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Abstract: Taraxacum kok-saghyz (TKS) is a natural rubber (NR)-producing plant and a model plant
for studying the biosynthesis of NR. Analyzing and studying the biosynthetic mechanism of NR
is an important way to cultivate high-yield rubber TKS varieties. JAZ proteins, which belong to
the Jasmonate ZIM domain family, function as negative regulators in the jasmonic acid (JA) signal
transduction pathway. MYC2 is typically regarded as a regulatory factor for the target genes of JAZ
proteins; JAZ proteins indirectly influence the gene expression regulated by MYC2 by modulating
its activity. Theoretically, JAZ is expected to participate in growth, development, and responses
to environmental cues related to rubber and biomass accumulation in TKS, all of which rely on
the interaction between JAZ and MYC2. In this study, we identified 11 TkJAZs through homology
searching of the TKS genomes and bioinformatics analyses. Subcellular localization, Y2H, and BiFC
analysis demonstrate that TkJAZs and TkMYC2 are localized in the nucleus, with all TkJAZs and
TkMYC2 showing nuclear colocalization interactions. Overexpression of TkMYC2 in TKS inhibited
leaf development, promoted root growth, and simultaneously increased NR production. RNA-seq
and qRT-PCR analysis revealed that the TkSRPP/REF genes exhibit varying degrees of upregulation
compared to the wild type, upregulating the TkREF1 gene by 3.7-fold, suggesting that TkMYC2
regulates the synthesis of NR by modulating the TkSRPP/REF genes.

Keywords: Taraxacum kok-saghyz Rodin; JAZ and MYC2 genes; overexpression; rubber-producing plant

1. Introduction

The Russian dandelion, also known as the rubber dandelion, or Taraxacum kok-saghyz
(TKS), is a perennial herbaceous dicotyledonous plant belonging to the Asteraceae family [1].
Early global studies have determined that the primary source of natural rubber (NR:cis-1,4-
polyisoprene) production in rubber plants is their roots. In particular, the NR content in
the root dry weight can range from 2.89% to 27.89% [1–3]. TKS provides greater benefits in
agricultural production than Hevea brasiliensis because it has a shorter harvest cycle, can be
seeded right away, is very adaptable, and can be harvested mechanically [4–6].

Plants use jasmonic acid (JA) as a phytohormone to regulate a variety of growth and
developmental processes, including blooming, leaf senescence, root growth, and more [7].
Second, it has been discovered that JA stimulates the expression of various important sec-
ondary metabolites and proteins, such as some anti-insect proteinase inhibitors, amino acid
derivatives, terpenes, phenylpropanoids, alkaloids, and anti-nutritional proteins [8–13].
Furthermore, the JA signaling pathway aids in the formation of defense-related morphologi-
cal features like nectaries, resin tubes, and glandular hairs, which either directly or indirectly
contribute to plant defense by producing a variety of chemical compounds [14–19]. JA
must undergo enzymatic conjugation with isoleucine (Ile) to activate plant defense. The
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resulting JA-Ile conjugates bind to and activate a ubiquitin ligase complex (SCFCOI1), which
promotes the degradation of jasmonate ZIM domain (JAZ) proteins [20]. JAZ protein is
localized in the nucleus of the cell and is a zinc finger structural protein characterized by the
presence of TIFY and Jas (also known as CCT2) domains [21]. The TIF[F/Y] XG conserved
sequence, located in the TIFY domain at the N-terminal region, can bind to downstream
MYC2 [22]. The concentration of JA-Ile in cells is minimal in plants growing normally.
As a major transcriptional suppressor during this period, the JAZ proteins interact with
particular transcription factors, such as MYC2, through its ZIM domain to stop them from
increasing the expression of JA-sensitive genes [23,24]. A cell’s levels of JA-Ile rise sharply
in response to stressors including insect infestation, mechanical harm, or pathogen inva-
sion. These JA-Ile conjugates subsequently enter the nucleus via specific transport proteins,
thereby emitting signals to activate the JA signaling pathway. Elevated JA-Ile levels in
the nucleus facilitate its binding to the F-box protein COI1 within the SCFCOI1 complex,
forming the COI1-JAZ co-receptor complex [24]. This interaction relieves the inhibition of
JA-responsive gene expression, with MYC2 being a key regulator, through ubiquitination
of the JAZ protein and its subsequent degradation by the 26S proteasome [25].

