Plant-Derived Waste as a Component of Growing Media: Manifestations, Assessments, and Sources of Their Phytotoxicity
Abstract
:1. Introduction
2. Manifestations of Phytotoxicity
2.1. Phytotoxicity Caused by Plant-Derived Waste
2.2. Phytotoxicity and Allelopathy
3. Methods of Phytotoxicity Assessment
3.1. Chromatographic and Spectroscopic Techniques
3.2. Bioassay
3.2.1. Seed Germination Experiment
3.2.2. Seedling Growth Experiment
4. Sources and Composition of Phytotoxicity
4.1. Phytotoxicity of Representative Plant-Derived Wastes and Their Sources
4.1.1. Garden Waste
4.1.2. Crop Stalks
4.1.3. Spent Mushroom Growing Media
4.2. Common Phytotoxic Substances in Plant-Derived Waste
4.2.1. Phenolic
4.2.2. Organic Acids
5. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, R.; Das, R.; Sangwan, S.; Rohatgi, B.; Khanam, R.; Peera, S.P.G.; Das, S.; Lyngdoh, Y.A.; Langyan, S.; Shukla, A. Utilisation of agro-industrial waste for sustainable green production: A review. Environ. Sustain. 2021, 4, 619–636. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, L. Addition of mature compost improves the composting of green waste. Bioresour. Technol. 2022, 350, 126927. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.K.; Ma, T.W.; Chang, J.S.; Yang, F.C. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): A review. Bioresour. Technol. 2022, 344, 126157. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.L.; Yang, R.; Zhang, D.D.; Lin, W.; Chen, X.J.; Wang, H.; Li, J.; Qi, Z.Y. Problems and Countermeasures in Substrate Utilization of Spent Mushroom Substrates. J. Agric. Sci. Technol. 2021, 23, 117–123. [Google Scholar]
- Blok, C.; Eveleens, B.; Winkel, A.V. Growing media for food and quality of life in the period 2020–2050. Acta Hortic. 2021, 341–356. [Google Scholar] [CrossRef]
- Schmilewski, G. Growing media constituents used in the EU in 2013. In International Symposium on Growing Media, Composting and Substrate Analysis; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2017. [Google Scholar]
- Gruda, N. Sustainable Peat Alternative Growing Media. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Greenhouse 2010 and Soilless Cultivation, Lisbon, Portugal, 22–27 August 2010; ISHS: Leuven, Belgium, 2012; Volume 927, pp. 973–979. [Google Scholar]
- Parish, F.; Sirin, A.A.; Charman, D.; Joosten, H.; Minaeva, T.Y.; Silvius, M. Assessment on Peatlands, Biodiversity and Climate Change: Main Report; Global Environment Centre, Kuala Lumpur and Wetlands International: Wageningen, The Netherlands, 2008. [Google Scholar]
- IUCN. Peatlands and Climate Change; International Union for Conservation of Nature: Gland, Switzerland, 2017. [Google Scholar]
- Gruda, N. Current and Future Perspective of Growing Media in Europe. In V Balkan Symposium on Vegetables and Potatoes; ISHS: Leuven, Belgium, 2012; Volume 960, pp. 37–43. [Google Scholar]
- Bilderback, T.E.; Riley, E.D.; Jackson, B.E.; Kraus, H.T.; Fonteno, W.C.; Owen, J.S., Jr.; Altland, J.; Fain, G.B. Strategies for developing sustainable substrates in nursery crop production. Acta Hortic. 2013, 1013, 43–56. [Google Scholar] [CrossRef]
