Development of a Reference Transcriptome and Identification of Differentially Expressed Genes Linked to Salt Stress in Salt Marsh Grass (Sporobolus alterniflorus) along Delaware Coastal Regions
Abstract
:1. Introduction
2. Results
2.1. Marsh Grass Transcriptome Assembly
2.2. BLAST Summary Statistics
2.3. Number of Differentially Expressed Contigs from Each Method
2.4. Number of Differentially Expressed Contigs from EBSeq with Multiple Conditions
2.5. Gene Expression Analysis
Gene Identification and Primer Design
2.6. qPCR Analysis
2.7. Functional Categorization of the DE Genes (Enrichment Analysis)
2.8. Transcription Factors and KEGG Pathway Analysis
3. Discussion
4. Material and Methods
4.1. Sample Collection
4.2. Library Preparation and Sequencing
4.3. Transcriptome Assembly
4.4. Differential Expression Analysis
4.5. cDNA Preparation
4.6. qPCR Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aliakbari, M.; Razi, H.; Alemzadeh, A.; Tavakol, E. RNA-seq Transcriptome Profiling of the Halophyte Salicornia persica in Response to Salinity. J. Plant Growth Regul. 2021, 40, 707–721. [Google Scholar] [CrossRef]
- Mattheus, C.R.; Rodriguez, A.B.; McKee, B.A.; Currin, C.A. Impact of land-use change and hard structures on the evolution of fringing marsh shorelines. Estuar. Coast. Shelf Sci. 2010, 88, 365–376. [Google Scholar] [CrossRef]
- Herbert, E.R.; Boon, P.; Burgin, A.J.; Neubauer, S.C.; Franklin, R.B.; Ardón, M.; Hopfensperger, K.N.; Lamers, L.P.M.; Gell, P. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 2015, 6, 1–43. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and Eutrophication: Where Do We Go from Here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef]
- Qadir, M.; Oster, J.D. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci. Total Environ. 2004, 323, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Läuchli, A.; Grattan, S.R. Plant growth and development under salinity stress. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–32. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Al-Tamimi, N.; Brien, C.; Oakey, H.; Berger, B.; Saade, S.; Ho, Y.S.; Schmöckel, S.M.; Tester, M.; Negrão, S. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Commun. 2016, 7, 13342. [Google Scholar] [CrossRef]
- Pereira, J.V.; Viana, T.V.d.A.; de Sousa, G.G.; Chagas, K.L.; de Azevedo, B.M.; Pereira, C. Physiological responses of lima bean subjected to salt and water stresses. Rev. Bras. Eng. Agrícola Ambient. 2019, 23, 959–965. [Google Scholar] [CrossRef]
- Shu, J.; Ma, X.; Ma, H.; Huang, Q.; Zhang, Y.; Guan, M.; Guan, C. Transcriptomic, proteomic, metabolomic, and functional genomic approaches of Brassica napus L. during salt stress. PLoS ONE 2022, 17, e0262587. [Google Scholar] [CrossRef]
- Todd, A.R.; Donofrio, N.; Sripathi, V.R.; McClean, P.E.; Lee, R.K.; Pastor-Corrales, M.; Kalavacharla, V.K. Marker-assisted molecular profiling, deletion mutant analysis, and RNA-seq reveal a disease resistance cluster associated with uromyces appendiculatus infection in common bean Phaseolus vulgaris L. Int. J. Mol. Sci. 2017, 18, 1109. [Google Scholar] [CrossRef]