MYC2 is a transcription factor belonging to the basic helix loop helix (bHLH) family.
It has an alkaline area called the Pfam bHLH-MYC-N conserved domain, which comprises
a bHLH conserved domain and two short-conserved domains, JID and TAD. The conserva-
tive domain of bHLH is placed at the C-end and largely carries out a catalytic function; the
conserved domain of Pfam bHLH-MYC-N is located at the N-terminus and exerts a DNA
binding function [26–28]. MYC2 is involved in several biological activities. It has been
demonstrated that MYC2 reduces the growth of Arabidopsis roots in experiments involving
both overexpression and mutations of the MYC2 gene in Arabidopsis [29]. Subsequent
investigation revealed that MYC2 in the JA signaling pathway directly targets and binds to
the G-BOX element of the ERF115 promoter to regulate the expression of the stress response
gene ERF115; the expression of genes related to the RBR-SCR molecular network, which
ERF115 regulates, activates the activity of root stem cell tissue centers collectively. ERF109,
which is induced by JA signaling and is located upstream of ERF115, can also activate the
expression of the CYCD6 gene and promotes root stem cell tissue regeneration [30].

On the surface of rubber particle membranes, small rubber particle protein (SRPP) is
present [31–33]. It forms subunits of rubber transferase (RT-ase) complexes, which play a
crucial role in rubber chain elongation and determining the quality of NR [34,35]. Rubber
content in roots may be increased by overexpressing TkSRPP3 in TKS, and rubber content
and the molecular size of rubber hydrocarbons in the root were reduced as a result of
RNA interference targeting the expression of the TkSRPP3 gene [34]. In addition to the
aforementioned studies, the reduction in Taraxacum brevicorniculatum TbSRPPs expression
through RNAi technology can impact the stability of rubber particles and decrease the dry
rubber content by 40–50% [36]. This indicates that SRPP family genes are pivotal in NR
biosynthesis; SRPP is also impacted by the JA signaling pathway, and studies have revealed
that the mechanism of JA regulating NR synthesis is exogenous JA inducing COI1 to bind
to JAZ3 protein, releasing MYC2 from the MYC2-JAZ3 complex and binding to SRPP1 and
FPS1 promoters, thereby regulating rubber synthesis [37].

This study provides a comprehensive identification and characterization of the JAZ
gene family in TKS. We analyzed the phylogeny, conserved domains, motifs, gene struc-
tures, chromosomal localization, and collinearity of the identified TkJAZ genes. Subse-
quently, we investigated the transcriptional levels of these TkJAZs in TKS by means of
MeJA-RNA-seq (extract RNA from the roots of TKS treated with MeJA for transcriptome
sequencing) data analysis. Next, the subcellular localization, Y2H, and BiFC experiment
confirmed that TkMYC2 is regulated by all TkJAZs and determined TkMYC2 as the crucial
research gene. Finally, we overexpressed the TkMYC2 gene in TKS and measured the physi-
ological indicators of the overexpression of TkMYC2 type (OE-TkMYC2) TKS, including NR
yield. Meanwhile, we selected the NR biosynthesis-associated gene family TkSRPP/REF for
analysis and investigated the transcriptional levels of TkSRPP/REF in OE-TkMYC2 TKS by
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qRT-PCR analysis. The results obtained will contribute to a deeper understanding of the
roles of TkJAZs and TkMYC2 in the JA signaling pathway in relation to NR production in
TKS roots.

2. Results
2.1. Identification and Conserved Domains and Gene Structure Analysis of the TkJAZ Gene Family

Two approaches were used to cooperatively identify TkJAZ gene family members.
Through a local BLAST analysis using the protein sequences of the Arabidopsis JAZ family
as the query and a database search for the TIFY/JAS domain, a total of 11 JAZ genes were
found in the TKS genome (Table S1) assembly established in the whole genome data of TKS
published in 2017 [38].

Phylogenetic tree analysis within the JAZ family (Figure 1A) revealed that the 11 Tk-
JAZ proteins were divided into six subgroups. The conserved motifs and domains of the
TkJAZ proteins were identified using the MEME motif search engine and the CD-Search
structural domain prediction program (Figure 1B,C). The exon–intron organization of
the TkJAZ genes was analyzed using the Gene Structure Display Server tool (Figure 1D).
Among the 11 TkJAZs, a total of eight motifs were identified (Figure 1B). As predicted, each
TkJAZ contained two TIFY/JAS domains (Figure 1C). These TIFY/JAS(CCT-2) domains,
characteristic of JAZ proteins, are present in all TkJAZs and correspond to Motif1 and
Motif2 in Figure 1B. The detailed amino acid composition of these domains is shown in
Figure 1E. Phylogenetic tree analysis within the JAZ family (Figure 1A) indicated that, with
a few exceptions, TkJAZs within the same clade generally exhibited similar exon–intron
structures (Figure 1D) and shared motif compositions (Figure 1B). This suggests that JAZ
proteins within the same group may have similar biological functions.
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Figure 1. Phylogenetic relationship, motif composition, TIFY/JAS(CCT-2) conserved domains,
and gene structure of the TkJAZ family proteins. (A) The phylogenetic tree of the TkJAZ family
members. (B) The motif composition in TkJAZs. Different colored boxes represent putative motifs.
(C) TIFY/JAS(CCT-2) domain of TkJAZs. (D) Exon/intron structure of the TkJAZ genes. The green
boxes represent exons and the black lines introns. (E) The abscissa of sequence logos refers to the
amino acid with the highest frequency and the ordinate represents the relative frequency of the
corresponding amino acid.
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These TkJAZs were given names based on chromosome numbering order and listed
the number of amino acids (Table 1). Subcellular localization prediction was conducted,
and the results showed that all TkJAZ proteins were localized in the nucleus.

