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Abstract: Alternaria black spot of pomegranate (Punica granatum) was reported for the first time in
Italy. In spring 2023, an outbreak of this disease was noticed in commercial pomegranate ‘Wonderful’
orchards of the municipality of Misterbianco (Sicily), following an unusually rainy period. A total of
30 randomly selected Alternaria isolates recovered from typical necrotic spots of leaves and fruits were
characterized. Based on the colony morphology on solid agar media (PDA and MEA), isolates were
separated into three distinct morphotypes (1, 2, and 3). The first two morphotypes comprised only
isolates from fruits, while morphotype 3 comprised only isolates from leaves. Multigene phylogenetic
analysis of four DNA regions, including internal transcribed spacer (ITS), translation elongation
factor 1-α (EF-1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and a SCAR marker
(OPA10–2), identified the isolates of morphotypes 1 and 2 as Alternaria alternata and morphotype
3 isolates as A. arborescens. In pathogenicity tests on unwounded leaves and fruit, the isolates of
all three morphotypes produced symptoms on the leaves of three pomegranate cultivars, ‘Acco’,
‘Wonderful’, and ‘Etna’. The symptoms on ‘Acco’ leaves were the least severe. Conversely, the fruits
of ‘Acco’ were the most susceptible. The isolates of morphotypes 2 and 3 were not pathogenic on
the fruits of ‘Wonderful’ and ‘Etna’. This is the first report of Alternaria black spot in Italy and of
A. arborescens associated with Alternaria black spot of pomegranate worldwide.
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1. Introduction

Pomegranate (Punica granatum L., Punicaceae family) is gaining renewed interest as
a fruit crop in different geographic areas of the world [1,2]. Pomegranate fruit is known
for both its flavor and beneficial nutritional properties [3]. Moreover, pomegranate fruit
peel extracts, being rich in polyphenolic compounds with antioxidant and antimicrobial
activity, are being valued as drugs, natural pesticides, and food preservatives [4–7]. In
Italy, the cultivation of this deciduous fruit crop has been rapidly expanding, and from less
than 10 ha in 2008, it is now estimated to be over 1500 ha [2–4,8]. The major pomegranate
producing regions are Apulia and Sicily (southern Italy), but new plantings are also being
established in regions of central and northern Italy [9]. Imported cultivars are replacing
traditional local selections for their higher productivity and market quality. The most pop-
ular cultivars imported from abroad include, among others, ‘Wonderful’, whose origin as a
cultivar is controversial (USA/Israel) and which has become the standard type; ‘Mollar de
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Elche’ and ‘Parfianka’, both originating from Spain; and ‘Acco’, of Israeli origin. As a conse-
quence of the crop expansion in new areas, the intensification of cropping systems, and the
introduction of new pomegranate genotypes, new and rare diseases have emerged [10,11].
Pre- and post-harvest pomegranate diseases have been reported from around the world (as
reviewed by Bregant et al. [9]; [12–14]). Common pathogens affecting pomegranate include
fungi, such as Botrytis cinerea, Alternaria alternata, Penicillium implicatum, Coniella granati,
Cercospora punicae, Botryosphaeria dothidea, and Aspergillus niger, as well as bacteria, such as
Xanthomonas axanopodis pv. punicae, which causes bacterial blight. These pathogens lead to
significant financial, nutritional, and post-harvest losses along the value chain [11,13].

Between the end of May and the beginning of June 2023, an outbreak of a disease new
to Italy was noticed in a pomegranate-growing area in the municipality of Misterbianco
(Catania province, Sicily, southern Italy). The symptoms on leaves and fruits were very
similar to those of Alternaria black spot of pomegranate reported in other Mediterranean
countries [15,16]. The disease appeared following a rainy period that was unusual for
this season (with a total precipitation in April and May of 89.6 mm, as registered by the
Sicilian Agrometeorological Information Service (SIAS)) and was first detected in a farm
that was the first in the area to introduce new pomegranate cultivars and cropping systems.
Moreover, the farm also hosts a collection of diverse commercial pomegranate cultivars
and genotypes, including local selections. The objectives of this study were (i) to determine
the etiology of the disease; (ii) to characterize the causal agent(s); and (iii) to evaluate the
disease severity in selected commercially popular pomegranate varieties.