- Hayford, R.K.; Serba, D.D.; Xie, S.; Ayyappan, V.; Thimmapuram, J.; Saha, M.C.; Wu, C.H.; Kalavacharla, V.K. Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses. BMC Plant Biol. 2022, 22, 107. [Google Scholar] [CrossRef]
- Peterson, P.M.; Romaschenko, K.; Arrieta, Y.H.; Saarela, J.M. A molecular phylogeny and new subgeneric classification of Sporobolus (Poaceae: Chloridoideae: Sporobolinae). Taxon 2014, 63, 1212–1243. [Google Scholar] [CrossRef]
- Parker, A. Potable water from sea-water. Nature 1942, 149, 184–186. [Google Scholar] [CrossRef]
- Baisakh, N.; Subudhi, P.K.; Varadwaj, P. Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct. Integr. Genomics 2008, 8, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-H.; Ge, Z.-M.; Xie, L.-N.; Chen, W.; Yuan, L.; Wang, D.-Q.; Li, X.-Z.; Zhang, L.-Q. Ecophysiological response of native and exotic salt marsh vegetation to waterlogging and salinity: Implications for the effects of sea-level rise. Sci. Rep. 2018, 8, 2441. [Google Scholar] [CrossRef]
- Robertson, M.; Schrey, A.; Shayter, A.; Moss, C.J.; Richards, C. Genetic and epigenetic variation in Spartina alterniflora following the Deepwater Horizon oil spill. Evol. Appl. 2017, 10, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Sogoni, A.; Jimoh, M.O.; Kambizi, L.; Laubscher, C.P. The impact of salt stress on plant growth, mineral composition, and antioxidant activity in Tetragonia decumbens mill.: An underutilized edible halophyte in South Africa. Horticulturae 2021, 7, 140. [Google Scholar] [CrossRef]
- Yamamoto, N.; Takano, T.; Tanaka, K.; Ishige, T.; Terashima, S.; Endo, C.; Kurusu, T.; Yajima, S.; Yano, K.; Tada, Y. Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus. Front. Plant Sci. 2015, 6, 241. [Google Scholar] [CrossRef]
- Bedre, R.; Mangu, V.R.; Srivastava, S.; Sanchez, L.E.; Baisakh, N. Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity. BMC Genomics 2016, 17, 657. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, G.; Tang, J.; Luo, R.; Patterson, J.; Liu, S.; Huang, W.; He, G.; Gu, S.; Li, S.; et al. SOAPdenovo-Trans: De novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 2014, 30, 1660–1666. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011, 12, 323. [Google Scholar] [CrossRef]
- VanBuren, R.; Wai, C.M.; Keilwagen, J.; Pardo, J. A chromosome-scale assembly of the model desiccation tolerant grass Oropetium thomaeum. Plant Direct 2018, 2, e00096. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Jalmi, S.K.; Bhagat, P.K.; Verma, N.; Sinha, A.K. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. FEBS J. 2020, 287, 2560–2576. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Li, S.; Zhang, L.; Zou, C.; Yu, D. The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta-Gene Regul. Mech. 2012, 1819, 120–128. [Google Scholar] [CrossRef]
- Bo, C.; Chen, H.; Luo, G.; Li, W.; Zhang, X.; Ma, Q.; Cheng, B.; Cai, R. Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice. Plant Cell Rep. 2020, 39, 135–148. [Google Scholar] [CrossRef]
