Predicting the Threat Status of Mosses Using Functional Traits
Abstract
:1. Introduction
2. Results
- X1: ‘plant sex’; 0 for dioicous and 1 for monoicous
- X2: ‘sporophyte presence’; 0 for absence and 1 for presence
- X3: ‘substrate breadth’; the number of different types of substrates occupied
- Cutoff = 0.21 ≤ Extinction Risk MAM1 ⇒ Species threatened
- Cutoff = 0.21 > Extinction Risk MAM1 ⇒ Species non-threatened
- X1: ‘seta length’; the length of seta in mm
- X2: ‘substrate breadth’; the number of different types of substrates occupied
- Cutoff = 0.18 ≤ Extinction Risk MAM2 ⇒ Species threatened
- Cutoff = 0.18 > Extinction Risk MAM2 ⇒ Species non-threatened
3. Material and Methods
3.1. Data Collection
3.2. Data Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Cowie, R.H.; Bouchet, P.; Fontaine, B. The Sixth Mass Extinction: Fact, fiction or speculation? Biol. Rev. 2022, 97, 640–663. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.T.; Ebeling, A.; Eisenhauer, N.; Hertzog, L.; Hillebrand, H.; Milcu, A.; Pompe, S.; Abbas, M.; Bessler, H.; Buchmann, N.; et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere 2016, 7, e01619. [Google Scholar] [CrossRef]
- Hodgetts, N. A Miniature World in Decline: European Red List of Mosses, Liverworts and Hornworts; IUCN, International Union for Conservation of Nature: Gland, Switzerland, 2019. [Google Scholar] [CrossRef]
- Rousk, K.; Rousk, J.; Jones, D.L.; Zackrisson, O.; DeLuca, T.H. Feather moss nitrogen acquisition across natural fertility gradients in boreal forests. Soil. Biol. Biochem. 2013, 61, 86–95. [Google Scholar] [CrossRef]
- Ma, X.-Y.; Xu, H.; Cao, Z.-Y.; Shu, L.; Zhu, R.-L. Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses. Glob. Chang. Biol. 2022, 28, 6419–6432. [Google Scholar] [CrossRef] [PubMed]
- Mallen-Cooper, M.; Rodríguez-Caballero, E.; Eldridge, D.J.; Weber, B.; Büdel, B.; Höhne, H.; Cornwell, W.K. Towards an understanding of future range shifts in lichens and mosses under climate change. J. Biogeogr. 2023, 50, 406–417. [Google Scholar] [CrossRef]
- Glime, J.M. Bryophyte Ecology; Michigan Technological University: Houghton, MI, USA, 2020; Available online: https://digitalcommons.mtu.edu/bryophyte-ecology/ (accessed on 10 May 2023).
- Longton, R.E. Reproduction and rarity in British mosses. Biol. Conserv. 1992, 59, 89–98. [Google Scholar] [CrossRef]
- Patiño, J.; Vanderpoorten, A. Bryophyte biogeography. Crit. Rev. Plant Sci. 2018, 37, 175–209. [Google Scholar] [CrossRef]
- Pressel, S.; Matcham, H.W.; Duckett, J.G. Studies of protonemal morphogenesis in mosses. XI. Bryum and allied genera: A plethora of propagules. J. Bryol. 2007, 29, 241–258. [Google Scholar] [CrossRef]
- Stanton, D.E.; Coe, K.K. 500 million years of charted territory: Functional ecological traits in bryophytes. Bryophyt. Divers. Evol. 2021, 43, 234–252. [Google Scholar] [CrossRef]
- Heinlen, E.R.; Vitt, D.H. Patterns of rarity in mosses of the Okanogan highlands of Washington State: An emerging coarse filter approach to rare moss conservation. Bryologist 2003, 106, 34–52. [Google Scholar] [CrossRef]
- Brummitt, N.A.; Bachman, S.P.; Griffiths-Lee, J.; Lutz, M.; Moat, J.F.; Farjon, A.; Donaldson, J.S.; Hilton-Taylor, C.; Meagher, T.R.; Albuquerque, S.; et al. Green plants in the red: A baseline global assessment for the IUCN sampled Red List index for plants. PLoS ONE 2015, 10, e0135152. [Google Scholar] [CrossRef] [PubMed]
- IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria. Prepared by the Standards and Petitions Committee. 2022. Available online: https://nc.iucnredlist.org/redlist/content/attachment_files/RedListGuidelines.pdf (accessed on 11 April 2023).