2. Results
2.1. Disease Symptoms and Isolates

The symptoms of the disease were small, black to dark brown spots of up to 4 mm
in diameter, scattered on the leaf blades, flowers, and fruit peel (Figure 1A–D). On green
leaves, spots were often surrounded by a pale chlorotic halo. Severely affected leaves
became entirely chlorotic, and spots stood out on the chrome yellow background of the leaf
blades as they were surrounded by a green halo (Figure 1C). A close-up of the leaf spots
revealed that they tended to enlarge and were zonate, forming concentric necrotic rings.
Infected leaves dropped with the consequent defoliation and dieback of twigs. In many
cases, symptoms were uniformly distributed across the entire tree canopy (Figure 1B), but
typically, single shoots or only part of the canopy stood out due to severe leaf chlorosis
and defoliation. On fruits, spots were like crusts and occasionally merged with each other
(Figure 1A,D), they were superficial, and the necrosis was confined to the rind surface.
The disease severity varied from a single spot per leaf or fruit to numerous spots covering
the entire surface of the leaf blade or fruit, including the calyx. The disease was initially
detected in an orchard spanning approximately 2 hectares, which included various cultivars,
such as ‘Wonderful’ (the predominant variety), ‘Acco’, ‘Mollar de Elche’, ‘Parfianka’, and
two local selections named ‘Etna’ and ‘Primosole’. The symptoms were mainly observed
on ‘Wonderful’, affecting over 60% of the trees. The other cultivars showed no symptoms
of the disease. The ‘Etna’, ‘Primosole’, and ‘Parfianka’ cultivars were planted at the top of a
hill in terraced soil, ‘Wonderful’ was located in the valley bottom, and ‘Acco’ and ‘Mollar
de Elche’ were planted on a slope at an intermediate altitude. The ‘Acco’ and ‘Mollar de
Elche’ plot was more than 200 m away from the ‘Wonderful’ plot, with a river separating
them. As summer progressed, all symptomatic leaves abscised, and by the harvest time
in October, only a few fruits (less than 2%) exhibited symptoms on the rind. Isolates from
symptomatic leaves and fruits collected in June consistently yielded Alternaria isolates.

2.2. Morphological Characterization of Isolates

Alternaria isolates produced dark, brown, club-shaped catenulate conidia, with lon-
gitudinal (0 to 5) and transverse (3 to 6) septa and a prominent beak, produced on either
simple and short or long, occasionally branched, conidiophores (Figure 2d,e). The conidia
measured (12−) 20.1 (−28) × (6−) 8.9 (11) µm (Figure 2b,c). The colony morphology varied,
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and isolates were grouped into three distinct morphotypes based on the colony morpholo-
gies on potato dextrose agar (PDA) and malt extract agar (MEA) (Figure 2a). Colonies
of morphotype 1 isolates were appressed, velvety, slightly radiate, olivaceous on PDA,
and light brown on MEA, with distinct margins on both media. Colonies of morphotype
2 isolates grew more slowly than colonies of the two other morphotypes, and they were
olivaceous in the center, with white aerial mycelium in the periphery and very irregular
margins on both PDA and MEA. Colonies of morphotype 3 isolates were uniform, velvety,
and dark green–olivaceous, with an appressed mycelium and regular margins on PDA and
slightly petaloid, light brown, with irregular margins on MEA (Figure 2a). Overall, 30 ran-
domly selected isolates (10 per morphotype) were selected for further characterization
(Table 1).
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Figure 1. Black and brown spots on fruits, leaves, and flowers of pomegranate. (A) Numerous
necrotic spots on fruits; spots become crusty and occasionally coalesce. (B) Pinpoint necrotic spots on
young pomegranate leaves. (C) Defoliation of twigs and severe chlorosis of pomegranate leaves and
black spots on their surfaces. (D) External symptoms of black spots on fruit. (E) Black spot symptoms
on pomegranate flower (F). Close-up image of necrotic spots on leaf.

2.3. Molecular Characterization

The Alternaria isolates obtained in this study (Table 1) and the reference isolates
(Table 2) were grouped based on their four-gene phylogeny, including ITS, GAPDH, EF-
1α, and OPA 10-2 sequences [4,17]. According to the phylogenetic analysis, 20 out of
the 30 isolates were associated with A. alternata and clustered with reference isolates of
A. alternata, including the isolates CBS 916.96 and CBS 112252 (Figure 3). Ten isolates were
clustered within the A. arborescens species complex along with the strains CBS 109730 from
Solanum lycopersicum, CBS 105.24 from S. tuberosum, CBS 108.41 from wood, CBS 112749
from Malus domestica, CBS 118389 from Pyrus pyrifolia, and CBS 115517 from M. domestica.
The multigene-phylogenetic analysis of those four DNA regions identified morphotypes
1 and 2 isolates as A. alternata and morphotype 3 isolates as A. arborescens.
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Figure 2. (a) Growth patterns and colony morphologies of isolates of Alternaria spp. recovered from
pomegranate fruits and leaves with symptoms of Alternaria black spot collected in Sicily. From left to
right: MNC1, MFO1, and MFC1 isolates, each representing a distinct morphotype (morphotype 1, 2,
and 3, respectively), grown on PDA (top) and MEA (bottom), and incubated at 25 ± 1 ◦C for 7 days
in the dark; (b,c) microscope images of germinating conidia of Alternaria alternata (MNC1 and MFO1)
and A. arborescens (MFC1), respectively; and (d,e) septate conidia and hyphae of MNC1 and MFC1
isolates, respectively.