- Chemetova, C.; Quilhó, T.; Braga, S.; Fabião, A.; Gominho, J.; Ribeiro, H. Aged Acacia melanoxylon bark as an organic peat replacement in container media. J. Clean. Prod. 2019, 232, 1103–1111. [Google Scholar] [CrossRef]
- Agarwal, P.; Saha, S.; Hariprasad, P. Agro-industrial-residues as potting media: Physicochemical and biological characters and their influence on plant growth. Biomass Convers. Bioref. 2021, 13, 9601–9624. [Google Scholar] [CrossRef] [PubMed]
- Farrell, M.; Jones, D.L. Food waste composting: Its use as a peat replacement. Waste Manag. 2010, 30, 1495–1501. [Google Scholar] [CrossRef]
- Mustafa, G.; Ali, M.A.; Smith, D.; Schwinghamer, T.; Lamont, J.R.; Ahmed, N.; Hussain, S.; Arshad, M. Guar, jantar, wheat straw, and rice hull composts as replacements for peat in muskmelon transplant production. Int. J. Recycl. Org. Waste Agric. 2016, 5, 323–332. [Google Scholar] [CrossRef]
- Nocentini, M.; Panettieri, M.; García de Castro Barragán, J.M.; Mastrolonardo, G.; Knicker, H. Recycling pyrolyzed organic waste from plant nurseries, rice production and shrimp industry as peat substitute in potting substrates. J. Environ. Manag. 2021, 277, 111436. [Google Scholar] [CrossRef] [PubMed]
- Pascual, J.A.; Ceglie, F.; Tuzel, Y.; Koller, M.; Koren, A.; Hitchings, R.; Tittarelli, F. Organic substrate for transplant production in organic nurseries. A review. Agron. Sustain. Dev. 2018, 38, 35. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Allaire, S.E.; Akram, N.A.; Méndez, A.; Younis, A.; Peerzada, A.M.; Shaukat, N.; Wright, S.R. Challenges in organic component selection and biochar as an opportunity in potting substrates: A review. J. Plant Nutr. 2019, 42, 1386–1401. [Google Scholar] [CrossRef]
- REAL-CCS. Methods for Testing Plant Response to Composted Material and Its Contamination by Weed Seeds and Propagules; REAL CCS: London, UK, 2014. [Google Scholar]
- Chemetova, C.; Mota, D.; Fabião, A.; Gominho, J.; Ribeiro, H. Low-temperature hydrothermally treated Eucalyptus globulus bark: From by-product to horticultural fiber-based growing media viability. J. Clean. Prod. 2021, 319, 128805. [Google Scholar] [CrossRef]
- Zhu, H.; Zhao, S.; Jin, A.; Tang, J.; Luo, Y. The use of un-composted spent mushroom residue as a replacement of peat in substrates for Gossypium herbaceum and Talinum paniculatum. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12193. [Google Scholar] [CrossRef]
- Wang, H.; Lin, W.; Zhang, D.; Yang, R.; Zhou, W.; Qi, Z. Phytotoxicity of Chemical Compounds from Cinnamomum camphora Pruning Waste in Germination and Plant Cultivation. Int. J. Environ. Res. Public Health 2022, 19, 11617. [Google Scholar] [CrossRef]
- Zhou, W.L.; Liao, J.X.; Zhou, B.; Yang, R.; Lin, W.; Zhang, D.D.; Wang, H.; Qi, Z.Y. Rapidly reducing phytotoxicity of green waste for growing media by incubation with ammonium. Environ. Technol. Innov. 2023, 31, 103136. [Google Scholar] [CrossRef]