- IUCN. The IUCN Red List of Threatened Species. 2024. Available online: https://www.iucnredlist.org (accessed on 6 January 2024).
- Violle, C.; Navas, M.-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Van Zuijlen, K.; Bisang, I.; Nobis, M.P.; Bergamini, A. Extinction risk of European bryophytes predicted by bioclimate and traits. Biol. Conserv. 2024, 293, 110584. [Google Scholar] [CrossRef]
- Muñoz, J.; Felicísimo, A.M.; Cabezas, F.; Burgaz, A.R.; Martínez, I. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science 2004, 304, 1144–1147. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, S. Larger capsules enhance short-range spore dispersal in Sphagnum, but what happens further away? Oikos 2005, 108, 115–124. [Google Scholar] [CrossRef]
- Marschall, M. Ecophysiology of bryophytes in a changing environment. Acta Biol. Plant. Agriensis 2017, 5, 61–70. [Google Scholar] [CrossRef]
- Coe, K.K.; Howard, N.B.; Slate, M.L.; Bowker, M.A.; Mishler, B.D.; Butler, R.; Greenwood, J.; Stark, L.R. Morphological and physiological traits in relation to carbon balance in a diverse clade of dryland mosses. Plant Cell Environ. 2019, 42, 3140–3151. [Google Scholar] [CrossRef] [PubMed]
- Żarnowiec, J.; Staniaszek-Kik, M.; Chmura, D. Trait-based responses of bryophytes to the decaying logs in Central European mountain forests. Ecol. Indic. 2021, 126, 107671. [Google Scholar] [CrossRef]
- Calleja, J.A.; Domènech, G.; Sáez, L.; Lara, F.; Garilleti, R.; Albertos, B. Extinction risk of threatened and non-threatened mosses: Reproductive and ecological patterns. Glob. Ecol. Conserv. 2022, 38, e02254. [Google Scholar] [CrossRef]
- Chichorro, F.; Juslén, A.; Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 2019, 237, 220–229. [Google Scholar] [CrossRef]
- Munstermann, M.J.; Heim, N.A.; McCauley, D.J.; Payne, J.L.; Upham, N.S.; Wang, S.C.; Knope, M.L. A global ecological signal of extinction risk in terrestrial vertebrates. Cons. Biol. 2022, 36, e13852. [Google Scholar] [CrossRef] [PubMed]
- Löbel, S.; Mair, L.; Lönnell, N.; Schröder, B.; Snäll, T. Biological traits explain bryophyte species distributions and responses to forest fragmentation and climatic variation. J. Ecol. 2018, 106, 1700–1713. [Google Scholar] [CrossRef]
- Araújo, A.C.; Signorino, G.; Brummitt, N.A. Assessments of extinction risk for bryophytes from Madagascar and Indian Ocean islands. Nova Hedwig. 2022, 114, 321–363. [Google Scholar] [CrossRef]
- GBIF.org. GBIF Home Page. 2024. Available online: https://www.gbif.org (accessed on 10 January 2024).
- Flora of North America Editorial Committee. Flora of North America @ eFloras; Missouri Botanical Garden: St. Louis, MO, USA; Harvard University Herbaria: Cambridge, MA, USA, 1993; Available online: http://www.efloras.org/flora_page.aspx?flora_id=1 (accessed on 3 February 2024).