- Chikhi, R.; Medvedev, P. Informed and automated k-mer size selection for genome assembly. Bioinformatics 2014, 30, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Cerveau, N.; Jackson, D.J. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms. BMC Bioinformatics 2016, 17, 525. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C T method. Nat. Protoc. 2008, 3, 1101. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, G.; Chen, Y.; Bai, Q.; Gao, C.; Zeng, L.; Li, Z.; Cheng, Y.; Chen, J.; Sun, X.; et al. Selection of Reference Genes for qPCR Analyses of Gene Expression in Ramie Leaves and Roots across Eleven Abiotic/Biotic Treatments. Sci. Rep. 2019, 9, 20004. [Google Scholar] [CrossRef]
Database Name | Number of Hits | % of Hits | Unique Hits |
---|---|---|---|
Viridiplantae nr | 180,762 | 85.34 | 61.699 |
Rice proteins | 168,274 | 79.45 | 23.982 |
Setaria proteins | 165,887 | 78.32 | 23.358 |
Hits to all 3 databases | 157,700 | 74.45 | N/A |
Hits to at least one database | 186,170 | 88 | N/A |
Comparisons | DESeq2 | RSEM-EBSeq |
---|---|---|
HS vs. MS | 30,159 | 48,920 |
HS vs. LS | 42,325 | 42,550 |
MS vs. LS | 15,867 | 34,556 |
Comparisons | EBSeq | |
---|---|---|
Pattern 1 | Similar expression between HS and MS but different for LS | 9122 |
Pattern 2 | Similar expression between HS and LS but different for MS | 22,601 |
Pattern 3 | Similar expression between MS and LS but different for HS | 25,576 |
Pattern 4 | Different expression between all conditions | 16,312 |
(Total DE contigs across all above-listed patterns) | 73,611 |
NAME | LSBR1 | LSBR2 | LSBR3 | MSBR1 | MSBR2 | MSBR3 | HSBR1 | HSBR2 | HSBR3 |
---|---|---|---|---|---|---|---|---|---|
tra_7509 | 4.97 | 8.57 | 7.7 | 0.93 | 2.33 | 2.63 | 27.83 | 23.96 | 22.89 |
tri_352115 | 194.98 | 213.66 | 264.16 | 55.66 | 253.55 | 275.44 | 0.12 | 0 | 0 |
tri_256589 | 0 | 0 | 0 | 2.46 | 4.24 | 2.32 | 0.21 | 0 | 0 |
Sample Name | Target Name | RQ | RQ Min | RQ Max | CT | CTSD | ΔCT Mean | ΔΔCT |
---|---|---|---|---|---|---|---|---|
LS | 352115 | 1 | 0.636477 | 1.57115 | 25.34552 | 0.217588 | −7.13879 | 0 |
MS | 352115 | 1.816862 | 0.907651 | 3.636846 | 24.4925 | 0.53795 | −8.00024 | −0.86145 |
HS | 352115 | 2.047153 | 1.063221 | 3.941641 | 23.79867 | 0.266774 | −8.17241 | −1.03362 |
LS | 256589 | 1 | 0.345292 | 2.896101 | 35.31568 | 0.893261 | 3.630939 | 0 |
MS | 256589 | 1.618414 | 0.95379 | 2.746165 | 35.42017 | 0.218514 | 2.936359 | −0.69458 |
HS | 256589 | 1.965519 | 1.051805 | 3.672984 | 34.31187 | 0.200397 | 2.656029 | −0.97491 |
LS | 7509 | 1 | 0.456056 | 2.192713 | 31.32734 | 0.617515 | −0.35185 | 0 |
MS | 7509 | 0.097121 | 0.026046 | 0.362148 | 34.99089 | 1.141173 | 3.012215 | 3.364066 |
HS | 7509 | 0.234553 | 0.081096 | 0.678395 | 33.37183 | 0.798214 | 1.74016 | 2.092012 |
KEGG Pathway Mapping (MS vs. LS) | |||
---|---|---|---|
Rice KEGG-ID | Pathway | DEG_Name | Pathway Name |
K12813 | Spliceosome | tra_17_c0_g1_i1 | Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 |
K00021 | Metabolic pathway/biosynthesis of secondary metabolites | tri_275973_c0_g1_i1 | Hydroxymethylglutaryl-CoA reductase (NADPH) |
K02703 | Photosynthesis/metabolic pathways | tri_157558_c0_g1_i1 | Photosystem II P680 reaction center D1 protein |
K15109 | Thermogenesis | tri_161409_c0_g1_i1 | Solute carrier family 25 (mitochondrial |
K00083 | Phenylpropanoid biosynthesis | tri_182549_c0_g1_i1 | cinnamyl-alcohol dehydrogenase) |