- Pinho, I.A.; Lopes, D.V.; Martins, R.C.; Quina, M.J. Phytotoxicity assessment of olive mill solid wastes and the influence of phenolic compounds. Chemosphere 2017, 185, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Ruzickova, J.; Koval, S.; Raclavska, H.; Kucbel, M.; Svedova, B.; Raclavsky, K.; Juchelkova, D.; Scala, F. A comprehensive assessment of potential hazard caused by organic compounds in biochar for agricultural use. J. Hazard. Mater. 2021, 403, 123644. [Google Scholar] [CrossRef]
- Backer, R.; Ghidotti, M.; Schwinghamer, T.; Saeed, W.; Grenier, C.; Dion-Laplante, C.; Fabbri, D.; Dutilleul, P.; Seguin, P.; Smith, D.L. Getting to the root of the matter: Water-soluble and volatile components in thermally-treated biosolids and biochar differentially regulate maize (Zea mays) seedling growth. PLoS ONE 2018, 13, e0206924. [Google Scholar] [CrossRef]
- Lynch, J.M. Effects of organic acids on the germination of seeds and growth of seedlings. Plant Cell Environ. 1980, 3, 255–259. [Google Scholar] [CrossRef]
- Lynch, J.M. Production and phytotoxicity of acetic acid in anaerobic soils containing plant residues. Soil Biol. Biochem. 1978, 10, 131–135. [Google Scholar] [CrossRef]
- Gajalakshmi, S.; Iswarya, V.; Ashwini, R.; Divya, G.; Mythili, S.; Sathiavelu, A.; Sciences, B. Evaluation of heavy metals in medicinal plants growing in Vellore District. Eur. J. Exp. Biol. 2012, 2, 1457–1461. [Google Scholar]
- Rice, E.L. Allelopathy; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Keating, K.I. Allelopathy: Principles, Procedures, Processes, and Promises for Biological Control. Adv. Agron. 1999, 67, 141–231. [Google Scholar]
- Lotina-Hennsen, B.; King-Diaz, B.; Aguilar, M.I.; Terrones, M.G.H. Plant Secondary Metabolites. Targets and Mechanisms of Allelopathy; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Hitzl, M.; Mendez, A.; Owsianiak, M.; Renz, M. Making hydrochar suitable for agricultural soil: A thermal treatment to remove organic phytotoxic compounds. J. Environ. Chem. Eng. 2018, 6, 7029–7034. [Google Scholar] [CrossRef]
- Cui, H.Y.; Zhao, Y.; Chen, Y.N.; Zhang, X.; Wang, X.Q.; Lu, Q.; Jia, L.M.; Wei, Z.M. Assessment of phytotoxicity grade during composting based on EEM/PARAFAC combined with projection pursuit regression. J. Hazard. Mater. 2017, 326, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.A.; Riva-Murray, K.; Bradley, P.M.; And, G.; Brigham, M.E. Landscape controls on total and methyl Hg in the upper Hudson River basin, New York, USA. J. Geophys. Res. Biogeosci. 2012, 117. [Google Scholar] [CrossRef]
- Loeser, C.; Duerr, H.; Pilz, R. Application of ISO 11269-1 root elongation bioassay for testing the physical properties of growing media. Acta Hortic. 2010. [Google Scholar] [CrossRef]
- CEN 16086-2; Soil Improvers and Growing Media-Determination of Plant Response—Part 2: Petri Dish Test Using Cress. European Commission: Brussels, Belgium, 2011.
- ISO 18763:2016; Soil Quality—Determination of the Toxic Effects of Pollutants on Germination and Early Growth of Higher Plants. ISO: Geneva, Switzerland, 2016.
- CEN 16086-1; Soil Improvers and Growing Media-Determination of Plant Response—Part 1: Pot Growth Test with Chinese Cabbage. European Commission: Brussels, Belgium, 2011.