- Flora of China Editorial Committee. Flora of China @ eFloras; MO & Harvard University Herbaria: Cambridge, MA, USA, 2008; Available online: http://www.efloras.org/flora_page.aspx?flora_id=2 (accessed on 10 May 2023).
- Biodiversity Heritage Library Consortium. Biodiversity Heritage Library. 2006. Available online: https://www.biodiversitylibrary.org/ (accessed on 6 July 2023).
- WFO. World Flora Online. 2024. Available online: http://www.worldfloraonline.org (accessed on 10 January 2024).
- JSTOR. Global Plants on JSTOR. 2024. Available online: https://plants.jstor.org/ (accessed on 7 April 2024).
- Vanegas, L.; Rondón, L.; Paula, G. glmtoolbox: Set of Tools to Data Analysis using Generalized Linear Models. 2023. Available online: https://CRAN.R-project.org/package=glmtoolbox (accessed on 10 May 2023).
- Unal, I. Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach. Comput. Math. Methods Med. 2017, 2017, 3762651. [Google Scholar] [CrossRef] [PubMed]
- Greiner, M. Two-graph receiver operating characteristic (TG-ROC): Update version supports optimisation of cut-off values that minimise overall misclassification costs. J. Immunol. Methods 1996, 191, 93–94. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 10 May 2023).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 10 May 2023).
- Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. 2022. Available online: https://CRAN.R-project.org/package=stringr (accessed on 10 May 2023).
- Wickham, H.; Vaughan, D.; Girlich, M. tidyr: Tidy Messy Data. 2023. Available online: https://CRAN.R-project.org/package=tidyr (accessed on 10 May 2023).
- Petrie, A. regclass: Tools for an Introductory Class in Regression and Modeling. 2020. Available online: https://CRAN.R-project.org/package=regclass (accessed on 10 May 2023).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Mazerolle, M.J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). 2023. Available online: https://cran.r-project.org/package=AICcmodavg (accessed on 10 May 2023).
- Wickham, H.; Bryan, J. readxl: Read Excel Files. 2023. Available online: https://CRAN.R-project.org/package=readxl (accessed on 10 May 2023).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer. 2016. Available online: https://ggplot2.tidyverse.org (accessed on 11 July 2024).
- Natcheva, R.; Ganeva, A. Threatened bryophytes in Bulgaria: Current knowledge, distribution patterns, threats and conservation activities. Biotechnol. Biotechnol. Equip. 2014, 23, 343–346. [Google Scholar] [CrossRef]
- McDaniel, S.F.; Atwood, J.; Burleigh, J.G. Recurrent evolution of dioecy in bryophytes. Evolution 2013, 67, 567–572. [Google Scholar] [CrossRef]
- Haig, D. Living together and living apart: The sexual lives of bryophytes. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150535. [Google Scholar] [CrossRef]
- Slate, M.L.; Rosenstiel, T.N.; Eppley, S.M. Sex-specific morphological and physiological differences in the moss Ceratodon purpureus (Dicranales). Ann. Bot. 2017, 120, 845–854. [Google Scholar] [CrossRef]
- Glime, J.M.; Bisang, I. Sexuality: Reproductive Barriers and Tradeoffs. In Bryophyte Ecology. Volume 1. Physiological Ecology; Glime, J.M., Ed.; Chapters 3–4; Michigan Technological University: Houghton, MI, USA, 2020; pp. 275–309. Available online: https://digitalcommons.mtu.edu/bryophyte-ecology/ (accessed on 10 May 2023).
