The Influence of Physical Fields (Magnetic and Electric) and LASER Exposure on the Composition and Bioactivity of Cinnamon Bark, Patchouli, and Geranium Essential Oils
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of the Essential Oils
2.1.1. Cinnamon Bark (Cinnamomum zeylanicum Blume) Essential Oils
2.1.2. The Patchouli (Pogostemon cablin (Blanco) Benth.) Essential Oils
2.1.3. The Geranium (Pelargonium graveolens L’Hér) Essential Oils
2.2. Antimicrobial Activity of the Essential Oils
2.2.1. Antimicrobial Activity of the Cinnamon Bark (Cinnamomum zeylanicum Blume) Essential Oils
2.2.2. Antimicrobial Activity of Patchouli (Pogostemon cablin (Blanco) Benth.) Essential Oils
2.2.3. Antimicrobial Activity of Geranium (Pelargonium graveolens L’Hér) Essential Oils
2.3. Antioxidant Property of the Essential Oils
3. Discussion
4. Materials and Methods
4.1. Selection of Essential Oils
4.2. Applied Treatments
4.2.1. Exposure to a Uniform Magnetic Field
4.2.2. Exposure to a Uniform Electric Field
4.2.3. Exposure to Laser Irradiation
4.3. GC-MS Analysis
4.4. Antibacterial Activity
4.4.1. Preparation of Microbial Strains
4.4.2. Assessment of Minimum Inhibitory Concentration (MIC)
4.4.3. Assessment of the Minimum Bactericidal Concentration (MBC)
4.4.4. Statistical Analysis for Microbiological Activity
4.5. Determination of Antioxidant Activity
4.5.1. Assay for Radical Scavenging with DPPH
4.5.2. Assay for Radical Scavenging with ABTS+
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of Essential Oils in Food Safety: Antimicrobial and Antioxidant Applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Cole, L.W. Exploring Essential Oils; Little Goat, LLC: Highland, UT, USA, 2017; pp. 33–45. [Google Scholar]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dah-Nouvlessounon, D.; Chokki, M.; Agossou, E.A.; Houédanou, J.B.; Nounagnon, M.; Sina, H.; Vulturar, R.; Heghes, S.C.; Cozma, A.; Mavoungou, J.F.; et al. Polyphenol Analysis via LC-MS-ESI and Potent Antioxidant, Anti-Inflammatory, and Antimicrobial Activities of Jatropha Multifida L. Extracts Used in Benin Pharmacopoeia. Life 2023, 13, 1898. [Google Scholar] [CrossRef]
- Franchomme, P.; Roger, J.; Pénoël, D. L’aromathérapie Exactement—Encyclopédie de L’utilisation Thérapeutique des Huiles Essentielles; Fondements, Démonstration, Illustration et Applications d’une Science Médicale Naturelle: Roger Jollois, France, 2001. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Pezantes-Orellana, C.; German Bermúdez, F.; Matías De la Cruz, C.; Montalvo, J.L.; Orellana-Manzano, A. Essential Oils: A Systematic Review on Revolutionizing Health, Nutrition, and Omics for Optimal Well-Being. Front. Med. 2024, 11, 1337785. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Islam, M.T.; Jayasena, V.; Sharma, B.; Sharma, S.; Sharma, P.; Kuča, K.; Bhardwaj, P. Review on Essential Oils, Chemical Composition, Extraction, and Utilization of Some Conifers in Northwestern Himalayas. Phytother. Res. 2020, 34, 2889–2910. [Google Scholar] [CrossRef] [PubMed]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef] [PubMed]
- Fimbres-García, J.O.; Flores-Sauceda, M.; Othon-Díaz, E.D.; García-Galaz, A.; Tapia-Rodríguez, M.R.; Silva-Espinoza, B.A.; Ayala-Zavala, J.F. Facing Resistant Bacteria with Plant Essential Oils: Reviewing the Oregano Case. Antibiotics 2022, 11, 1777. [Google Scholar] [CrossRef] [PubMed]
- Iseppi, R.; Mariani, M.; Condò, C.; Sabia, C.; Messi, P. Essential Oils: A Natural Weapon against Antibiotic-Resistant Bacteria Responsible for Nosocomial Infections. Antibiotics 2021, 10, 417. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef]
- Valdivieso-Ugarte, M.; Gomez-Llorente, C.; Plaza-Díaz, J.; Gil, Á. Antimicrobial, Antioxidant, and Immunomodulatory Properties of Essential Oils: A Systematic Review. Nutrients 2019, 11, 2786. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 23 May 2024).
- Mehdizadeh, T.; Hashemzadeh, M.; Nazarizadeh, A.; Neyriz-Naghadehi, M.; Tat, M.; Ghalavand, M.; Dorostkar, R. Chemical Composition and Antibacterial Properties of Ocimum Basilicum, Salvia Officinalis and Trachyspermum Ammi Essential Oils Alone and in Combination with Nisin. Res. J. Pharmacogn. 2016, 3, 51–58. [Google Scholar]
- Nardoni, S.; Giovanelli, S.; Pistelli, L.; Mugnaini, L.; Profili, G.; Pisseri, F.; Mancianti, F. In Vitro Activity of Twenty Commercially Available, Plant-Derived Essential Oils against Selected Dermatophyte Species. Nat. Prod. Commun. 2015, 10, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Pasca, C.; Mǎrghitas, L.; Dezmirean, D.; Bobis, O.; Bonta, V.; Chirilǎ, F.; Matei, I.; Fit, N. Medicinal Plants Based Products Tested on Pathogens Isolated from Mastitis Milk. Molecules 2017, 22, 1473. [Google Scholar] [CrossRef]
- Mocan, A.; Diuzheva, A.; Bădărău, S.; Moldovan, C.; Andruch, V.; Carradori, S.; Campestre, C.; Tartaglia, A.; De Simone, M.; Vodnar, D.; et al. Liquid Phase and Microwave-Assisted Extractions for Multicomponent Phenolic Pattern Determination of Five Romanian Galium Species Coupled with Bioassays. Molecules 2019, 24, 1226. [Google Scholar] [CrossRef]
- Hagr, T.E.; Adam, I. Antibacterial Evaluation and GC-MS Analysis of the Essential Oil from Botanically Certified Oleo Gum Resin of Boswellia Sacra (Sudanese Luban). Sumerianz J. Sci. Res. 2019, 2, 191–196. [Google Scholar]
- Radu, C.-M.; Radu, C.C.; Bochiș, S.-A.; Arbănași, E.M.; Lucan, A.I.; Murvai, V.R.; Zaha, D.C. Revisiting the Therapeutic Effects of Essential Oils on the Oral Microbiome. Pharmacy 2023, 11, 33. [Google Scholar] [CrossRef]
- Lazar, V.; Holban, A.M.; Curutiu, C.; Ditu, L.M. Modulation of Gut Microbiota by Essential Oils and Inorganic Nanoparticles: Impact in Nutrition and Health. Front. Nutr. 2022, 9, 920413. [Google Scholar] [CrossRef] [PubMed]
- Ruzauskas, M.; Bartkiene, E.; Stankevicius, A.; Bernatoniene, J.; Zadeike, D.; Lele, V.; Starkute, V.; Zavistanaviciute, P.; Grigas, J.; Zokaityte, E.; et al. The Influence of Essential Oils on Gut Microbial Profiles in Pigs. Animals 2020, 10, 1734. [Google Scholar] [CrossRef]
- Essential Oils Desk Reference, 7th ed.; Life Sciences Publishing: Lehi, UT, USA, 2016; pp. 3–33.
