbed
soil samples in an area very close to the study area demonstrated that for Ψm less negative
than −10 kPa, disturbed soil had a higher θ than undisturbed soil [73]. Therefore, advances
in technologies are required to provide in situ studies to best estimate the true difference
between θAWC in the rhizosphere and bulk soil.

The α, m, and n parameters of Equation (2) (Table 2) are related to the pore size
distribution and are referred to as shape parameters [74,75]. The rmax was observed to be
higher in the RZS (40.98 µm) than in the SBP (32.69 µm). The position of the maximum
pore frequency (i.e., the position of rmax) is indicated by the α parameter [74]. However, no
significant differences (p < 0.05) were observed between the α and rmax values of the RZS
and SBP (Table 2 and Figure 4).

In a previous study, rmax values observed for disturbed soil samples were practically
the same for Oxisols of different mineralogical and textural classes [12]. Thus, the difference
observed in the present study can be attributed to the root system of the annual ryegrass.
The m and n parameters did not differ between SRZ and SBP (Table 2). These parameters are
related to pore width and size [74]. This justifies the identical sequence of porosity for both
SRZ and SBP, as well as the rmax within the same class for both of them (Figures 3b and 4).

The higher soil aggregation (i.e., lower RDC) in the SRZ than in the SBP (Table 1) leads
to higher Ksat in the SRZ (10.34 ± 1.80 mm h−1) than in the SBP (4.46 ± 0.60 mm h−1).
Determination of the fraction of water-dispersible clay by turbidimetry allows inference
of many other physical properties and processes, including soil stability and structural
quality and water percolation [76,77]. The effect of aggregate stability was found to be a
more significant factor in determining Ksat than the possible presence of mucilage in the
RZS. This is because the presence of mucilage is expected to decrease Ksat in the RZS [9,19].

As no differences were found for parameter m obtained from Equation (2) (Table 2),
Kr(ω) curves did not reveal any significant differences between RZS and SBP (Figure 5a).
On the other hand, K(ω) showed higher values for RZS than for SBP (Figure 5b), thereby
providing insight into the actual hydraulic conductivity conditions observed in these envi-
ronments to incorporate the Ksat values. As measuring unsaturated hydraulic conductivity
is difficult, Kr(ω) and K(ω) curves derive this function from the water retention character-
istics and Ksat. Thus, the superior K(ω) values observed for RZS can be attributed to the
better aggregation and porosity observed for RZS compared to SBP, as evidenced by the
lowest RDC value (Table 1) [78,79].
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In short, the results presented in this article demonstrate that root-mediated physical
(RDC), chemical (SOC) and biological (MBC, BG, DH, and EE-GRSP) parameters increase
the porosity through enhancing aggregation and favor soil water retention, Ksat and K.

4. Materials and Methods
4.1. Field Experiment and Soil Sampling

A field experiment was carried out to obtain soil aggregates directly from the rhi-
zosphere of annual ryegrass in an experimental area of 10.8 × 8.0 m2 and homogenous
elevation and slope located in Piracicaba, São Paulo, Brazil (22◦42′15.0′′ S 47◦37′23.3′′ W,
altitude 564 m) (Figure 6). The soil of the experimental area was classified as Kandiu-
dalfic Eutrudox [80,81] with a clay texture (456 g clay kg−1 soil, 161 g loam kg−1 soil and
383 g sand kg−1 soil). The climate of the region is tropical with dry winters (Aw), according
to the Köppen classification [82].
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In the area where the annual ryegrass was grown, lime was applied to the entire area in
February 2019 at a rate of 910 kg ha−1. In April 2019, the annual ryegrass (cv. BRS Ponteio)
was sown with a line spacing of 0.17 m. Two weeks after planting, potassium fertilization
was applied with potassium chloride (KCl) at a rate of 80 kg ha−1, followed by nitrogen
fertilization with urea at a rate of 50 kg ha−1. Manual weed control was performed weekly,
and in June 2019, the herbicide Heat (70 g ha−1) was applied to support weed control.

The experiment was designed as a complete randomized block design, with five
replicates and two treatments. The treatments were the rhizosphere soil (RZS) and the soil
between plant rows (SBP). At 176 days after sowing, RZS and SBP were collected from
the top-soil layer (0.00–0.10 m). Soil adhering to the roots (RZS) was carefully removed
from the roots by brushing after gently shaking the roots by hand, and the aggregates were
carefully removed by brushing [27].