- Golan, J.J.; Pringle, A. Long-distance dispersal of fungi. Microbiol. Spectr. 2017, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Johansson, V.; Lönnell, N.; Sundberg, S.; Hylander, K. Release thresholds for moss spores: The importance of turbulence and sporophyte length. J. Ecol. 2014, 102, 721–729. [Google Scholar] [CrossRef]
- Soons, M.B.; Bullock, J.M. Non-Random Seed Abscission, Long-Distance Wind Dispersal and Plant Migration Rates. J. Ecol. 2008, 96, 581–590. [Google Scholar] [CrossRef]
- Trakhtenbrot, A.; Nathan, R.; Perry, G.; Richardson, D.M. The Importance of Long-Distance Dispersal in Biodiversity Conservation. Divers. Distrib. 2005, 11, 173–181. [Google Scholar] [CrossRef]
- Chichorro, F.; Urbano, F.; Teixeira, D.; Väre, H.; Pinto, T.; Brummitt, N.; He, X.; Hochkirch, A.; Hyvönen, J.; Kaila, L.; et al. Trait-based prediction of extinction risk across terrestrial taxa. Biol. Conserv. 2022, 274, 109738. [Google Scholar] [CrossRef]
- Mazimpaka, V.; Lara, F.; Garilleti, R.; Infante, M.; Heras, P. Orthotrichum casasianum, a new epiphytic moss from humid forests of Northern Spain. J. Bryol. 1999, 21, 47–53. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Hoffmann, M.; Wirsing, A.J.; McCauley, D.J. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl. Acad. Sci. USA 2017, 114, 10678–10683. [Google Scholar] [CrossRef]
Coefficients | MAM1 Estimate ± CI (95%) | z-Value | p-Value |
---|---|---|---|
Intercept: Dioicous | −0.79 ± 0.54 | −2.85 | 0.004 |
Plant sex: Monoicous | 0.54 ± 0.40 | 2.62 | 0.009 |
Sporophyte presence | −1.18 ± 0.57 | −4.05 | <0.001 |
Substrate breadth | −0.83 ± 0.32 | −5.00 | <0.001 |
Coefficients | MAM2 Estimate ± CI (95%) | z-Value | p-Value |
---|---|---|---|
Intercept | −1.65 ± 0.61 | −11.99 | <0.001 |
Seta length | −0.61 ± 0.58 | −3.58 | <0.001 |
Substrate breadth | −0.90 ± 0.79 | −4.90 | <0.001 |
Taxon | MAM1 | MAM2 | Modeled Rating | Accepted Name | Updated IUCN Rating |
---|---|---|---|---|---|
Acaulon piligerum (De Not.) Limpr. * | 0.069 | 0.107 | Non-Thr. | Acaulon triquetrum (Spruce) Müll. Hal. | LC * |
Acroporium consanguineum (Broth.) M. Fleisch. | 0.304 | 0.417 | Thr. | ||
Aloina humilis M.T. Gallego, M.J. Cano & Ros * | 0.304 | 0.368 | Thr. | ||
Andreaea alpestris (Thed.) Schimp. * | 0.304 | 0.413 | Thr. | Andreaea rupestris Hedw. | LC * |
Andreaea vaginalis Herzog | 0.203 | Non-Thr. | |||
Barbula lavardei (Thér.) R.H. Zander & S.P. Churchill * | 0.453 | Thr. | |||
Barbula macassarensis M. Fleisch. | 0.203 | Non-Thr. | |||
Barbula novogranatensis Hampe * | 0.203 | 0.373 | Poss. Thr. | ||
Barbula stenocarpa Hampe * | 0.304 | 0.356 | Thr. | ||
Bartramia aprica Müll. Hal. * | 0.304 | 0.313 | Thr. | LC ‡ | |
Brachymenium curvitheca Dixon | 0.203 | 0.072 | Non-Thr. | ||
Braunia schimperi Bruch & Schimp. | 0.304 | 0.313 | Thr. | ||
Bryum demaretianum Arts * | 0.255 | Thr. | |||
Bryum enisseense L.I. Savicz | 0.304 | 0.232 | Thr. | ||