- Pop, M.F.; Inoan, S.L.; Dinu, A.I.; Criveanu, H.R. The Influence of Magnetic Field on Silybum marianum Seed Germination. Agric.-Rev. Știință Pract. Agric. 2015, 93, 60–63. [Google Scholar]
- Bernard, G.C.; Lockett, A.; Asundi, S.; Mitchell, I.; Egnin, M.; Ritte, I.; Okoma, P.M.; Idehen, O. Magnetic Fields in Plant Development: Unravelling the Complex Interplay from Phenotypic Responses to Molecular Dynamics. Am. J. Biomed. Sci. Res. 2024, 21, 376–378. [Google Scholar] [CrossRef]
- Li, Z.G.; Gou, H.Q.; Li, R.Q. Electrical Stimulation Boosts Seed Germination, Seedling Growth, and Thermotolerance Improvement in Maize (Zea mays L.). Plant Signal. Behav. 2019, 14, 1681101. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wang, L.; Ke, H.; Zhou, W.; Jiang, C.; Jiang, M.; Zhan, F.; Li, T. Effects, Physiological Response and Mechanism of Plant under Electric Field Application. Sci. Hortic. 2024, 329, 112992. [Google Scholar] [CrossRef]
- Stoian, V.A.; Gâdea, Ș.; Vidican, R.; Vârban, D.; Balint, C.; Vâtcă, A.; Rotaru, A.; Stoian, V.; Vâtcă, S. Dynamics of the Ocimum Basilicum L. Germination under Seed Priming Assessed by an Updated BBCH Scale. Agronomy 2022, 12, 2694. [Google Scholar] [CrossRef]
- Możdżeń, K.; Barabasz-Krasny, B.; Zandi, P. Effect of Long-Term of He-Ne Laser Light Irradiation on Selected Physiological Processes of Triticale. Plants 2020, 9, 1703. [Google Scholar] [CrossRef]
- Perveen, R.; Jamil, Y.; Ashraf, M.; Ali, Q.; Iqbal, M.; Ahmad, M.R. He-Ne Laser-Induced Improvement in Biochemical, Physiological, Growth and Yield Characteristics in Sunflower (Helianthus Annuus L.). Photochem. Photobiol. 2011, 87, 1453–1463. [Google Scholar] [CrossRef]
- Ghanati, F.; Abdolmaleki, P.; Vaezzadeh, M.; Rajabbeigi, E.; Yazdani, M. Application of Magnetic Field and Iron in Order to Change Medicinal Products of Ocimum Basilicum. Environmentalist 2007, 27, 429–434. [Google Scholar] [CrossRef]
- Kholy, S.A.E.; Mazrou, M.M.; Afify, M.M.; Said, N.A.M.E.; Zedan, H.M.Z. Effect of Irrigation With Magnetic Water on Vegetative Growth, Chemical Contents and Essential Oil in Rosemary Grown in Different Levels of Salinity. Menoufia J. Plant Prod. 2020, 5, 143–157. [Google Scholar] [CrossRef]
- Zakeri, A.; Khavari-Nejad, R.A.; Saadatmand, S.; Kootanaee, F.N.; Abbaszadeh, R. Effects of Static Magnetic Field on Growth, Some Biochemical and Antioxidant System in Lemon Balm (Melissa Officinalis L.) Seedlings. Acta Sci. Pol. Hortorum Cultus 2021, 20, 71–80. [Google Scholar] [CrossRef]
- Mansourkhaki, M.; Hassanpour, H.; Hekmati, M. Effect of Static Magnetic Field on Growth Factors, Antioxidant Activity and Anatomical Responses of Silybum Marianum Seedlings. J. Plant Process Funct. 2019, 7, 9–15. [Google Scholar]
- Azimian, F.; Roshandel, P. Magnetic Field Effects on Total Phenolic Content and Antioxidant Activity in Artemisia Sieberi under Salinity. Indian J. Plant Physiol. 2015, 20, 264–270. [Google Scholar] [CrossRef]
- Hadri, A.M.; Benmimoun, Y.; Miloudi, K.; Bouhadda, Y.; Elsayed, S.T.; Hamimed, A. Effect of Pulsed Electric Field Treatment on the Extraction of Essential Oil From Lavender (Lavandula Angustifolia Mill.). Int. J. Biol. Biotech. 2023, 20, 37–46. [Google Scholar]
- Miloudi, K.; Hamimed, A.; Benmimoun, Y.; Bellebna, Y.; Taibi, A.; Tilmatine, A. Intensification of Essential Oil Extraction of the Marrubium Vulgare Using Pulsed Electric Field. J. Essent. Oil-Bearing Plants 2018, 21, 811–824. [Google Scholar] [CrossRef]
- Mahmood, S.; Afzal, B.; Perveen, S.; Wahid, A.; Azeem, M.; Iqbal, N. He-Ne Laser Seed Treatment Improves the Nutraceutical Metabolic Pool of Sunflowers and Provides Better Tolerance Against Water Deficit. Front. Plant Sci. 2021, 12, 579429. [Google Scholar] [CrossRef] [PubMed]
- Okla, M.K.; Abdel-Mawgoud, M.; Alamri, S.A.; Abbas, Z.K.; Al-Qahtani, W.H.; Al-Qahtani, S.M.; Al-Harbi, N.A.; Hassan, A.H.A.; Selim, S.; Alruhaili, M.H.; et al. Developmental Stages-Specific Response of Anise Plants to Laser-Induced Growth, Nutrients Accumulation, and Essential Oil Metabolism. Plants 2021, 10, 2591. [Google Scholar] [CrossRef]
- Okla, M.K.; El-Tayeb, M.A.; Qahtan, A.A.; Abdel-Maksoud, M.A.; Elbadawi, Y.B.; Alaskary, M.K.; Balkhyour, M.A.; Hassan, A.H.A.; Abdelgawad, H. Laser Light Treatment of Seeds for Improving the Biomass Photosynthesis, Chemical Composition and Biological Activities of Lemongrass Sprouts. Agronomy 2021, 11, 478. [Google Scholar] [CrossRef]
- Almuhayawi, M.S.; Hassan, A.H.A.; Abdel-Mawgoud, M.; Khamis, G.; Selim, S.; Al Jaouni, S.K.; AbdElgawad, H. Laser Light as a Promising Approach to Improve the Nutritional Value, Antioxidant Capacity and Anti-Inflammatory Activity of Flavonoid-Rich Buckwheat Sprouts. Food Chem. 2021, 345, 128788. [Google Scholar] [CrossRef]
- Rajabbeigi, E. Change of Essential Oil Composition of Parsley in Response to Static Magnetic Field. Int. J. Adv. Biol. Biomed. Res. 2022, 10, 271–276. [Google Scholar]
- Lee, S.; Oh, M.M. Electric Stimulation Promotes Growth, Mineral Uptake, and Antioxidant Accumulation in Kale (Brassica Oleracea Var. Acephala). Bioelectrochemistry 2021, 138, 107727. [Google Scholar] [CrossRef]
- Nadimi, M.; Loewen, G.; Bhowmik, P.; Paliwal, J. Effect of Laser Biostimulation on Germination of Sub-Optimally Stored Flaxseeds (Linum usitatissimum). Sustainability 2022, 14, 12183. [Google Scholar] [CrossRef]
- Miyakoshi, J. Effects of Static Magnetic Fields at the Cellular Level. Prog. Biophys. Mol. Biol. 2005, 87, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Belyavskaya, N.A. Biological Effects Due to Weak Magnetic Field on Plants. Adv. Sp. Res. 2004, 34, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- Becerril, R.; Nerín, C.; Gómez-Lus, R. Evaluation of Bacterial Resistance to Essential Oils and Antibiotics after Exposure to Oregano and Cinnamon Essential Oils. Foodborne Pathog. Dis. 2012, 9, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Saki, M.; Seyed-Mohammadi, S.; Montazeri, E.A.; Siahpoosh, A.; Moosavian, M.; Latifi, S.M. In Vitro Antibacterial Properties of Cinnamomum Zeylanicum Essential Oil against Clinical Extensively Drug-Resistant Bacteria. Eur. J. Integr. Med. 2020, 37, 101146. [Google Scholar] [CrossRef]