Table 1. Alternaria isolates from fruits and leaves of pomegranate (Punica granatum L.) characterized in
this study: colony morphology (morphotype), geographical origin and accession numbers of internal
transcribed spacer (ITS), translation elongation factor 1-α (EF-1α), glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), and SCAR marker OPA 10-2 sequences in GenBank.

Isolate Host, Cultivar Source Morphotype Location
GenBank Accession Numbers

ITS EF-1α GPDH OPA 10-2

MNC1 P. granatum ‘Wonderful’ Fruit 1 Sicily, IT PP791893 PP820781 PP803578 PP803608
MNC2 P. granatum ‘Wonderful’ Fruit 1 Sicily, IT PP791895 PP820783 PP803580 PP803610
MNC3 P. granatum ‘Wonderful’ Fruit 1 Sicily, IT PP791894 PP820782 PP803579 PP803609
MNC4 P. granatum ‘Wonderful’ Fruit 1 Sicily, IT PP791896 PP820784 PP803581 PP803611
MNC5 P. granatum ‘Wonderful’ Fruit 1 Sicily, IT PP791897 PP820785 PP803582 PP803612
MNC6 P. granatum ‘Wonderful’ Fruit 1 Sicily, IT PP791898 PP820786 PP803583 PP803613
MNC7 P. granatum ‘Wonderful’ Fruit 1 Sicily, IT PP791899 PP820787 PP803584 PP803614
MNC8 P. granatum ‘Wonderful’ Fruit 1 Sicily, IT PP791900 PP820788 PP803585 PP803615
MNC9 P. granatum ‘Wonderful’ Fruit 1 Sicily, IT PP791901 PP820789 PP803586 PP803616

MNC10 P. granatum ‘Wonderful’ Fruit 1 Sicily, IT PP791902 PP820790 PP803587 PP803617
MFO1 P. granatum ‘Wonderful’ Leaf 2 Sicily, IT PP791890 PP820778 PP803575 PP803605
MFO2 P. granatum ‘Wonderful’ Leaf 2 Sicily, IT PP791889 PP820777 PP803574 PP803604
MFO3 P. granatum ‘Wonderful’ Leaf 2 Sicily, IT PP791888 PP820776 PP803573 PP803603
MFO4 P. granatum ‘Wonderful’ Leaf 2 Sicily, IT PP791887 PP820775 PP803572 PP803602
MFO5 P. granatum ‘Wonderful’ Leaf 2 Sicily, IT PP791886 PP820774 PP803571 PP803601
MFO6 P. granatum ‘Wonderful’ Leaf 2 Sicily, IT PP791885 PP820773 PP803570 PP803600
MFO7 P. granatum ‘Wonderful’ Leaf 2 Sicily, IT PP791883 PP820771 PP803568 PP803598
MFO8 P. granatum ‘Wonderful’ Leaf 2 Sicily, IT PP791884 PP820772 PP803569 PP803599
MFO9 P. granatum ‘Wonderful’ Leaf 2 Sicily, IT PP791891 PP820779 PP803576 PP803606
MFO10 P. granatum ‘Wonderful’ Leaf 2 Sicily, IT PP791892 PP820780 PP803577 PP803607
MFC1 P. granatum ‘Wonderful’ Leaf 3 Sicily, IT PP791903 PP820791 PP803588 PP803618
MFC2 P. granatum ‘Wonderful’ Leaf 3 Sicily, IT PP791904 PP820792 PP803589 PP803619
MFC3 P. granatum ‘Wonderful’ Leaf 3 Sicily, IT PP791905 PP820793 PP803590 PP803620
MFC4 P. granatum ‘Wonderful’ Leaf 3 Sicily, IT PP791906 PP820794 PP803591 PP803621
MFC5 P. granatum ‘Wonderful’ Leaf 3 Sicily, IT PP791907 PP820795 PP803592 PP803622
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Table 1. Cont.