- OECD. OECD Guidelines for the Testing of Chemicals: Acute Oral Toxicity—Acute Toxic Class Method (423); OECD: Paris, France, 2001. [Google Scholar]
- Ortega, M.C.; Moreno, M.T.; Ordovás, J.; Aguado, M.T. Behaviour of different horticultural species in phytotoxicity bioassays of bark substrates. Sci. Hortic. 1996, 66, 125–132. [Google Scholar] [CrossRef]
- Fujii, Y.; Parvez, S.S.; Parvez, M.M.; Ohmae, Y.; Iida, O. Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biol. Manag. 2010, 3, 233–241. [Google Scholar] [CrossRef]
- Bai, R.P. Several issues on the route choice of mechanization of rice production technology. Chin. Agric. Mech. 2011, 233, 15–18+22. [Google Scholar]
- Liu, Y.; Qi, Z.; Zhao, J.; Zhang, D.; Lin, W.; Wang, H.; Zhou, W. Urban garden waste and its resource utilization in China. Recycl. Resour. Circ. Econ. 2020, 13, 38–44. [Google Scholar]
- Yang, R.; Chen, X.J.; Zhang, D.D.; Wang, H.; Zhou, W.L.; Lin, W.; Qi, Z.Y. Steam-Exploded Pruning Waste as Peat Substitute: Physiochemical Properties, Phytotoxicity and Their Implications for Plant Cultivation. Int. J. Environ. Res. Public Health 2022, 19, 5328. [Google Scholar] [CrossRef]
- Politycka, B.; WÃjcik-Wojtkowiak, D.; Pudelski, T. Phenolic Compounds as a Cause of Phytotoxicity in Greenhouse Substrates Repeatedly Used in Cucumber Growing; International Society for Horticultural Science (ISHS): Leuven, Belgium, 1985. [Google Scholar]
- Ma, Y.B.; Nichols, D.G. Phytotoxicity and Detoxification of Fresh Coir Dust and Coconut Shell. Commun. Soil Sci. Plant Anal. 2004, 35, 205–218. [Google Scholar] [CrossRef]
- Yazaki, Y.; Nichols, D. Phytotoxic components of Pinus radiato bark. Aust. For. Res. 1978, 8, 185–198. [Google Scholar]
- Nichols, D.; Yazaki, Y. Phytotoxicity of Eucalyptus camaldulensis and E. regnan sawdusts. Aust. For. Res. 1979, 9, 35–39. [Google Scholar]
- Rice, E.L. Manipulated Ecosystems: Roles of Allelopathy in Agriculture. In Allelopathy; Academic Press: Orlando, FL, USA, 1984; pp. 8–73. [Google Scholar]
- Ishii, T.; Kadoya, K. Phytotoxic constituents in the bark and sawdust extracts of Chamaecyparis obtusa and Cryptomeria japonica and their effects on the growth of seedlings of trifoliate orange (Poncirus trifoliata Raf.) and rice (Oryza sativa L.). J. Jpn. Soc. Hortic. Sci. 1993, 62, 285–294. [Google Scholar] [CrossRef]
- Machrafi, Y.; Prévost, D.; Beauchamp, C.J. Toxicity of Phenolic Compounds Extracted from Bark Residues of Different Ages. J. Chem. Ecol. 2006, 32, 2595–2615. [Google Scholar] [CrossRef]
- Buss, W.; Mašek, O.; Graham, M.; Wüst, D. Inherent organic compounds in biochar—Their content, composition and potential toxic effects. J. Environ. Manag. 2015, 156, 150–157. [Google Scholar] [CrossRef]
- Demos, I.K. The efects of ten phenolic compounds on hypocotyl growth and mitochondrial metabolism of mung bean. Am. J. Bot. 1975, 62, 97–102. [Google Scholar] [CrossRef]
- Guarino, C.; Zuzolo, D.; Marziano, M.; Conte, B.; Baiamonte, G.; Morra, L.; Benotti, D.; Gresia, D.; Stacul, E.R.; Cicchella, D.; et al. Investigation and Assessment for an effective approach to the reclamation of Polycyclic Aromatic Hydrocarbon (PAHs) contaminated site: SIN Bagnoli, Italy. Sci. Rep. 2019, 9, 11522. [Google Scholar] [CrossRef] [PubMed]
- Kern, K.A.; Pergo, E.M.; Kagami, F.L.; Arraes, L.S.; Ishii-Iwamoto, E.L. The phytotoxic effect of exogenous ethanol on Euphorbia heterophylla L. Plant Physiol. Biochem. 2009, 47, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.D.; Hoagland, R.E. The effects of naturally occurring phenolic compounds on seed germination. Weed Sci. 1982, 30, 206–212. [Google Scholar] [CrossRef]