- Kallel, I.; Hadrich, B.; Gargouri, B.; Chaabane, A.; Lassoued, S.; Gdoura, R.; Bayoudh, A.; Ben Messaoud, E. Optimization of Cinnamon (Cinnamomum Zeylanicum Blume) Essential Oil Extraction: Evaluation of Antioxidant and Antiproliferative Effects. Evidence-Based Complement. Altern. Med. 2019, 2019, 6498347. [Google Scholar] [CrossRef] [PubMed]
- Sundarajan, S.; Abdurahman, N.H. Chemical Compound Characterizations of Patchouli Leaf Extract via GC-MS, LC-QTOF-MS, FTIR, and 1H NMR. Int. J. Eng. Res. Technol. 2019, 8, 1054–1059. [Google Scholar]
- Pandey, S.K.; Gogoi, R.; Bhandari, S.; Sarma, N.; Begum, T.; Munda, S.; Lal, M. A Comparative Study on Chemical Composition, Pharmacological Potential and Toxicity of Pogostemon Cablin Linn., (Patchouli) Flower and Leaf Essential Oil. J. Essent. Oil-Bearing Plants 2022, 25, 160–179. [Google Scholar] [CrossRef]
- Galovičová, L.; Borotová, P.; Valková, V.; Ďúranová, H.; Štefániková, J.; Vukovic, N.L.; Vukic, M.; Kačániová, M. Biological Activity of Pogostemon Cablin Essential Oil and Its Potential Use for Food Preservation. Agronomy 2022, 12, 387. [Google Scholar] [CrossRef]
- Dumlupinar, B.; Şeker Karatoprak, G.; Demirci, B.; Küpeli Akkol, E.; Sobarzo-Sánchez, E. Antioxidant Activity and Chemical Composition of Geranium. Plants 2023, 12, 3080. [Google Scholar] [CrossRef]
- Abouelatta, A.M.; Keratum, A.Y.; Ahmed, S.I.; El-Zun, H.M. Repellent, Contact and Fumigant Activities of Geranium (Pelargonium Graveolens L.’Hér) Essential Oils against Tribolium Castaneum (Herbst) and Rhyzopertha Dominica (F.). Int. J. Trop. Insect Sci. 2020, 40, 1021–1030. [Google Scholar] [CrossRef]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential Oils Used in Aromatherapy: A Systemic Review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef]
- Vârban, D.; Zăhan, M.; Pop, C.R.; Socaci, S.; Ștefan, R.; Crișan, I.; Bota, L.E.; Miclea, I.; Muscă, A.S.; Deac, A.M.; et al. Physicochemical Characterization and Prospecting Biological Activity of Some Authentic Transylvanian Essential Oils: Lavender, Sage and Basil. Metabolites 2022, 12, 962. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research: Essential Oils Market Size & Trends. Available online: https://www.grandviewresearch.com/industry-analysis/essential-oils-market, (accessed on 28 May 2024).
- Osaili, T.M.; Dhanasekaran, D.K.; Zeb, F.; Faris, M.A.I.E.; Naja, F.; Radwan, H.; Ismail, L.C.; Hasan, H.; Hashim, M.; Obaid, R.S. A Status Review on Health-Promoting Properties and Global Regulation of Essential Oils. Molecules 2023, 28, 1809. [Google Scholar] [CrossRef] [PubMed]
- Do Nascimento, L.D.; de Moraes, A.A.B.; da Costa, K.S.; Galúcio, J.M.P.; Taube, P.S.; Costa, C.M.L.; Cruz, J.N.; Andrade, E.H.d.A.; de Faria, L.J.G. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Boren, K.; Crown, A.A.; Carlson, R. Multidrug and Pan-Antibiotic Resistance—The Role of Antimicrobial and Synergistic Essential Oils: A Review. Nat. Prod. Commun. 2020, 15, 1–19. [Google Scholar] [CrossRef]
- Brah, A.S.; Armah, F.A.; Obuah, C.; Akwetey, S.A.; Adokoh, C.K. Toxicity and Therapeutic Applications of Citrus Essential Oils (CEOs): A Review. Int. J. Food Prop. 2023, 26, 301–326. [Google Scholar] [CrossRef]
- Paul, S.S.; Rama Rao, S.V.; Chatterjee, R.N.; Raju, M.V.L.N.; Mahato, A.K.; Prakash, B.; Yadav, S.P.; Kannan, A.; Reddy, G.N.; Kumar, V.; et al. An Immobilized Form of a Blend of Essential Oils Improves the Density of Beneficial Bacteria, in Addition to Suppressing Pathogens in the Gut and Also Improves the Performance of Chicken Breeding. Microorganisms 2023, 11, 1960. [Google Scholar] [CrossRef]
- Hall, H.N.; Wilkinson, D.J.; Le Bon, M. Oregano Essential Oil Improves Piglet Health and Performance through Maternal Feeding and Is Associated with Changes in the Gut Microbiota. Anim. Microbiome 2021, 3, 2. [Google Scholar] [CrossRef]
- Li, A.; Ni, W.; Zhang, Q.; Li, Y.; Zhang, X.; Wu, H.; Du, P.; Hou, J.; Zhang, Y. Effect of Cinnamon Essential Oil on Gut Microbiota in the Mouse Model of Dextran Sodium Sulfate-Induced Colitis. Microbiol. Immunol. 2020, 64, 23–32. [Google Scholar] [CrossRef]
- Leong, W.; Huang, G.; Khan, I.; Xia, W.; Li, Y.; Liu, Y.; Li, X.; Han, R.; Su, Z.; Hsiao, W.L.W. Patchouli Essential Oil and Its Derived Compounds Revealed Prebiotic-like Effects in C57BL/6J Mice. Front. Pharmacol. 2019, 10, 1229. [Google Scholar] [CrossRef]
- Thapa, D.; Losa, R.; Zweifel, B.; John Wallace, R. Sensitivity of Pathogenic and Commensal Bacteria from the Human Colon to Essential Oils. Microbiology 2012, 158, 2870–2877. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Li, R.; Tao, T.; Zhong, R.; Du, H.; Liao, Z.; Sun, Z.; Xu, C. Therapeutic Potential of Litsea Cubeba Essential Oil in Modulating Inflammation and the Gut Microbiome. Front. Microbiol. 2023, 14, 1233934. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Luo, X.; Wu, L.; Lv, Y.; Hu, Z.; Yu, D.; Liu, B. Plant Essential Oils Improve Growth Performance by Increasing Antioxidative Capacity, Enhancing Intestinal Barrier Function, and Modulating Gut Microbiota in Muscovy Ducks. Poult. Sci. 2023, 102, 102813. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Quintero, M.J.; Delgado, J.; Medina-Vera, D.; Becerra-Muñoz, V.M.; Queipo-Ortuño, M.I.; Estévez, M.; Plaza-Andrades, I.; Rodríguez-Capitán, J.; Sánchez, P.L.; Crespo-Leiro, M.G.; et al. Beneficial Effects of Essential Oils from the Mediterranean Diet on Gut Microbiota and Their Metabolites in Ischemic Heart Disease and Type-2 Diabetes Mellitus. Nutrients 2022, 14, 4650. [Google Scholar] [CrossRef]