For readily dispersible clay (RDC), soil organic carbon (SOC) and all microbial pa-
rameters, the five replicates were used. However, due to the volume of soil required to
determine the hydraulic properties, the samples from the five points were pooled to obtain a
composite sample. Three soil samples were then selected for each treatment (RZS and SBP).
Air-dried aggregates less than 2 mm were used for all soil determinations described below.

4.2. Soil Aspects Related to Soil Aggregation
4.2.1. Readily Dispersible Clay in Water

The readily dispersible clay (RDC) method of turbidimetry was employed to assess soil
aggregate stability [83]. This method was adopted in previous studies due to its capacity to
detect differences between RZS and SBP [27,84,85].
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Aliquots of 5 g of the air-dried soil aggregates and 125 mL of deionized water were
added to 150 mL flasks. The flasks were shaken manually (four inversions per minute) and
left to rest for 24 h. The suspension was read in a turbidimeter model 2100AN (HACH,
Loveland, CO, USA) in NTU (nephelometric turbidity units), with turbidity values being
directly proportional to the number of colloids in suspension—in this case, clay. The
residual water content in the air-dried aggregates was determined to obtain the mass of
dry aggregates. The turbidity was normalized to a concentration of 1 g L−1 to account for
the effects of varying water content in the air-dried aggregates. The normalized turbidity
was expressed in NTU/(g L−1), following Equation (1):

NT =
T

1000 ms
125

(1)

where NT is the normalized turbidity [NTU/(g L−1)], T is the turbidity (NTU), ms is the
dry soil mass (g); 125 is the volume of water used (mL), and 1000 is a correction factor to
transform mL in L.

4.2.2. Microbial Parameters

Microbial biomass carbon (MBC), the activities of two soil enzymes related to the
carbon cycle—β-glucosidase (BG) and dehydrogenase (DH)—and the easily extractable
glomalin-related soil protein (EE-GRSP), were determined immediately after soil sampling
with preserved field water content.

The MBC was extracted by an indirect fumigation–extraction method and determined
by titration [86]. The BG activity was determined using 1 g of soil following the method
proposed by Tabatabai [87]. The DH activity was determined using 5 g of soil following
the method proposed by Casida et al. [88]. EE-GRSP was extracted from the soil according
to the method of Wright and Upadhyaya [89] and quantified by the Bradford test [90].

4.2.3. Soil Organic Carbon

The soil organic carbon (SOC) was determined by the wet method by oxidation with
potassium dichromate [91].

4.3. Soil Hydraulic Properties
4.3.1. Soil–Water Retention Curve

To determine soil–water retention curves [SWRCs: volumetric soil water content (θ)
as a function of matric potential (Ψm)], the soil aggregates were conditioned in acrylic
cylinders (0.07 m diameter and 0.03 m height) with bulk densities similar to the field
conditions.

The samples were gradually saturated with deionized and de-aerated water for 24 h.
After saturation, the samples were weighed in order to determine their volumetric water
content at saturation (θs). The SWRCs were determined in Haine’s funnels (Ψm of −0.5,
−1.0, −2.0, −4.0, −6.0, and −10 kPa) and in Richards’ pressure chambers (Ψm of −30,
−100, −500, and −1500 kPa) by quantifying θ for each Ψm after hydraulic equilibrium was
reached [92].

The SWRC data were fitted to Equation (2) proposed by van Genuchten [35], consider-
ing Mualem’s restriction, where the parameter m = 1 − (1/n) [34]:

θ = θr +
(θs − θr)[

1 + (α |Ψm|)n]m (2)

where θ is the soil water content (m3 m−3), Ψm is the matric potential of water in the soil
(|kPa|), θr is the residual soil water content (corresponding to the Ψm of −150 m), θs is the
soil water content at saturation (m3 m−3), α (m−1), m and n are empirical parameters of the
model, where m and n are dimensionless.
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The permanent wilting point (θPWP) was considered as θ corresponding to the Ψm of
−1500 kPa and the field capacity (θFC) as the θ corresponding to the Ψm of −33 kPa. The
available water content (θAWC) was calculated as the difference between θFC and θPWP.

4.3.2. Pore Size Classification and Pore Size Frequency

The pore size classification and the pore size frequency were obtained from SWRCs
based on capillarity theory using the Young–Laplace equation [12,75].

The pore size classification was obtained considering micropores (pores with a radii < 15µm
or |Ψm| > 10 kPa), mesopores (pores with radii > 15 µm and <50 µm or 3 kPa < |Ψm|
< 10 kPa), and macropores (pores with a radii > 50 µm, or |Ψm| < 3 kPa) [93].