Callicostella mosenii (Broth.) Broth. | 0.200 | Thr. | |||
Chionoloma minus (Köckinger, O. Werner & Ros) M. Alonso, M.J. Cano & J.A. Jiménez * | 0.255 | Thr. | |||
Cinclidotus x vivesii Ederra | 0.453 | Thr. | |||
Coscinodon humilis Milde * | 0.203 | 0.411 | Poss. Thr. | Coscinodon cribrosus (Hedw.) Spruce | LC * |
Didymodon soaresii Luisier | 0.203 | Non-Thr. | |||
Distichophyllum telmaphila Colenso | 0.297 | Thr. | |||
Drepanocladus halli Broth. & Dixon * | 0.203 | Non-Thr. | |||
Drepanocladus sparsus * | 0.274 | Thr. | |||
Entosthodon clavatus Müll. Hal. | 0.304 | 0.363 | Thr. | ||
Grimmia arenaria Hampe * | 0.203 | 0.407 | Poss. Thr. | ||
Grimmia laevigata (Brid.) Brid. * | 0.203 | 0.405 | Poss. Thr. | LC ‡ | |
Helicoblepharum daltoniaceum (Hampe) Broth. * | 0.203 | 0.271 | Poss. Thr. | ||
Hyophila bingeri Broth. & Paris ‡ | 0.203 | 0.419 | Poss. Thr. | Hyophila involuta (Hook.) A. Jaeger | VU * |
Hyophila latifolia Broth. ‡ | 0.203 | 0.357 | Poss. Thr. | Hyophila involuta (Hook.) A. Jaeger | VU * |
Hypnella punctata Broth. | 0.453 | Thr. | |||
Hypnum aemulans Breidl. * | 0.453 | Thr. | Stereodon aemulans (Breidl.) Broth. | DD * | |
Isopterygium plumicaule (Müll. Hal.) W.R. Buck | 0.304 | 0.380 | Thr. | ||
Lepidopilidium cespitosum (Besch.) Broth. | 0.203 | 0.201 | Poss. Thr. | ||
Orthotrichum cambrense Bosanquet & F. Lara * | 0.304 | 0.420 | Thr. | ||
Philonotis striatula (Mitt.) A. Jaeger * | 0.304 | 0.031 | Poss. Thr. | ||
Pseudoleskea dispersa Müll. Hal. | 0.453 | Thr. | |||
Pterygoneurum papillosum Oesau * | 0.153 | 0.208 | Poss. Thr. | ||
Pterygophyllum chonoticum Mitt. | 0.198 | Thr. | |||
Racopilum crassicuspidatum Thér. & Corb. | 0.230 | Thr. | |||
Rhynchostegiella tubulosa Hedenäs & J. Patiño * | 0.304 | Thr. | |||
Sematophyllum fragilirostrum (Hampe) Mitt. * | 0.203 | 0.273 | Poss. Thr. | ||
Taxithelium ramivagum Broth. | 0.203 | 0.323 | Poss. Thr. | ||
Trematodon brevifolius Broth. ex Müll. Hal. | 0.304 | 0.338 | Thr. | ||
Weissia multicapsularis (Sm.) Mitt. * | 0.153 | 0.227 | Poss. Thr. | Phascum cuspidatum Schreb. ex Hedw. | LC * |
Wijkia jungneri (Broth.) H.A. Crum | 0.041 | 0.023 | Non-Thr. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gürlek, S.; Araújo, A.C.; Brummitt, N. Predicting the Threat Status of Mosses Using Functional Traits. Plants 2024, 13, 2019. https://doi.org/10.3390/plants13152019
Gürlek S, Araújo AC, Brummitt N. Predicting the Threat Status of Mosses Using Functional Traits. Plants. 2024; 13(15):2019. https://doi.org/10.3390/plants13152019
Chicago/Turabian StyleGürlek, Sinan, Ana Claudia Araújo, and Neil Brummitt. 2024. "Predicting the Threat Status of Mosses Using Functional Traits" Plants 13, no. 15: 2019. https://doi.org/10.3390/plants13152019
APA StyleGürlek, S., Araújo, A. C., & Brummitt, N. (2024). Predicting the Threat Status of Mosses Using Functional Traits. Plants, 13(15), 2019. https://doi.org/10.3390/plants13152019