- Unusan, N. Essential Oils and Microbiota: Implications for Diet and Weight Control. Trends Food Sci. Technol. 2020, 104, 60–71. [Google Scholar] [CrossRef]
- Okla, M.K.; Rubnawaz, S.; Dawoud, T.M.; Al-Amri, S.; El-Tayeb, M.A.; Abdel-Maksoud, M.A.; Akhtar, N.; Zrig, A.; AbdElgayed, G.; AbdElgawad, H. Laser Light Treatment Improves the Mineral Composition, Essential Oil Production and Antimicrobial Activity of Mycorrhizal Treated Pelargonium Graveolens. Molecules 2022, 27, 1752. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Markowska-Szczupak, A.; Wesołowska, A.; Borowski, T.; Sołoducha, D.; Paszkiewicz, O.; Kordas, M.; Rakoczy, R. Effect of Pine Essential Oil and Rotating Magnetic Field on Antimicrobial Performance. Sci. Rep. 2022, 12, 9712. [Google Scholar] [CrossRef] [PubMed]
- Cosa, S.; Khan, F.; Korea, S.; El-tarabily, K.A. Cinnamon Essential Oil and Its Emulsion as Efficient Antibiofilm Agents to Combat Acinetobacter Baumannii. Front. Microbiol. 2022, 13, 989667. [Google Scholar] [CrossRef]
- Kumar, S.; Kumari, R.; Mishra, S. Pharmacological Properties and Their Medicinal Uses of Cinnamomum: A Review. J. Pharm. Pharmacol. 2019, 71, 1735–1761. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Shi, Y.; Pan, X.; Lu, Y.; Cao, P. Antibacterial Effects of Cinnamon (Cinnamomum Zeylanicum) Bark Essential Oil on Porphyromonas Gingivalis. Microb. Pathog. 2018, 116, 26–32. [Google Scholar] [CrossRef]
- Coșeriu, R.L.; Vintilă, C.; Pribac, M.; Mare, A.D.; Ciurea, C.N.; Togănel, R.O.; Cighir, A.; Simion, A.; Man, A. Antibacterial Effect of 16 Essential Oils and Modulation of mex Efflux Pumps Gene Expression on Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates: Is Cinnamon a Good Fighter? Antibiotics 2023, 12, 163. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alagawany, M.; Abdel-Moneim, A.E.; Mohammed, N.G.; Khafaga, A.F.; Bin-Jumah, M.; Othman, S.I.; Allam, A.A.; Elnesr, S.S. Cinnamon (Cinnamomum zeylanicum) Oil as a Potential Alternative to Antibiotics in Poultry. Antibiotics 2020, 9, 210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Srivastava, S.; Lal, R.K.; Yadav, K.; Pant, Y.; Bawitlung, L.; Kumar, P.; Mishra, A.; Gupta, P.; Pal, A.; Rout, P.K.; et al. Chemical Composition of Phenylpropanoid Rich Chemotypes of Ocimum Basilicum L. and Their Antimicrobial Activities. Ind. Crop. Prod. 2022, 183, 114978. [Google Scholar] [CrossRef]
- Christian, E.J. Plant Extracted Essential Oils as a Contact Fungicide Seed Treatment for Organic Corn; Iowa State University: Ames, Iowa, 2007; Volume 73, p. 6. [Google Scholar] [CrossRef]
- El Amrani, S.; El Ouali Lalami, A.; Ez Zoubi, Y.; Moukhafi, K.; Bouslamti, R.; Lairini, S. Evaluation of Antibacterial and Antioxidant Effects of Cinnamon and Clove Essential Oils from Madagascar. Mater. Today Proc. 2019, 13, 762–770. [Google Scholar] [CrossRef]
- Vasconcelos, N.G.; Croda, J.; Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents. Microb Path 2018, 120, 198–203. [Google Scholar] [CrossRef]
- Wendakoon, C.N.; Sakaguchi, M. Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spices. J. Food Prot. 1995, 58, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evidence-Based Complement. Altern. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef]
- Clemente, I.; Aznar, M.; Silva, F.; Nerín, C. Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innov Food Sci Emerg. Technol 2016, 36, 26–33. [Google Scholar] [CrossRef]
- El Atki, Y.; Aouam, I.; Taroq, A.; El Kamari, F.; Timinouni, M.; Lyoussi, B.; Abdellaoui, A. Antibacterial Effect of Combination of Cinnamon Essential Oil and Thymol, Carvacrol, Eugenol, or Geraniol. J. Rep. Pharm. Sci. 2020, 9, 104–109. [Google Scholar] [CrossRef]
- Elcocks, E.R.; Spencer-Phillips, P.T.N.; Adukwu, E.C. Rapid Bactericidal Effect of Cinnamon Bark Essential Oil against Pseudomonas aeruginosa. J. Appl. Microbiol. 2020, 128, 1025–1037. [Google Scholar] [CrossRef]
- Alibi, S.; Ben Selma, W.; Ramos-Vivas, J.; Smach, M.A.; Touati, R.; Boukadida, J.; Navas, J.; Ben Mansour, H. Anti-Oxidant, Antibacterial, Anti-Biofilm, and Anti-Quorum Sensing Activities of Four Essential Oils against Multidrug-Resistant Bacterial Clinical Isolates. Curr. Res. Transl. Med. 2020, 68, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Raut, J.S.; Karuppayil, S.M. A Status Review on the Medicinal Properties of Essential Oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Bouhdid, S.; Abrini, J.; Amensour, M.; Zhiri, A.; Espuny, M.J.; Manresa, A. Functional and Ultrastructural Changes in Pseudomonas aeruginosa and Staphylococcus aureus Cells Induced by Cinnamomum verum Essential Oil. J. Appl. Microbiol. 2010, 109, 1139–1149. [Google Scholar] [CrossRef]
- Fatima, S.; Farzeen, I.; Ashraf, A.; Aslam, B.; Ijaz, M.U.; Hayat, S.; Sarfraz, M.H.; Zafar, S.; Zafar, N.; Unuofin, J.O.; et al. A Comprehensive Review on Pharmacological Activities of Pachypodol: A Bioactive Compound of an Aromatic Medicinal Plant Pogostemon Cablin Benth. Molecules 2023, 28, 3469. [Google Scholar] [CrossRef] [PubMed]
- van Beek, T.A.; Joulain, D. The Essential Oil of Patchouli, Pogostemon Cablin: A Review. Flavour Fragr. J. 2018, 33, 6–51. [Google Scholar] [CrossRef]
- Muhammad, S.; H. P. S., A.K.; Abd Hamid, S.; Danish, M.; Marwan, M.; Yunardi, Y.; Abdullah, C.K.; Faisal, M.; Yahya, E.B. Characterization of Bioactive Compounds from Patchouli Extracted via Supercritical Carbon Dioxide (SC-CO2) Extraction. Molecules 2022, 27, 6025. [Google Scholar] [CrossRef]
- Han, X.; Beaumont, C.; Stevens, N. Chemical Composition Analysis and in Vitro Biological Activities of Ten Essential Oils in Human Skin Cells. Biochim. Open 2017, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mansuri, A.; Lokhande, K.; Kore, S.; Gaikwad, S.; Nawani, N.; Swamy, K.V.; Junnarkar, M.; Pawar, S. Antioxidant, Anti-Quorum Sensing, Biofilm Inhibitory Activities and Chemical Composition of Patchouli Essential Oil: In Vitro and in Silico Approach. J. Biomol. Struct. Dyn. 2022, 40, 154–165. [Google Scholar] [CrossRef]