- Li, H.H.; Inoue, M.; Nishimura, H.; Tsuzuki, M.E. Interactions oftrans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J. Chem. Ecol. 1993, 19, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
- Rao, D.N.; Mikkelsen, D.S. Effects of acetic, propionic, and butyric acids on rice seedling growth and nutrition. Plant Soil 1977, 47, 323–334. [Google Scholar] [CrossRef]
- Jităreanu, A.; Tătărîngă, G.; Zbancioc, A.-M.; Stănescu, U. Toxicity of some cinnamic acid derivatives to common bean (Phaseolus vulgaris). Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 130–134. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kaur, S.; Kohli, R.K.; Yadav, S.S. Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). J. Plant Physiol. 2008, 165, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Marsolais, F.; Bernards, M.A.; Sumarah, M.W.; Bykova, N.V.; Igamberdiev, A.U. Glyoxylate cycle and metabolism of organic acids in the scutellum of barley seeds during germination. Plant Sci. 2016, 248, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Dale, B.E. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 2004, 26, 361–375. [Google Scholar] [CrossRef]
- Jin, Z.; Shah, T.; Zhang, L.; Liu, H.; Peng, S.; Nie, L. Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review. Food Energy Secur. 2020, 9, e200. [Google Scholar] [CrossRef]
- Paradelo, R.; Barral, M.T. A Review on the Use of Phytotoxicity as a Compost Quality Indicator. Dyn. Soil Dyn. Plant 2011, 5, 36–44. [Google Scholar]
- Lynch, J.M. Phytotoxicity of Acetic Acid Produced in the Anaerobic Decomposition of Wheat Straw. J. Appl. Microbiol. 2010, 42, 81–87. [Google Scholar] [CrossRef]
- Achmon, Y.; Harrold, D.R.; Claypool, J.T.; Stapleton, J.J.; VanderGheynst, J.S.; Simmons, C.W. Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization. Waste Manag. 2016, 48, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, X.; Hao, X.; Wu, Y.; Zhang, C.; Zhang, X. Research Progress on Multiple Impacts of Returning Straw to Farmland on Agricultural Environment. Jiangsu Agric. Sci. 2018, 46, 21–24. [Google Scholar]
- Ye, W.; Xie, X.; Wang, K.; Li, Z. Effects of Rice Straw Manuring in Different Periods on Growth and Yield of Rice. Chin. J. Rice Sci. 2008, 22, 65–70. [Google Scholar]
- Ma, Y.; Mao, R.; Liu, M.; Liu, X.; Zhang, Y. Allelopathic Effects of Wheat Straw. Chin. J. Ecol. 1993, 12, 36–38. [Google Scholar]
- Gao, Y.; Wu, Z.; Li, W.; Sun, H.; Chai, Y.; Li, T.; Liu, C.; Gong, X.; Liang, Y.; Qin, P. Expanding the valorization of waste mushroom substrates in agricultural production: Progress and challenges. Environ. Sci. Pollut. Res. 2023, 30, 2355–2373. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, D.; Yang, R.; Lin, W.; Wang, H.; Kang, Y.; Qi, Z.; Zhou, W. Reducing the phytotoxicity of spent mushroom substrate (SMS) for sustainable growing media by superheated steam torrefaction: Effects of temperature and residence time. Biomass Convers. Bioref. 2024. [Google Scholar] [CrossRef]
- Zhang, R.-H.; Duan, Z.-Q.; Li, Z.-G. Use of Spent Mushroom Substrate as Growing Media for Tomato and Cucumber Seedlings. Pedosphere 2012, 22, 333–342. [Google Scholar] [CrossRef]
- Collela, C.F.; Costa, L.M.A.S.; Moraes, T.S.J.d.; Zied, D.C.; Rinker, D.L.; Dias, E.S. Potential utilization of spent Agaricus bisporus mushroom substrate for seedling production and organic fertilizer in tomato cultivation. Ciência E Agrotecnol. 2019, 43, e017119. [Google Scholar] [CrossRef]
- Meng, X.; Dai, J.; Zhang, Y.; Wang, X.; Zhu, W.; Yuan, X.; Yuan, H.; Cui, Z. Composted biogas residue and spent mushroom substrate as a growth medium for tomato and pepper seedlings. J. Environ. Manag. 2018, 216, 62–69. [Google Scholar] [CrossRef]