Isolate Host, Cultivar Source Morphotype Location
GenBank Accession Numbers

ITS EF-1α GPDH OPA 10-2

MFC6 P. granatum ‘Wonderful’ Leaf 3 Sicily, IT PP791908 PP820796 PP803593 PP803623
MFC7 P. granatum ‘Wonderful’ Leaf 3 Sicily, IT PP791909 PP820797 PP803594 PP803624
MFC8 P. granatum ‘Wonderful’ Leaf 3 Sicily, IT PP791910 PP820798 PP803595 PP803625
MFC9 P. granatum ‘Wonderful’ Leaf 3 Sicily, IT PP791911 PP820799 PP803596 PP803626

MFC10 P. granatum ‘Wonderful’ Leaf 3 Sicily, IT PP791912 PP820800 PP803597 PP803627
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Figure 3. Internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
translation elongation factor 1-α (EF-1α), and one SCAR marker (OPA 10-2) multilocus phylogenetic
tree developed using the maximum-likelihood method, based on the Tamura–Nei model. The tree
with the greatest log likelihood (−3746.14) is shown. The relationships between the 30 isolates from
leaves and fruits of pomegranate sourced from southern Italy and the reference isolates of Alternaria
alternata, A. arborescens, and other Alternaria spp. Two species, A. betae-kenyensis and A. eichhomiae,
were used as the outgroup of the phylogenetic tree.
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2.4. Pathogenicity Test

All Alternaria isolates tested produced necrotic circular lesions on the leaves of the
three pomegranate cultivars tested (Figure 4). Significant differences were observed in
the symptom severity between the three pomegranate cultivars. In detail, ‘Etna’ showed
severe symptoms, with isolates of all three morphotypes; ‘Wonderful’ showed very severe
symptoms with isolates of morphotypes 2 and 3 but less severe symptoms with morphotype
1 isolates; and ‘Acco’ showed mild symptoms with isolates of all three morphotypes
(Figure 5). No symptoms were observed in control leaves, and the same fungi used for
artificial inoculations were re-isolated from necrotic lesions of symptomatic leaves.
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Figure 4. Differential susceptibility of leaves of pomegranate cultivars Acco, Etna, and Wonderful
to infection by nine Alternaria isolates of the three diverse morphotypes (morphotypes 1, 2, and 3,
indicated as groups 1, 2, and 3, respectively). In detail, group 1: MNC1, MNC2, and MNC3; group 2:
MFO1, MFO2, and MFO3; and group 3: MFC1, MFC2, and MFC3. Necrotic spots with a chlorotic halo
on fully expanded young leaves inoculated with a conidial suspension (106 conidia mL−1) without
wounding, three days after inoculation (dpi).

In pathogenicity tests on fruits, only morphotype 1 isolates (MNC1, MNC2, and
MNC3), identified as A. alternata, produced noticeable necrotic lesions on the fruit peels of
all three pomegranate cultivars (Figures 6 and 7). The lesion size was significantly higher
on ‘Acco’ fruits than on the fruits of ‘Wonderful’ and ‘Etna’. No significant difference was
observed between the lesion sizes on the peels of ‘Wonderful’ and ‘Etna’ fruits. Isolates of
morphotypes 2 and 3, identified as A. alternata and A. arborescens, respectively, produced
noticeable necrotic lesions only on the peels of ‘Acco’ fruits, confirming this cultivar was
the most susceptible to fruit infection among those tested. No symptoms were observed on
the control fruits, and the same fungi used for the artificial inoculations were re-isolated
from the necrotic lesions of symptomatic fruits.
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Figure 5. Differential susceptibility of leaves of pomegranate cultivars Acco, Etna, and Wonderful to
infection by nine Alternaria isolates of three diverse morphotypes (morphotypes 1, 2, and 3, indicated
as groups 1, 2, and 3, respectively). Mean area (±SD) of necrotic lesions (mm2) induced by each group
of isolates on fully expanded young leaves inoculated with a conidial suspension (106 conidia mL −1),
without wounding, three dpi. Within each group of isolates, values sharing the same letters are not
statistically different according to Tukey’s honestly significant difference (HSD) test (p ≤ 0.05).
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Figure 6. Differential susceptibility of fruits of pomegranate cultivars Acco, Etna, and Wonderful to
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groups 1, 2, and 3, respectively). Mean area (±SD) of necrotic lesions (mm2) induced by each group
of isolates on pomegranate fruits inoculated with a conidial suspension (106 conidia mL −1), without
wounding, 10 dpi. Within each group of isolates, values sharing the same letters are not statistically
different according to Tukey’s honestly significant difference (HSD) test (p ≤ 0.05).