- Adhavan, P.; Kaur, G.; Princy, A.; Murugan, R. Essential Oil Nanoemulsions of Wild Patchouli Attenuate Multi-Drug Resistant Gram-Positive, Gram-Negative and Candida Albicans. Ind. Crop. Prod. 2017, 100, 106–116. [Google Scholar] [CrossRef]
- Junren, C.; Xiaofang, X.; Mengting, L.; Qiuyun, X.; Gangmin, L.; Huiqiong, Z.; Guanru, C.; Xin, X.; Yanpeng, Y.; Fu, P.; et al. Pharmacological Activities and Mechanisms of Action of Pogostemon Cablin Benth: A Review. Chin. Med. 2021, 16, 5. [Google Scholar] [CrossRef]
- Dechayont, B.; Ruamdee, P.; Poonnaimuang, S.; Mokmued, K.; Chunthorng-Orn, J. Antioxidant and Antimicrobial Activities of Pogostemon Cablin (Blanco) Benth. J. Bot. 2017, 2017, 8310275. [Google Scholar] [CrossRef]
- Senthil Kumar, K.J.; Vani, M.G.; Wang, C.S.; Chen, C.C.; Chen, Y.C.; Lu, L.P.; Huang, C.H.; Lai, C.S.; Wang, S.Y. Geranium and Lemon Essential Oils and Their Active Compounds Downregulate Angiotensin-Converting Enzyme 2 (ACE2), a SARS-CoV-2 Spike Receptor-Binding Domain, in Epithelial Cells. Plants 2020, 9, 770. [Google Scholar] [CrossRef]
- Cebi, N. Chemical Fingerprinting of the Geranium (Pelargonium Graveolens) Essential Oil by Using FTIR, Raman and GC-MS Techniques. Eur. J. Sci. Technol. 2021, 25, 810–814. [Google Scholar] [CrossRef]
- Szutt, A.; Dołhańczuk-Sródka, A.; Sporek, M. Evaluation of Chemical Composition of Essential Oils Derived from Different Pelargonium Species Leaves. Ecol. Chem. Eng. S 2019, 26, 807–816. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Glowacka, A.; Kowalczyk, E.; Wiktorowska-Owczarek, A.; Jóźwiak-Bębenista, M.; Łysakowska, M. The Biological Activities of Cinnamon, Geranium and Lavender Essential Oils. Molecules 2014, 19, 20929–20940. [Google Scholar] [CrossRef] [PubMed]
- Džamić, A.M.; Soković, M.D.; Ristić, M.S.; Grujić, S.M.; Mileski, K.S.; Marin, P.D. Chemical Composition, Antifungal and Antioxidant Activity of Pelargonium Graveolens Essential Oil. J. Appl. Pharm. Sci. 2014, 4, 1–5. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Kameli, A.; Saidi, F. Essential Oil of Algerian Rose-Scented Geranium (Pelargonium Graveolens): Chemical Composition and Antimicrobial Activity against Food Spoilage Pathogens. Food Control 2013, 34, 208–213. [Google Scholar] [CrossRef]
- Al-Jumaili, A.; Bazaka, K.; Jacob, M.V. Retention of Antibacterial Activity in Geranium Plasma Polymer Thin Films. Nanomaterials 2017, 7, 270. [Google Scholar] [CrossRef]
- Kiełbasa, P.; Miernik, A.; Dróżdż, T.; Szczegielniak, T. Effect of Electromagnetic Stimulation of the Active Substance of Selected Plants on Their Antiseptic Potential. Prz. Elektrotechniczny 2022, 98, 152–156. [Google Scholar] [CrossRef]
- Miernik, A.; Kiełbasa, P.; Dróżdż, T.; Wadowski, A.; Pysz, P. The Effect of Electromagnetic Field Stimulation on the Electromagnetic Spectrum Structure of Essenstial Oil. Prz. Elektrotechniczny 2023, 2023, 130–133. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Moore, J.; Yu, L. Methods for Antioxidant Capacity Estimation of Wheat and Wheat-Based Food Products. Wheat Antioxidants 2007, 2, 118–172. [Google Scholar] [CrossRef]
- Martiniaková, S.; Ácsová, A.; Hojerová, J.; Krepsová, Z.; Kreps, F. Ceylon Cinnamon and Clove Essential Oils as Promising Free Radical Scavengers for Skin Care Products. Acta Chim. Slovaca 2022, 15, 1–11. [Google Scholar] [CrossRef]
- Lin, C.W.; Yu, C.W.; Wu, S.C.; Yih, K.H. DPPH Free-Radical Scavenging Activity, Total Phenolic Contents and Chemical Composition Analysis of Forty-Two Kinds of Essential Oils. J. Food Drug Anal. 2009, 17, 9. [Google Scholar] [CrossRef]
- Al-Mijalli, S.H.; Mrabti, H.N.; El Hachlafi, N.; El Kamili, T.; Elbouzidi, A.; Abdallah, E.M.; Flouchi, R.; Assaggaf, H.; Qasem, A.; Zengin, G.; et al. Integrated Analysis of Antimicrobial, Antioxidant, and Phytochemical Properties of Cinnamomum Verum: A Comprehensive In Vitro and In Silico Study. Biochem. Syst. Ecol. 2023, 110, 104700. [Google Scholar] [CrossRef]
- Banglao, W.; Thongmee, A.; Sukplang, P.; Wanakhachornkrai, O. Determination of Antioxidant, Anti-Aging and Cytotoxicity Activity of the Essential Oils from Cinnamomum Zeylanicum. J. Microbiol. Biotech. Food Sci. 2020, 10, 436–440. [Google Scholar] [CrossRef]
- Soh, S.H.; Jain, A.; Lee, L.Y.; Jayaraman, S. Optimized Extraction of Patchouli Essential Oil from Pogostemon Cablin Benth. with Supercritical Carbon Dioxide. J. Appl. Res. Med. Aromat. Plants 2020, 19, 100272. [Google Scholar] [CrossRef]
- Hariyanti; Hanani, E.; Dayatri, D.Y. Phytochemical Identification and Antioxidant Activity of Essential oil of Pogostemon cablin Benth. cultivated in Java Island Indonesia. Int. J. Phytopharm. 2019, 9, 1–7. [Google Scholar] [CrossRef]
- Paulus, D.; Luchesi, L.A.; Busso, C.; Frata, M.T.; Oliveira, P.J.B.d. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils of Four Species of the Lamiaceae Family. Eur. J. Med. Plants 2020, 31, 129–140. [Google Scholar] [CrossRef]
- Kačániová, M.; Vukic, M.; Vukovic, N.L.; Čmiková, N.; Verešová, A.; Schwarzová, M.; Babošová, M.; Porhajašová, J.I.; Kluz, M.; Waszkiewicz-Robak, B.; et al. An In-Depth Study on the Chemical Composition and Biological Effects of Pelargonium Graveolens Essential Oil. Foods 2024, 13, 33. [Google Scholar] [CrossRef]
- Lohani, A.; Mishra, A.K.; Verma, A. Cosmeceutical Potential of Geranium and Calendula Essential Oil: Determination of Antioxidant Activity and in Vitro Sun Protection Factor. J. Cosmet. Dermatol. 2019, 18, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Ćavar, S.; Maksimović, M. Antioxidant Activity of Essential Oil and Aqueous Extract of Pelargonium Graveolens L’Her. Food Control 2012, 23, 263–267. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook. SRD 69. Available online: https://webbook.nist.gov/ (accessed on 4 June 2024).