Table 1. TkJAZs identified in the genomes of TKS.

Gene Name ID (2017) [38] Length (aa) S.L. ID (2022) [39] Identity

TkJAZ1 evm.model.utg2371.2 263 Nucleus TkA08G082930.1 100%
TkJAZ2 evm.model.utg8854.15 289 Nucleus TkA01G566490.1 100%
TkJAZ3 evm.model.utg11729.12 172 Nucleus TkA08G341430.1 99%
TkJAZ4 evm.model.utg10778.7 103 Nucleus TkA07G069770.1 100%
TkJAZ5 evm.model.utg17755.4 255 Nucleus TkA03G394100.1 48%
TkJAZ6 evm.model.utg8163.14 203 Nucleus TkA08G068880.1 55%
TkJAZ7 evm.model.utg13770.9 288 Nucleus TkA06G027940.1 49%
TkJAZ8 evm.model.utg2308.28 222 Nucleus TkA01G474510.1 100%
TkJAZ9 evm.model.utg3207.6 156 Nucleus TkA03G585620.1 83%
TkJAZ10 evm.model.utg25864.5 226 Nucleus TkA08G163560.1 100%
TkJAZ11 evm.model.utg6907.10 204 Nucleus TkA08G068880.1 100%

ID (2017): identity code of TkJAZs in the 2017 version of a TKS genome; Length (aa): protein amino acid
number; S.L.: the probable subcellular location predicted by Plant-mPLoc; ID (2022): identity code of TkJAZs
in the latest released version of a TKS genome; Identity: identity of the coding regions of TkJAZs in the two Tk
genome versions.

2.2. Phylogenetic Analysis of the TkJAZ Gene Family

To reveal the evolutionary relationship of the JAZ gene family in plants, a phylogenetic
tree was created using the deduced protein sequences from TKS and orthologous proteins
from three types of herbaceous plant genomes used in this study: Arabidopsis thaliana
(13 AtJAZ), Oryza sativa (15 OsJAZ), and Hevea brasiliensis (18 HbJAZ).

Five unique groups (Groups 1, 2, 3, 4, and 5) could be formed using the JAZs from
the four species listed above (Figure 2A). Notably, the majority of TkJAZs and HbJAZs
share a subfamily and are closely related genetically. This suggests that the JAZ proteins
of TKS and the rubber tree may possess similar functional structures with evolutionary
relationships. These proteins likely play roles in regulating the genes associated with
NR biosynthesis.
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Taraxacum kok-saghyz. The colors represent the five JAZ groups: red, group1; yellow, group2; green,
group3; blue, group4; and purple, group5. (B) Chromosomal localization and collinearity of the
TkJAZ genes.

2.3. Chromosomal Distribution and Collinearity of the TkJAZs

To perform chromosome localization and collinearity analysis, we aligned 11 TkJAZ
genes to the updated TKS genome data from 2022 [39], as the 2017 TKS genome data
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lacked sufficient chromosomal information. Based on the results, it was determined that
the 11 TkJAZ genes are spread among five TKS chromosomes: 2 genes are located on A1
and A3, 1 gene is located on A6 and A7, and 5 genes are located on A8 (Figure 2B). In
addition, collinearity analysis revealed that certain TkJAZ genes located on the same or
different chromosomes showed collinearity. For instance, TkJAZ1 and TkJAZ2, TkJAZ5 and
a two-gene cluster (TkJAZ8 and TkJAZ10), and TkJAZ3 and TkJAZ7 displayed collinearity
(Figure 2B). These findings suggest that the expansion of the JAZ gene family in TKS
likely arose from both whole and small-scale genome duplications, as well as tandem
duplications. Furthermore, TkJAZ genes exhibiting collinearity may share more similar
biological functions.