3. Discussion

The Alternaria species responsible for the outbreak of Alternaria black spot of pomegranate
in Sicily were identified as A. alternata and A. arborescens, on the basis of multigene phyloge-
netic analysis and according to the taxonomic criteria proposed by Woudenberg et al. [18].
In the Mediterranean region, Alternaria black spot of pomegranate was reported for the
first time in Israel [16] and, a few years later, in Spain [15]. The disease was also reported in
China, the United States, and, repeatedly, in India [13,19–21]. In Israel and Spain, the causal
agent was identified as A. alternata [15,16,22]. This is the first report of Alternaria black
spot in Italy and of A. arborescens associated with Alternaria black spot of pomegranate
worldwide. Traditionally the taxonomy of Alternaria is controversial [17]. A. alternata
and A. arborescens were regarded as separate species by Woudenberg et al. [18], but were
assigned the rank of subspecies belonging to the same species complex by Armitage
et al. [23]. However, both classification systems agree in recognizing that these two taxa
are distinct lineages. Both A. alternata and A. arborescens were identified as causal agents
of another disease of pomegranate fruit known as ‘heart rot’ or ‘black heart’, already
reported in many Mediterranean countries, including Italy, as well as in India and the
United States [4,8,24–30]. However, according to Ezra et al. [16] and Gat et al. [22], isolates
causing black spots, although morphologically indistinguishable, are specific and distinct
from those associated with heart rot. The present study revealed a great variability in
both the morphology and pathogenicity of Alternaria isolates recovered from pomegranate
leaves and fruits with symptoms of black spot in Sicily. On the basis of the colony mor-
phologies, three distinct morphotypes were identified. One (morphotype 3) exclusively
comprised isolates recovered from leaves and was identified as A. arborescens, while the
other two morphotypes (morphotypes 1 and 2) exclusively comprised isolates recovered
from fruits and were identified as A. alternata on the basis of phylogenetic analysis. These
findings suggest differences in the ecology of these two closely related but genetically
distinct Alternaria species. Moreover, isolates of morphotypes 1 and 2 clustered into two
separate subclades of the multilocus phylogenetic tree, indicating that the A. alternata mor-
photypes were also genetically distinct. All isolates, irrespective of the Alternaria species
and morphotype, were pathogenic on detached unwounded leaves. However, remarkable
differences in susceptibility to leaf infections were observed among the three pomegranate
cultivars tested. In the pathogenicity tests on leaves, ‘Acco’ was less susceptible than
‘Wonderful’ and ‘Etna’ to all Alternaria isolates. In contrast, in the pathogenicity tests on
fruits, ‘Acco’ was more susceptible than the other two cultivars and was the only cultivar
to be infected by all Alternaria isolates. A possible explanation is that fruits of ‘Acco’, an
early-ripening cultivar, were more susceptible to infection by a necrotrophic pathogen
like Alternaria because they were in a more advanced maturity phase. An alternative
hypothesis is that the discrepancy between the results of the pathogenicity tests on leaves
and fruits depended on a differential organ susceptibility. Interestingly, only isolates of
morphotype 1 (homologous isolates) were virulent on fruit, while isolates of morphotypes
2 (homologous isolates) and 3 (heterologous isolates) were only weakly pathogenic on
fruits of ‘Acco’ and non-pathogenic on fruits of ‘Wonderful’ and ‘Etna’, once again sug-
gesting an isolate specificity. All these aspects, including the disease susceptibility level of
diverse pomegranate cultivars, the most appropriate test to determine this susceptibility,
as well as the variability in pathogenicity between Alternaria isolates and their specificity,
deserve to be further investigated as they have practical implications for cultivar selection,
breeding programs, and disease management strategies. A more robust, consistent, and
stable taxonomy of Alternaria would certainly be useful to this end. In general, the selection
of resistant cultivars is an effective and more sustainable alternative to synthetic fungicides
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to manage pomegranate diseases [31], also in view of the very limited number of pesticides
authorized for this crop in the EU.

Beyond Alternaria black spot, pomegranate production is challenged by other signifi-
cant diseases that impact yield and fruit quality. Heart rot, caused by Alternaria spp., is a
major concern, alongside various fungal, bacterial, and viral pathogens. Notable diseases
include Cercospora leaf and fruit spot (Cercospora punicae), Botryosphaeria blight and fruit
rot (Botryosphaeria dothidea), and bacterial blight (Xanthomonas axonopodis pv. punicae). Viral
diseases, though less common, such as pomegranate mosaic virus and pomegranate yellow
mosaic virus, also pose challenges [13,32,33]. While Alternaria spp. are significant leaf
pathogens, they are not the only ones affecting pomegranates. Cercospora punicae and
Botryosphaeria dothidea also contribute to leaf and fruit diseases, impacting overall plant
health and productivity [32,33].

The outbreak of Alternaria black spot of pomegranate in late spring was favored by
warm temperatures and the presence of young susceptible leaves. However, it can be
speculated that it was a direct consequence of exceptionally heavy rains, since, normally in
Sicily at this time of the year, the absence of rains is a limiting factor for the occurrence of
epidemics of fungal leaf disease. In this respect, it can be expected that in coming years,
the probability of epidemic outbreaks of this disease occurring in spring will increase as
a consequence of climate change. As climate change continues to affect environmental
conditions, causing increased temperatures and changes in rainfall patterns, the risk of
disease outbreaks may increase [34,35]. These alterations can create favorable conditions
for the proliferation of pathogens like Alternaria spp. Increased moisture is critical for the
germination and spread of fungal spores [36]. The unusually wet period that occurred be-
fore the outbreak likely facilitated the development and severity of the disease. In addition,
future climate scenarios predict more intense and frequent rainfall events, which could
lead to more common and severe outbreaks of diseases that thrive in wet conditions [37].