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 4 June 2024).
- Bodea, I.M.; Catunescu, G.M.; Pop, C.R.; Fit, N.I.; David, A.P.; Dudescu, M.C.; Stanila, A.; Rotar, A.M.; Beteg, F.I. Antimicrobial Properties of Bacterial Cellulose Films Enriched with Bioactive Herbal Extracts Obtained by Microwave-Assisted Extraction. Polymers 2022, 14, 1435. [Google Scholar] [CrossRef] [PubMed]
- Semeniuc, C.A.; Pop, C.R.; Rotar, A.M. Antibacterial Activity and Interactions of Plant Essential Oil Combinations against Gram-Positive and Gram-Negative Bacteria. J. Food Drug Anal. 2017, 25, 403–408. [Google Scholar] [CrossRef] [PubMed]
- McFarland, J. The Nephelometer:An Instrument for Estimating the Number of Bacteria in Suspensions Used for Calculating the Opsonic Index and for Vaccines. JAMA 1907, XLIX, 1176–1178. [Google Scholar] [CrossRef]
- Vârban, D.; Zăhan, M.; Crișan, I.; Pop, C.R.; Gál, E.; Ștefan, R.; Rotar, A.M.; Muscă, A.S.; Meseșan, Ș.D.; Horga, V.; et al. Unraveling the Potential of Organic Oregano and Tarragon Essential Oils: Profiling Composition, FT-IR and Bioactivities. Plants 2023, 12, 4017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cerezo, A.B.; Cătunescu, G.M.; González, M.M.; Hornedo-Ortega, R.; Pop, C.R.; Rusu, C.C.; Chirilă, F.; Rotar, A.M.; Garcia-Parrilla, M.C.; Troncoso, A.M. Anthocyanins in Blueberries Grown in Hot Climate Exert Strong Antioxidant Activity and May Be Effective against Urinary Tract Bacteria. Antioxidants 2020, 9, 478. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Class | Compound Name | Structure | Percentage (%) from Total Peak Area | |||
---|---|---|---|---|---|---|
CEO | CEOM | CEOEl | CEOL | |||
phenylpropanoid | Cinnamaldehyde | 67.39 | 67.56 | 67.81 | 67.58 | |
phenylpropanoid | Eugenol | 6.68 | 6.69 | 7.02 | 7.05 | |
phenylpropanoid | Cinnamyl acetate | 6.65 | 6.63 | 6.75 | 6.67 | |
phenylpropanoid | Eugenol acetate | 0.41 | 0.40 | 0.42 | 0.41 | |
phenylpropanoids | Safrole | 0.14 | 0.12 | 0.13 | 0.12 | |
acyclic monoterpene | β-Linalool | 4.54 | 4.55 | 4.42 | 4.51 | |
cyclic monoterpene | D-Limonene | 1.73 | 1.83 | 1.55 | 1.66 | |
bicyclic monoterpene | α-Pinene | 1.62 | 1.51 | 1.39 | 1.48 | |
cyclic monoterpene | p-Cymene | 1.42 | 1.38 | 1.35 | 1.40 | |
cyclic monoterpene | α-Phellandrene | 1.37 | 1.30 | 1.24 | 1.30 | |
bicyclic monoterpene | Camphene | 0.53 | 0.51 | 0.46 | 0.50 | |
bicyclic monoterpene | β-Pinene | 0.48 | 0.46 | 0.43 | 0.45 | |
acyclic monoterpenoid | α-Terpineol | 0.23 | 0.23 | 0.23 | 0.23 | |
bicyclic monoterpene | α-Thujene | 0.21 | 0.20 | 0.18 | 0.19 | |
cyclic ether monoterpenoid | Eucalyptol | 0.17 | 0.17 | 0.16 | 0.18 | |
monoterpene | α-Terpinene | 0.14 | 0.13 | 0.14 | nd * | |
bicyclic monoterpene | δ-2-Carene | 0.08 | nd | nd | Nd | |
acyclic monoterpene | β-Myrcene | 0.06 | 0.05 | 0.05 | 0.05 | |
monoterpenoid alcoholic | 1-Terpinen-4-ol | 0.03 | 0.04 | 0.03 | 0.03 | |
cyclic monoterpene | γ-Terpinene | 0.02 | nd | nd | 0.02 | |
cyclic monoterpene | Terpinolene | nd | 0.08 | 0.07 | 0.08 | |
acyclic monoterpene | β-cis-Ocimene | nd | 0.12 | 0.10 | 0.11 | |
bicyclic sesquiterpene | Caryophyllene | 5.23 | 5.09 | 5.23 | 5.20 | |
cyclic sesquiterpene | α-Caryophyllene | 0.29 | 0.29 | 0.20 | 0.19 | |
tricyclic sesquiterpene | Copaene | 0.27 | 0.27 | 0.26 | 0.26 | |
bicyclic sesquiterpenoid | Caryophyllene oxide | 0.16 | 0.27 | 0.27 | 0.26 | |
Other (Arene carbaldehyde) | Benzaldehyde | 0.09 | 0.07 | 0.07 | 0.08 | |
Other (alkyl carboxylic acid) | Butanoic acid, 2-methyl-, 2-methylbutyl ester | 0.03 | 0.04 | 0.04 | nd |
Class | Compound Name | Structure | Percentage (%) from Total Peak Area | |||
---|---|---|---|---|---|---|
PEO | PEOM | PEOEl | PEOL | |||
tricyclic sesquiterpenoid | Patchoulol | 37.70 | 38.08 | 38.26 | 37.77 | |
sesquiterpene | α-Bulnesene | 19.96 | 20.19 | 20.02 | 20.20 | |
sesquiterpene | α-Guaiene | 15.40 | 15.28 | 15.22 | 15.43 | |
tricyclic sesquiterpene | Seychellene | 8.12 | 8.02 | 8.04 | 8.18 | |
sesquiterpene | α-Patchoulene | 5.35 | 5.19 | 5.24 | 5.22 | |
bicyclic sesquiterpene | Caryophyllene | 3.71 | 3.65 | 3.59 | 3.64 | |
sesquiterpene | β-Patchoulene | 3.04 | 2.96 | 2.97 | 2.91 | |
sesquiterpene | β-Elemene | 1.26 | 1.22 | 1.24 | 1.21 | |
sesquiterpene | Patchoulene | 1.25 | 1.27 | 1.27 | 1.31 | |
tricyclic sesquiterpene | Copaene | 0.68 | 0.64 | 0.64 | 0.63 | |
monocyclic sesquiterpene | α-Caryophyllene (humulene) | 0.54 | 0.56 | 0.54 | 0.57 | |
tricyclic sesquiterpene | (-)-α-Panasinsen | 0.22 | 0.20 | 0.20 | 0.21 | |
sesquiterpene | δ-Elemene | 0.11 | 0.10 | 0.10 | 0.10 | |
tricyclic sesquiterpene | α-Cubebene | 0.02 | 0.02 | 0.02 | 0.02 | |