The pore size frequency was obtained by replacing |Ψm| in Equation (2) for 2 σ
ρw gr

from the capillarity theory, resulting in Equation (3):

θ = θr +
(θs − θr)[

1 +
(

R
r

)n]m (3)

where R is 2 σ
ρw g ; σ is the water surface tension (0.07194 N m−1); ρw is the water density

(1000 kg m−3); g is the acceleration of gravity (9.8 m s−2) and r is the equivalent radius (m).
Differentiating Equation (3) with respect to log(r) results in Equation (4):

dθ

dlog(r)
=

θs − θr

θs
mn(R)n r−n[1 + (R)n r−n]−m−1 (4)

The value of the most frequent equivalent radius (rmax) was obtained by Equation (5),
which is the equation resulting from the differentiation of Equation (4) with respect to log(r)
equaled to zero:

rmax =
2 σ α

ρw g

(
1
m

)− 1
n

(5)

4.3.3. Hydraulic Conductivity

Soil aggregates were placed in metal cylinders (0.053 m diameter and 0.048 m height)
as described for the acrylic cylinders used to determine SWRCs. Saturated hydraulic
conductivity (Ksat) was determined using the constant head permeameter method [92,94].
Samples were saturated with deionized and de-aerated water for 24 h. A constant water
head was then maintained on the surface of the sample using Mariotte flasks. Once the
steady-state condition was reached, the Darcy–Buckingham equation [Equation (6)] was
applied to obtain Ksat:

Ksat =
Vw L

A t (h + L)
(6)

where Vw is the volume of water (mm3) collected during time, t (h); A is the cross-sectional
area of the sample (mm2), L is the length of the sample (mm), h is the constant water head
at the top of the sample (mm).

To obtain the unsaturated hydraulic conductivity (K) from the water retention char-
acteristics and Ksat, the relative hydraulic conductivity (Kr) as a function of the effective
relative saturation (ω) was calculated by Equation (7) resulting from the van Genuchten
model [35] based on the Mualem model [34]:

Kr = ωl
[
1 −

(
1 − ω

1
m

)m]2
(7)

where l is an empirical parameter estimated by Mualem [34] with an approximate gener-
alized value of 0.5 for most soils, m is one of the parameters of Equation (1), and ω is the
effective relative saturation defined as (θ − θr)/(θs − θr).
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Then, the hydraulic conductivity (K) as a function of ω, the K(ω) function, was
estimated by the product Ksat × Kr(ω).

4.4. Data Analysis

The data from SWRCs were fitted using RETC software version 1.0 [95]. Comparisons
of SWRC, Kr(ω), and K(ω) curves between the treatments (RZS and BPS) were performed
using a 95% confidence interval. If there was no overlap between the upper and lower limits
of the confidence interval, a significant difference was considered [96]. The effectiveness of
the fitted data of SWRCs was evaluated by the coefficient of determination (R2) and the
root mean square error (RMSE).

The R software version 4.2.3 was used for statistical procedures [97]. To compare the
differences between treatments for the other soil properties, the means were compared
by t-test, with a significance level of 0.05. In addition, a Pearson correlation was used to
observe the relationship between them. The results and their interrelationships were used
to explain the observed phenomena related to the physical-hydric properties.

5. Conclusions

Higher carbon content and microbial activity were observed in the RZS than in the
SBP. This is likely due to the high release of polysaccharide-rich exudates, which act as
soil-binding agents, as previously described by other authors [28,46]. The improvement in
SOC and microbial activity in the RZS increases aggregate stability (i.e., decreases the RDC)
and the percentage of pores of all classes in this environment. However, the rmax was not
significantly affected. Nevertheless, the increase in micropores, SOC, and aggregate stability
leads to higher soil water retention capacity in the RZS than in the SBP. The influence of
root exudates probably contributes to the improvement of soil water retention capacity;
however, further studies are needed to elucidate their influence in situ. Additionally, the
effect of mucilage was not observed in the Ksat, where the effect of soil aggregate structure
prevailed, resulting in a higher Ksat in the RZS than in the SBP. K(ω) also reflected the
aggregation and porosity and stressed the higher soil physical quality in the RZS than
in SBP.

The use of disturbed soil sampling and the absence of activity comprise the main
limitations of this study. Although the indirect methods considered have provided relevant
insights into how roots modulate the soil aggregates in their rhizosphere and their effect on
physical-hydric properties, the development of more advanced and economically accessible
techniques is needed to investigate in situ differences between RZS and SBP, considering
the effect of active roots and their exudates.
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