However, in Sicily, and more generally in the Mediterranean region, climatic conditions
in summer are not conducive to Alternaria black spot of pomegranate, which consequently,
in this area, can be regarded as a minor disease or an occasional constraint. An exception
could be pomegranate orchards in northern and central regions of Italy or planted in valley
floors along the riverbanks. Moreover, this disease may be a serious constraint in humid
subtropical or tropical areas with warm temperatures, such as Florida (USA) and some
regions of China where the crop is expanding, as it may cause severe defoliation and yield
losses in the form of leaf spot [21].

The severity and progression of Alternaria black spot of pomegranate in Sicily, as influ-
enced by climatic conditions, are consistent with findings on Alternaria leaf spot of soybean,
where environmental factors such as temperature and relative humidity significantly affect
disease development. Fagodiya et al. [38] highlight that the optimal temperature ranges
and relative humidity levels that promote disease progression in soybean for Alternaria
leaf spot underscore the importance of similar climatic conditions in the epidemiology of
Alternaria black spot in pomegranates. Rising temperatures can expand the geographical
range of both pathogens and their hosts, and warmer winters might not be cold enough
to limit the survival of certain pathogens, allowing them to persist year-round [37,39]. As
climate change continues to alter environmental conditions, leading to warmer temper-
atures and changes in precipitation patterns, the risk of disease outbreaks may increase.
Therefore, understanding the interaction between climatic variables and disease develop-
ment is crucial for anticipating and managing future outbreaks in the context of a changing
climate [38,40,41].

4. Materials and Methods
4.1. Fruit and Leaf Sampling and Alternaria Isolation

From May to November 2023, surveys were carried out in the commercial pomegranate
orchard where the disease outbreak was first noticed. The orchard was in the municipality of
Misterbianco (the Province of Catania, Sicily, Italy; 37.463109312245535, 14.971325900520004).
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The trees were 10 years old, spaced 3.5 × 6 m, and trained into a transversal Y system. A
drip-irrigation system (self-compensating double-drip wing) and a plastic mulching sheet
along the rows were used. From the end of May to the end of June 2023, symptomatic
leaves and fruits of the pomegranate cultivar ‘Wonderful’ were sampled. Other varieties
present in the orchards, such as Acco, Parfianka, Mollar de Alche, Primosole, and Etna,
which were located in another area of the orchard (400 m away), did not exhibit symptoms.

Small tissue pieces (2–3 mm) were excised from necrotic spots on leaves and fruit
peels, surface-disinfected by immersion in 1% NaClO for 1–3 min, rinsed twice in sterile
distilled water (SDW), blotted dry in sterile conditions on sterile filter paper, and plated in
Petri dishes on potato dextrose agar (PDA, Oxoid Ltd., Basingstoke, UK) amended with
streptomycin sulfate (250 µg/mL) (Sigma-Aldrich, St. Louis, MA, USA). The dishes were
incubated for seven days at 22 ± 2 ◦C in darkness. Pure Alternaria isolates were obtained
by single-hypha subcultures on PDA. The isolates were preserved in the culture collection
of the Laboratory of Molecular Plant Pathology of the Department of Agriculture, Food,
and Environment (Di3A) at the University of Catania.

4.2. Morphological Characterization of Isolates

The isolates were grown in Petri dishes on PDA and malt extract agar (MEA; Sigma-
Aldrich, Burlington, MA, USA). The dishes were incubated for 7 days at 25 ± 1 ◦C in
darkness. The morphological characteristics (color, margin, diameter, and texture) of the
colonies and their microscopic features (conidium and conidiophore branch morphology)
were examined according to Aloi et al. [4].

4.3. Molecular Characterization of Isolates

The Alternaria isolates recovered from symptomatic leaves and fruits of pomegranate
were grown on PDA for 7 days at 25 ± 1 ◦C. Then, mycelium from each isolate was
harvested using a sterile scalpel, and genomic DNA was extracted using a PowerPlant®

Pro DNA isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA), following the
manufacturer’s protocol. The DNA was then stored at −20 ◦C. To characterize and deter-
mine the phylogenetic allocation of the 30 isolates from pomegranate fruits and leaves, a
multilocus approach was adopted. Sequencing was performed on segments of four Al-
ternaria barcoding genes/regions: internal transcribed spacer (ITS), translation elongation
factor 1-α (EF-1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and a SCAR
marker (OPA10–2). The primers used in this study for amplifying these genes/regions
were as follows: ITS1/ITS4 for the ITS region [42], EF1-728F/EF1-986R for the EF-1α
gene [43], GPD1/GPD2 for the GAPDH gene [44], and OPA10-2R/OPA10-2L for the
OPA10-2 marker [4,17].