bicyclic monoterpene | β-Pinene | 0.12 | 0.12 | 0.11 | 0.11 | |
bicyclic monoterpene | α-Pinene | 0.04 | 0.04 | 0.04 | 0.04 | |
non-identified | non-identified | 2.48 | 2.47 | 2.50 | 2.46 |
Class | Compound Name | Structure | Percentage (%) from Total Peak Areaα | |||
---|---|---|---|---|---|---|
GEO | GEOM | GEOEl | GEOL | |||
acyclic monoterpenoid | (R)-Citronellol | 44.28 | 44.01 | 43.29 | 43.79 | |
acyclic monoterpenoid | cis-Geraniol | 20.92 | 20.42 | 21.04 | 20.21 | |
acyclic monoterpenoid | Citronellol acetate | 10.16 | 9.80 | 9.83 | 10.08 | |
cyclic monoterpenoid | cis-Menthone | 5.98 | 5.66 | 5.67 | 5.73 | |
acyclic monoterpenoid | β-Linalool | 4.61 | 4.29 | 4.30 | 4.50 | |
acyclic monoterpenoid | cis-Geranyl acetate | 3.79 | 3.46 | 3.49 | 3.75 | |
cyclic monoterpenoid | Cis-Rose-oxide | 1.25 | 1.16 | 1.14 | 1.20 | |
acyclic monoterpenoid | Geranial | 0.72 | 0.72 | 0.70 | 0.71 | |
acyclic monoterpenoid | Citronellyl propionate | 0.69 | 0.63 | 0.56 | 0.63 | |
cyclic monoterpenoid | trans-Rose oxide | 0.54 | 0.51 | 0.49 | 0.53 | |
acyclic monoterpenoid | cis-Citral | 0.54 | 0.44 | 0.46 | 0.50 | |
cyclic monoterpenoid | α-Terpineol | 0.43 | 0.37 | 0.39 | 0.40 | |
bicyclic monoterpene | α-Pinene | 0.42 | 0.38 | 0.37 | nd * | |
cyclic monoterpenoid | Menthol | 0.20 | 0.17 | 0.20 | 0.17 | |
acyclic monoterpene | β-Myrcene | 0.15 | 0.13 | 0.13 | 0.13 | |
cyclic monoterpene | D-Limonene | 0.13 | 0.17 | 0.15 | 0.14 | |
acyclic monoterpene | β-cis-Ocimene | 0.08 | 0.07 | 0.05 | 0.09 | |
monocyclic monoterpene | p-Cymene | 0.07 | 0.06 | 0.06 | 0.05 | |
monocyclic monoterpene | α-Phellandrene | 0.06 | 0.06 | 0.06 | 0.06 | |
acyclic monoterpene | β-trans-Ocimene | 0.05 | 0.07 | 0.04 | 0.04 | |
cyclic monoterpenoid | trans-Menthone | nd | 1.96 | 1.95 | 1.96 | |
acyclic monoterpenoid | (R)-(+)-Citronellal | nd | 0.11 | 0.11 | 0.09 | |
cyclic monoterpenoid | Isopregol | nd | 0.10 | 0.10 | 0.11 | |
bicyclic sesquiterpene | Caryophyllene | 1.87 | 1.78 | 1.81 | 1.78 | |
tricyclic sesquiterpene | β-Bourbonene | 1.55 | 1.46 | 1.48 | 1.45 | |
tricyclic sesquiterpene | Copaene | 1.27 | 1.19 | 1.20 | 1.22 | |
non-identified | non-identified | 0.25 | 0.24 | 0.23 | 0.26 | |
non-identified | non-identified | nd | 0.66 | 0.68 | nd |
Gram (+) | Gram (-) | Fungi | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | Staphylococcus aureus ATCC 6538P | Bacillus cereus ATCC 11778 | Listeria monocytogenes ATCC 19114 | Escherichia coli ATCC 25922 | Salmonella enteritidis ATCC 13076 | Pseudomonas aeruginosa ATCC 27853 | Candida albicans ATCC 10231 | |||||||
MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | |
CEO | 0.56 ± 0.00 b | 1.17 ± 0.00 b | 0.18 ± 0.08 c | 0.56 ± 0.00 c | 0.76 ± 0.35 b | 2.45 ± 0.00 a | 0.27 ± 0.00 c | 0.56 ± 0.00 b | 0.27 ± 0.00 c | 1.17 ± 0.00 b | 0.27 ± 0.00 d | 0.56 ± 0.00 d | 0.13 ± 0.00 c | 0.27 ± 0.00 d |
CEOM | 0.22 ± 0.08 c | 0.56 ± 0.00 c | 0.46 ± 0.17 a | 0.97 ± 0.35 b | 0.97 ± 0.35 a | 2.45 ± 0.00 a | 0.97 ± 0.35 a | 4.24 ± 1.55 a | 0.97 ± 0.35 a | 4.24 ± 1.55 a | 2.45 ± 0.00 a | 5.14 ± 0.00 a | 0.18 ± 0.08 c | 0.37 ± 0.17 c |
CEOEl | 0.27 ± 0.00 c | 0.56 ± 0.00 c | 0.22 ± 0.08 b | 0.56 ± 0.00 c | 0.56 ± 0.00 c | 2.45 ± 0.00 a | 0.37 ± 0.17 b | 0.56 ± 0.00 b | 0.22 ± 0.08 c | 0.56 ± 0.00 c | 0.56 ± 0.00 c | 1.17 ± 0.00 c | 30.99 ± 14.40 a | 47.62 ± 0.00 a |
CEOL | 1.17 ± 0.00 a | 5.14 ± 0.00 a | 0.27 ± 0.00 b | 1.17 ± 0.00 a | 0.22 ± 0.08 d | 0.46 ± 0.17 b | 0.27 ± 0.00 c | 0.56 ± 0.00 b | 0.46 ± 0.17 b | 1.17 ± 0.00 b | 1.60 ± 0.74 b | 3.35 ± 1.55 b | 1.17 ± 0.00 b | 2.45 ± 0.00 b |
p value | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.01 | p < 0.001 | p < 0.01 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Sig | *** | *** | *** | *** | *** | ** | *** | ** | *** | *** | *** | *** | *** | *** |
Gram (+) | Gram (-) | Fungi | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | Staphylococcus aureus ATCC 6538P | Bacillus cereus ATCC 11778 | Listeria monocytogenes ATCC 19114 | Escherichia coli ATCC 25922 | Salmonella enteritidis ATCC 13076 | Pseudomonas aeruginosa ATCC 27853 | Candida albicans ATCC 10231 | |||||||
MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | |
PEO | 0.46 ± 0.17 b | 1.17 ± 0.00 b | 0.27 ± 0.00 c | 0.56 ± 0.00 b | 1.17 ± 0.00 a | 3.35 ± 1.55 a | 0.46 ± 0.17 d | 1.17 ± 0.00 d | 14.76 ± 6.86 a | 47.62 ± 0.00 a | 30.99 ± 14.40 a | 47.62 ± 0.00 a | 0.56 ± 0.00 c | 2.45 ± 0.00 d |
PEOM | 0.27 ± 0.00 c | 0.56 ± 0.00 c | 0.27 ± 0.00 c | 0.56 ± 0.00 b | 0.27 ± 0.00 d | 0.27 ± 0.00 d | 2.45 ± 0.00 b | 10.80 ± 0.00 b | 10.80 ± 0.00 b | 22.68 ± 0.00 b | 14.76 ± 6.86 c | 30.99 ± 14.40 b | 2.45 ± 0.00 b | 5.14 ± 0.00 c |