- Kwiatkowska, E.; Joniec, J. Effects of Agricultural Management of Spent Mushroom Waste on Phytotoxicity and Microbiological Transformations of C, P, and S in Soil and Their Consequences for the Greenhouse Effect. Int. J. Environ. Res. Public Health 2022, 19, 12915. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Paredes, C.; Pérez-Murcia, M.D.; Bustamante, M.A.; Moral, R. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresour. Technol. 2009, 100, 4227–4232. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhao, S.; Yang, J.; Meng, L.; Luo, Y.; Hong, B.; Cui, W.; Wang, M.; Liu, W. Growth, Nutrient Uptake, and Foliar Gas Exchange in Pepper Cultured with Un-composted Fresh Spent Mushroom Residue. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 47, 227–236. [Google Scholar] [CrossRef]
- Szmidt, R.A.K.; Chong, C. Uniformity of Spent Mushroom Substrate (SMS) and Factors in Applying Recommendations for Use. Compos. Sci. Util. 1995, 3, 64–71. [Google Scholar] [CrossRef]
- GB/T 33891-2017; Organic Media for Greening. Standardization Administration of China: Beijing, China, 2017.
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.D.; Jiang, D.A. Phenolics and Plant Allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed]
- Hajam, Y.A.; Lone, R.; Kumar, R. Role of plant phenolics against reactive oxygen species (ROS) induced oxidative stress and biochemical alterations. In Plant Phenolics in Abiotic Stress Management; Springer: Singapore, 2023; pp. 125–147. [Google Scholar]
- Kumar, K.; Debnath, P.; Singh, S.; Kumar, N. An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses 2023, 3, 570–585. [Google Scholar] [CrossRef]
- Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of phenolic compounds in plant-defensive mechanisms. In Plant Phenolics in Sustainable Agriculture; Springer: Singapore, 2020; Volume 1, pp. 517–532. [Google Scholar]
- Cutillo, F.; D’Abrosca, B.; Dellagreca, M.; Fiorentino, A.; Zarrelli, A. Lignans and neolignans from Brassica fruticulosa: Effects on seed germination and plant growth. J. Agric. Food Chem. 2003, 51, 6165–6172. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.-H.; Leu, L.-L. Allelopathic substances and interactions ofDelonix regia (Boj) Raf. J. Chem. Ecol. 1992, 18, 2285–2303. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Y.; Kong, Y.; Ma, R.; Yuan, J.; Li, G. Key factors affecting seed germination in phytotoxicity tests during sheep manure composting with carbon additives. J. Hazard. Mater. 2022, 421, 126809. [Google Scholar] [CrossRef]
- Xing, S.Z.; Wang, J.F.; Cai, D. Effects of Citrate and Malate on the Seed Germination and Memberane Permeability of Pakchoi. Chin. Agric. Sci. Bull. 2007, 23, 312–316. [Google Scholar]
- Zhang, Z.Z.; Sun, Z.H.; Chen, W.H.; Lin, W.X. Allelopathic effects of organic acid allelochemicals on melon. Acta Ecol. Sin. 2013, 33, 4591–4598. [Google Scholar] [CrossRef]
- Luo, Y.; Liang, J.; Zeng, G.; Chen, M.; Mo, D.; Li, G.; Zhang, D. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects. Waste Manag. 2018, 71, 109–114. [Google Scholar] [CrossRef]
- Cocucci, S.M.; Morgutti, S.; Ranieri, A.M. Effect of butyric acid on the germination of the seeds of Phacelia tanacetifolia. Physiol. Plant. 1989, 76, 17–23. [Google Scholar] [CrossRef]
Source | Target | Effect | |
---|---|---|---|
Phytotoxicity | Chemical compounds derived from the environment or adverse environmental conditions | Plants | Harmful |
Allelopathy | The secondary metabolites of plants, bacteria, fungi, and algae | Organisms in agricultural and natural ecosystems | Harmful and beneficial |
Methods | Merit | Flaw | |