GeneAmp PCR System 9700 (Applied Biosystems, Monza-Brianza, Italy) was used
for the PCR amplifications. Taq DNA polymerase recombinant (Invitrogen™) was used
for all PCR reactions, performed at a total volume of 25 µL containing a PCR buffer (1×),
a dNTP mix (0.2 mM), MgCl2 (1.5 mM), forward and reverse primers (0.5 µM each), Taq
DNA polymerase (1 U), and 1 µL of genomic DNA. The reaction protocol comprised an
initial denaturation at 94 ◦C for 3 min followed by 35 cycles of denaturation at 94 ◦C for
30 s, annealing at 55 ◦C (for the ITS region), 58 ◦C (for EF-1α), 54 ◦C (for GAPDH), or 62 ◦C
(for OPA10-2) for 30 s, and an extension at 72 ◦C for 30 s, with a final extension at 72 ◦C
for 10 min. The resulting amplicons were visualized on a 1% agarose gel, and the purified
products were sequenced with both forward and reverse primers by Macrogen Europe
(Amsterdam, The Netherlands). The sequences were analyzed using FinchTV v.1.4.0, and
the obtained sequences were deposited in GenBank (Table 1). For molecular identifica-
tion, the sequences from isolates characterized in this study and validated sequences of
reference Alternaria isolates (Table 2) were used for phylogenetic analysis. Prior to anal-
ysis, the complete panel of reference sequences underwent the elimination of duplicates
utilizing the Elim Dupes software (accessed on 15 June 2020). The sequences were aligned
using MUSCLE and analyzed using MEGA6 for phylogenetic reconstruction using the
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maximum-likelihood method with the Tamura–Nei model [45]. Bootstrap analysis with
1000 replications was conducted. To enhance this investigation with the genetic diversity
among the isolates obtained in this study, a combined dataset of all sequenced markers
(ITS, EF-1α, GAPDH, and OPA10-2) was employed for phylogenetic analysis.

Table 2. GenBank accession numbers of sequences of Alternaria spp. isolates from different hosts and
geographical origins used as references in phylogenetic analyses.

Species Isolate Country Host Source
Accession Numbers

ITS EF-1α GAPDH OPA 10-2

Alternaria
alstroemeriae CBS 118808 USA Alstroemeria sp. [18] KP124296 KP125071 KP124153 KP124601

A. alternata AaMDc5b Italy Punica
granatum [4] MW580731 MW585112 MW590490 MW590532

A. alternata AaMDc5d Italy P. granatum [4] MW580755 MW585133 MW590514 MW590556
A. alternata AaMMH6b Italy P. granatum [4] MW580756 MW585134 MW590515 MW590557
A. alternata CBS 102.47 USA Citrus sinensis [18] KP124304 KP125080 KP124161 KP124610
A. alternata CBS 102595 USA C. jambhiri [18] FJ266476 KC584666 AY562411 KP124636
A. alternata CBS 112252 - - [18] KP124340 KP125116 KP124194 KP124650
A. alternata CBS 117.44 Denmark Godetia sp. [18] KP124303 KP125079 KP124160 KP124609

A. alternata CBS 916.96 India Arachis
hypogaea [18] AF347031 KC584634 AY278808 KP124632

A. arborescens AaMDc1b Italy P. granatum [4] MW580737 MW585151 MW590496 MW590538
A. arborescens AaMRa1 Italy P. granatum [4] MW580759 MW585153 MW590518 MW590560
A. arborescens CBS 108.41 - wood [18] KP124394 KP125172 KP124246 KP124707

A. arborescens CBS 109730 USA Solanum
lycopersicum [18] KP124399 KP125177 KP124251 KP124713

A. arborescens CBS 112749 South
Africa Malus domestica [18] KP124401 KP125179 KP124253 KP124715

A. arborescens CBS 115517 South
Africa M. domestica [18] KP124404 KP125182 KP124256 KP124718

A. arborescens AaMDc1a Italy P. granatum [4] MW580736 MW585150 MW590495 MW590537
A.

betae-kenyensis CBS 118810 Kenya Beta vulgaris
var. cicla [18] KP124419 KP125197 KP124270 KP124733