K00928 | Glycine, serine, and threonine metabolism/biosynthesis of amino acids | tri_24691_c0_g1_i1 | Aspartate kinase |
KEGG Pathway Mapping (HS vs. LS) | |||
Rice KEGG-ID | Pathway | DEG_Name | Pathway Name |
K09284 | AP2; AP2-like factor | tri_68476_c0_g1_i1 | AP2-like factor, euAP2 lineage |
K16296 | Serine carboxypeptidase-like clade | tri_6216_c0_g1_i1 | Serine carboxypeptidase-like clade I |
K14513 | MAPK signaling pathway—plant/plant hormone signal transduction | tri_244640_c0_g1_i1 | Ethylene-insensitive protein 2 |
K15109 | Thermogenesis | tri_50326_c0_g1_i1 | Solute carrier family 25 (mitochondrial carnitine/acylcarnitine transporter), member 20/29 |
K00083 | Phenylpropanoid biosynthesis | tri_234627_c0_g1_i1 | Cinnamyl-alcohol dehydrogenase |
KEGG Pathway Mapping (HS vs. MS) | |||
Rice KEGG-ID | Pathway | DEG_Name | Pathway Name |
K00799 | Glutathione metabolism | tri_200548_c0_g1_i1 | Glutathione S-transferase |
K00166 | Valine, leucine, and isoleucine degradation/propanoate metabolism | tri_19937_c0_g1_i1 | 2-Oxoisovalerate dehydrogenase E1 component subunit alpha |
K08913 | Photosynthesis—antenna proteins/metabolic pathways | tra_19146_c0_g1_i1 | Light-harvesting complex II chlorophyll a/b-binding protein 2 |
K04079 | Protein processing in endoplasmic reticulum/PI3K-Akt signaling pathway | tra_32300_c0_g1_i1 | Molecular chaperone HtpG |
Kl4497 | MAPK signaling pathway—plant/plant hormone signal transduction | tri_344092_c0_g1_i1 | Protein phosphatase 2C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todd, A.; Bhide, K.; Hayford, R.; Ayyappan, V.; Subramani, M.; Chintapenta, L.K.; Thimmapuram, J.; Ozbay, G.; Kalavacharla, V. Development of a Reference Transcriptome and Identification of Differentially Expressed Genes Linked to Salt Stress in Salt Marsh Grass (Sporobolus alterniflorus) along Delaware Coastal Regions. Plants 2024, 13, 2008. https://doi.org/10.3390/plants13142008
Todd A, Bhide K, Hayford R, Ayyappan V, Subramani M, Chintapenta LK, Thimmapuram J, Ozbay G, Kalavacharla V. Development of a Reference Transcriptome and Identification of Differentially Expressed Genes Linked to Salt Stress in Salt Marsh Grass (Sporobolus alterniflorus) along Delaware Coastal Regions. Plants. 2024; 13(14):2008. https://doi.org/10.3390/plants13142008
Chicago/Turabian StyleTodd, Antonette, Ketaki Bhide, Rita Hayford, Vasudevan Ayyappan, Mayavan Subramani, Lathadevi Karuna Chintapenta, Jyothi Thimmapuram, Gulnihal Ozbay, and Venu (Kal) Kalavacharla. 2024. "Development of a Reference Transcriptome and Identification of Differentially Expressed Genes Linked to Salt Stress in Salt Marsh Grass (Sporobolus alterniflorus) along Delaware Coastal Regions" Plants 13, no. 14: 2008. https://doi.org/10.3390/plants13142008
APA StyleTodd, A., Bhide, K., Hayford, R., Ayyappan, V., Subramani, M., Chintapenta, L. K., Thimmapuram, J., Ozbay, G., & Kalavacharla, V. (2024). Development of a Reference Transcriptome and Identification of Differentially Expressed Genes Linked to Salt Stress in Salt Marsh Grass (Sporobolus alterniflorus) along Delaware Coastal Regions. Plants, 13(14), 2008. https://doi.org/10.3390/plants13142008