PEOEl | 0.13 ± 0.00 d | 0.27 ± 0.00 d | 1.17 ± 0.00 a | 3.35 ± 1.55 a | 0.76 ± 0.35 b | 2.45 ± 0.00 b | 30.99 ± 14.40 a | 47.62 ± 0.00 a | 8.91 ± 3.27 c | 22.68 ± 0.00 b | 22.68 ± 0.00 b | 47.62 ± 0.00 a | 8.91 ± 3.27 a | 22.68 ± 0.00 a |
PEOL | 0.97 ± 0.35 a | 2.02 ± 0.74 a | 0.37 ± 0.17 b | 0.56 ± 0.00 b | 0.37 ± 0.17 c | 0.56 ± 0.00 c | 2.02 ± 0.74 c | 5.14 ± 0.00 c | 14.76 ± 6.86 a | 22.68 ± 0.00 b | 22.68 ± 0.00 b | 22.68 ± 0.00 c | 8.91 ± 3.27 a | 10.80 ± 0.00 b |
p value | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.05 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.05 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Sig | *** | *** | *** | * | *** | *** | *** | *** | *** | * | *** | *** | *** | *** |
Gram (+) | Gram (+) | Fungi | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | Staphylococcus aureus ATCC 6538P | Bacillus cereus ATCC 11778 | Listeria monocytogenes ATCC 19114 | Escherichia coli ATCC 25922 | Salmonella enteritidis ATCC 13076 | Pseudomonas aeruginosa ATCC 27853 | Candida albicans ATCC 10231 | |||||||
MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | MIC (μL/mL) | MBC (μL/mL) | |
GEO | 2.45 ± 0.00 a | 5.14 ± 0.00 a | 0.56 ± 0.00 c | 2.45 ± 0.00 b | 1.60 ± 0.74 c | 5.14 ± 0.00 b | 0.46 ± 0.17 b | 0.97 ± 0.35 b | 0.56 ± 0.00 d | 1.17 ± 0.00 c | 5.14 ± 0.00 b | 10.8 ± 0.00 c | 0.56 ± 0.00 a | 2.45 ± 0.00 a |
GEOM | 0.27 ± 0.00 d | 1.17 ± 0.00 c | 2.02 ± 0.74 a | 4.24 ± 1.55 a | 8.91 ± 3.27 a | 18.72 ± 6.86 a | 1.17 ± 0.00 a | 2.45 ± 0.00 a | 3.35 ± 1.55 a | 7.03 ± 3.27 a | 22.68 ± 0.00 a | 47.62 ± 0.00 a | 0.37 ± 0.17 b | 0.76 ± 0.35 c |
GEOEl | 0.56 ± 0.00 c | 2.45 ± 0.00 b | 0.76 ± 0.35 b | 2.45 ± 0.00 b | 3.35 ± 1.55 b | 5.14 ± 0.00 b | 0.37 ± 0.17 c | 0.56 ± 0.00 c | 2.02 ± 0.74 c | 5.14 ± 0.00 b | 5.14 ± 0.00 b | 22.68 ± 0.00 b | 0.18 ± 0.08 d | 1.17 ± 0.00 b |
GEOL | 0.76 ± 0.35 b | 2.45 ± 0.00 b | 0.22 ± 0.08 d | 0.27 ± 0.00 c | 0.56 ± 0.00 d | 1.17 ± 0.00 c | 0.27 ± 0.00 d | 0.56 ± 0.00 c | 2.45 ± 0.00 b | 5.14 ± 0.00 b | 3.35 ± 1.55 c | 10.8 ± 0.00 c | 0.22 ± 0.08 c | 0.56 ± 0.00 d |
p value | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Sig | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Botanical Family | Sample | DPPH | ABTS+ |
---|---|---|---|
[µM TE/mL] | |||
Lauraceae | CEO | 1.86 ± 0.35 a | 2.19 ± 0.17 a |
CEOM | 1.86 ± 0.35 a | 2.19 ± 0.17 a | |
CEOEl | 1.86 ± 0.35 a | 2.19 ± 0.17 a | |
CEOL | 1.86 ± 0.35 a | 2.19 ± 0.17 a | |
p value | p > 0.05 | p > 0.05 | |
Sig | NS | NS |
Botanical Family | Sample | DPPH | ABTS+ |
---|---|---|---|
[µM TE/mL] | |||
Lamiaceae | PEO | 1.85 ± 0.74 a | 2.18 ± 0.005 a |
PEOM | 1.85 ± 0.74 a | 2.18 ± 0.005 a | |
PEOEl | 1.85 ± 0.74 a | 2.18 ± 0.005 a | |
PEOL | 1.85 ± 0.74 a | 2.18 ± 0.005 a | |
p value | p > 0.05 | p > 0.05 | |
Sig | NS | NS |
Botanical Family | Sample | DPPH | ABTS+ |
---|---|---|---|
[µM TE/mL] | |||
Geraniaceae | GEO | 1.85 ± 0.74 a | 2.18 ± 0.005 a |
GEOM | 1.85 ± 0.74 a | 2.18 ± 0.005 a | |
GEOEl | 1.85 ± 0.74 a | 2.18 ± 0.005 a | |
GEOL | 1.85 ± 0.74 a | 2.18 ± 0.005 a | |
p value | p > 0.05 | p > 0.05 | |
Sig | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheau, C.; Pop, C.R.; Rotar, A.M.; Socaci, S.; Mălinaș, A.; Zăhan, M.; Coldea, Ș.D.; Pop, V.C.; Fit, N.I.; Chirilă, F.; et al. The Influence of Physical Fields (Magnetic and Electric) and LASER Exposure on the Composition and Bioactivity of Cinnamon Bark, Patchouli, and Geranium Essential Oils. Plants 2024, 13, 1992. https://doi.org/10.3390/plants13141992
Scheau C, Pop CR, Rotar AM, Socaci S, Mălinaș A, Zăhan M, Coldea ȘD, Pop VC, Fit NI, Chirilă F, et al. The Influence of Physical Fields (Magnetic and Electric) and LASER Exposure on the Composition and Bioactivity of Cinnamon Bark, Patchouli, and Geranium Essential Oils. Plants. 2024; 13(14):1992. https://doi.org/10.3390/plants13141992
Chicago/Turabian StyleScheau, Camelia, Carmen Rodica Pop, Ancuța Mihaela Rotar, Sonia Socaci, Anamaria Mălinaș, Marius Zăhan, Ștefania Dana Coldea, Viorel Cornel Pop, Nicodim Iosif Fit, Flore Chirilă, and et al. 2024. "The Influence of Physical Fields (Magnetic and Electric) and LASER Exposure on the Composition and Bioactivity of Cinnamon Bark, Patchouli, and Geranium Essential Oils" Plants 13, no. 14: 1992. https://doi.org/10.3390/plants13141992
APA StyleScheau, C., Pop, C. R., Rotar, A. M., Socaci, S., Mălinaș, A., Zăhan, M., Coldea, Ș. D., Pop, V. C., Fit, N. I., Chirilă, F., Criveanu, H. R., & Oltean, I. (2024). The Influence of Physical Fields (Magnetic and Electric) and LASER Exposure on the Composition and Bioactivity of Cinnamon Bark, Patchouli, and Geranium Essential Oils. Plants, 13(14), 1992. https://doi.org/10.3390/plants13141992