A. burnsii CBS 107.38 India Cuminum
cyminum [18] KP124420 JQ646305 KP125198 KP124734

A. eichhorniae CBS 119778 Indonesia Eichhornia
crassipes [18] KP124426 KP125205 KP124277 KP124741

A. jacinthicola CBS 878.95 Mauritius Arachis
hypogaea [18] KP124437 KP125216 KP124286 KP124753

A. longipes CBS 540.94 USA Nicotiana
tabacum [18] AY278835 KC584667 AY278811 KP124758

A. tomato CBS 103.30 - S. lycopersicum [18] KP124445 KP125224 KP124294 KP124762

4.4. Pathogenicity Tests on Leaves and Fruits of Different Pomegranate Varieties

In order to assess the virulence of the Alternaria isolates and evaluate the susceptibility
of the different pomegranate varieties, nine selected isolates representing all three diverse
morphotypes and including both A. alternata (MNC1, MNC2, MNC3, MFO1, MFO2, and
MF03) and A. arborescens (MFC1, MFC2, and MFC3) isolates were inoculated on the fruits
and leaves of three pomegranate cultivars, ‘Acco’, ‘Etna’, and ‘Wonderful’. Fungal isolates
were cultured on PDA in Petri dishes and incubated at 25 ± 1 ◦C for 7 days in the dark. A
conidium suspension of each isolate was prepared by flooding the dishes with 6 mL of SDW
and scraping the agar surface. The suspension was then filtered through a cheesecloth, and
the concentration was adjusted to 1×106 conidia/mL with SDW using a hemocytometer. In
the pathogenicity tests, detached fully expanded leaves of the summer vegetative flushing
and mature fruits of the three pomegranate cultivars were used. Both leaves and fruits
were collected in November and, before inoculation, were surface disinfected by dipping
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them in 1% NaClO for 2 min, rinsed carefully with SDW, air-dried at room temperature,
and then kept in humid chambers (plastic boxes with air-tight lids and damp paper on
the bottoms) on aluminum foil or plastic rings, respectively, to avoid direct contact with
the water. Artificial inoculations were performed by pipetting 20 µL drops of the conidial
suspension on the abaxial side of the leaf lamina (four separate drops per leaf, two on
each side of the midrib) and on the upper side of the fruit (six separate drops per fruit, in
equatorial position). Mock inoculations were performed on the same number of leaves
and fruits using sterile deionized water. The leaves and fruits were then incubated in
humid chambers (plastic boxes) at 25 ± 1 ◦C under a 16/8 h light/dark photoperiod
and 90% RH for 3 and 10 days, respectively. Three days after inoculation (dpi) on leaves
and ten dpi on fruits, the diameter (2r) of the necrotic lesion at each inoculation site was
measured, and the results were expressed as the area of the lesion calculated with the
formula A (area of circumference) = πr2. To fulfil Koch’s postulates, reisolations were
performed from symptomatic leaves and fruits using PDA amended with streptomycin
sulfate as a medium. The isolates were identified on the basis of the colony morphology
on PDA, and the identification of a restricted number of selected isolates was confirmed
by sequencing ITS, 1-α (EF-1α), GAPDH, and OPA10–2. The pathogenicity test was
repeated three times, each with 10 leaves and fruits per pomegranate cultivar and Alternaria
isolate combination.

4.5. Statistical Analysis

The data from the pathogenicity tests were analyzed using RStudio v.4.3.1 (R). The
means of the surface areas of the necrotic lesions induced by different Alternaria isolates on
leaves and fruits were compared and analyzed by one-way analysis of variance (ANOVA)
coupled with the Tukey–Kramer honestly significant difference (HSD) test.

5. Conclusions

This study presents the first report of Alternaria black spot of pomegranate in Italy,
identifying Alternaria alternata and A. arborescens as the causal agents. The outbreak in Sicily
followed an unusually rainy period, highlighting the role of environmental conditions in
the disease’s emergence. Thirty Alternaria isolates from symptomatic pomegranate leaves
and fruits were morphologically and molecularly characterized, revealing three distinct
morphotypes. Morphotype 1 and 2 isolates, identified as A. alternata, were primarily found
on fruits, while morphotype 3, identified as A. arborescens, was found on leaves. Pathogenic-
ity tests showed all morphotypes could infect leaves of the cultivars ‘Acco’, ‘Wonderful’,
and ‘Etna’, with ‘Acco’ being the least susceptible. Conversely, the fruit susceptibility
varied: ‘Acco’ fruits were most susceptible to all morphotypes, whereas ‘Wonderful’ and
‘Etna’ fruits were only susceptible to morphotype 1 isolates. This study underscores the im-
portance of cultivar selection and environmental monitoring in managing Alternaria black
spot. The findings suggest the need for further research on cultivar resistance and pathogen
variability, which are crucial for developing effective disease management strategies and
breeding programs.
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