---|---|---|---|
Chromatographic and spectroscopic techniques | Capable of detecting a diverse array of compounds | High cost and the effects of compounds on plants need to be verified by further cultivation | |
Seed germination experiment | direct contact methods | More precisely reflects the impact of substrate materials during cultivation | May exacerbate adverse effects on plants |
indirect contact methods | Avoid direct seed contact with the substrate material | Subtle or latent adverse effects may not be readily observable | |
water-soaked extract methods | A stronger correlation exists among actual growth conditions | Volatile compounds cannot be reliably quantified using this method | |
Seedling growth experiment | ISO 18763 | Enhanced accuracy in assessing early plant growth outcomes | Limited scope and complex implementation |
CEN 16086-1 | The improved assessment of plant viability | The only choice for plants is Cabbage | |
OECD TG 208 | Plants can be assessed based on a range of physiological indicators | Persistent phytotoxic effects remain challenging to assess |
Concentration | Plants | Phytotoxicity Manifestations | |
---|---|---|---|
Carbolic acid [53] | 125.6 (mg/L) | Brassica rapa chinensis | Inhibits root elongation. |
ortho-Cresol [53] | 54.9 (mg/L) | Brassica rapa chinensis | Inhibits root elongation. |
Secolignan [54] | 1 (nmol/L) | lettuce | Seed germination was still significantly inhibited at very low concentrations. |
PAHS [55] | 100 (mg/L) | Lepidium sativum | Inhibits seed development and root elongation. |
Ethanol [56] | 2500 (mg/L) | Euphorbia heterophylla | Delayed seed germination and growth inhibition. |
Acetic acid [27] | 300 (mg/L) | Oryza sativa | Root growth inhibition up to 25 percent. |
Gallic acid [57] | lettuce | The inhibition of lettuce growth and development. | |
Ferulic acid [58] | lettuce seeds | Inhibits the germination of lettuce seeds. | |
Acetic acid, propionic acid, butyric acid [59] | 60.05 (mg/L) | Oryza sativa | Seedlings wilting and dehydration-like symptoms. |
Acetic acid, propionic acid, butyric acid [59] | 300.25 (mg/L) | Oryza sativa | The inhibition of root growth in seedlings and bronze-like symptoms in leaf tips. |
Acetic acid, propionic acid, butyric acid [59] | 600.5 (mg/L) | Oryza sativa | Reduced plant height and seedling death within 24 h. |
Cinnamic acid [60] | 35 (mg/L) | Phaseolus vulgaris | Affects seedling development, including seedling root length, germination, and fresh weight. Growth and concentration showed a negative correlation. |
Caffeic acid [61] | Vigna radiata | Influence on the early growth and morphology of mung bean hypocotyl plugs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Cui, W.; Qi, Z.; Wu, L.; Zhou, W. Plant-Derived Waste as a Component of Growing Media: Manifestations, Assessments, and Sources of Their Phytotoxicity. Plants 2024, 13, 2000. https://doi.org/10.3390/plants13142000
Liu J, Cui W, Qi Z, Wu L, Zhou W. Plant-Derived Waste as a Component of Growing Media: Manifestations, Assessments, and Sources of Their Phytotoxicity. Plants. 2024; 13(14):2000. https://doi.org/10.3390/plants13142000
Chicago/Turabian StyleLiu, Juncheng, Wenzhong Cui, Zhiyong Qi, Lingyi Wu, and Wanlai Zhou. 2024. "Plant-Derived Waste as a Component of Growing Media: Manifestations, Assessments, and Sources of Their Phytotoxicity" Plants 13, no. 14: 2000. https://doi.org/10.3390/plants13142000
APA StyleLiu, J., Cui, W., Qi, Z., Wu, L., & Zhou, W. (2024). Plant-Derived Waste as a Component of Growing Media: Manifestations, Assessments, and Sources of Their Phytotoxicity. Plants, 13(14), 2000. https://doi.org/10.3390/plants13142000