2.4. Protein–Protein Interaction Prediction and RNA-Seq Dataset Analysis of TkJAZs

The STRING protein interaction prediction tool was used to evaluate the interac-
tion relationships between these TkJAZs and related proteins in JA signaling pathways
(Figure 3A), and the expression patterns of 11 TkJAZs in TKS were evaluated using the
RNA-seq dataset processed by MeJA (Figure 3B).
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According to predictions of protein interactions, TkJAZs interact with TkCOI1 and
TkMYC2 in all cases (Figure 3A). Following a 6 h MeJA treatment, RNA-seq data analysis
revealed that TkJAZs and TkMYC2 expression levels rose whereas TkCOI1 expression
levels fell. Following a 24 h MeJA treatment, most TkJAZs (TkJAZ1, TKJAZ5-TkJAZ11) and
TkMYC2 showed decreased expression levels, but TkCOI1, TkJAZ2, TkJAZ3, and TkJAZ4
showed higher expression levels (Figure 3B). This suggests that MeJA treatment may
activate the binding of TkCOI1 to TkJAZs, leading to a decrease in TkCOI1 expression,
while MeJA treatment can also activate the expression of TkJAZs, and the consumption
of TkJAZs increases the expression of TkMYC2. This analysis helped to explain the role of
TkJAZs in the JA signaling pathway.

2.5. Subcellular Localization Analysis

To determine the subcellular localization of TkJAZs and TkMYC2, expressing vectors of
green fluorescent protein (GFP)-fused TkJAZs and TkMYC2 proteins were constructed and
co-transfected, respectively, with the nuclei positioning marker protein MADS-mCherry
into N. benthamiana leaves. As depicted in Figure 4, the MADS-mCherry protein was
located in the nucleus as anticipated. The merged images reveal a high overlap of GFP and
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RFP fluorescence signals, confirming that TkJAZs and TkMYC2, along with the nuclear
localization marker protein MADS-mCherry, are also localized in the nucleus.
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2.6. Y2H and BiFC Analysis: The Important Value of TkMYC2 in TKS

As the first step in any Y2H determination, it is necessary to confirm that the bait
will not appear automatically to activate reporter genes without a prey protein. At this
point, the full-length TkMYC2 is fused with the pGBKT7 vector to construct a bait vector,
and then the pGADT7 empty vector and pGBKT7-TkMYC2 vector are co-transformed
into yeast receptive cells Y2HGold to test their own activation. As shown in Figure 5A,
the yeast cells that transformed the bait vectors into fused full-length TkMYC2 did not
exhibit autoactivation.

Using the Y2H point-to-point verification experiment to determine the interaction
relationship of the TkJAZs and TkMYC2, the pGADT7-TkJAZs vector and pGBKT7-TkMYC2
vector are co-transformed into yeast receptive cells Y2HGold to test their protein–protein
interaction. As shown in Figure 5B, TkJAZs and TkMYC2 have extensive interactions
because Y2H yeast colonies grow on SD/Ade/His/Leu/Trp-X-α-gal medium and display
blue color. Among them, TkMYC2 exhibits strong interactions with TkJAZ1, TkJAZ2,
TkJAZ3, TkJAZ4, TkJAZ5, TkJAZ8, TkJAZ9, and TkJAZ11, while showing weak interactions
with TkJAZ6, TkJAZ7, and TkJAZ10.

To verify the interaction relationship of the TkJAZs and TkMYC2, BiFC-expressing
vectors of yellow fluorescent protein (YFP)-fused TkJAZs and TkMYC2 proteins were
constructed and co-transfected with the nuclei positioning maker protein MADS-mCherry
into N. benthamiana leaves. As shown in Figure 6, under excitation light of 514 nm, there was
a bright yellow fluorescence that converged, indicating the interaction between TkJAZs and
TkMYC2. As observed in the merged images, the high overlap of YFP and RFP fluorescence
signals demonstrated the TkJAZs and TkMYC2 interactions in the nucleus.

These findings suggest that TkMYC2 is crucial to the JA signaling pathway since they
show that all TkJAZ proteins interact with it in the nucleus.
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2.7. Overexpression of TkMYC2 Altered the Phenotype of TKS and Increased Natural
Rubber Production

To investigate the effect of TkMYC2 overexpression on NR biosynthesis, we employed
the leaf disk transformation method to overexpress TkMYC2 in TKS under the control of
the 35S promoter. Three independent transgenic lines (OE1, OE2, OE3) were generated for
each overexpression construct. We compared the phenotypes of OE-TkMYC2 transgenic
TKS and wild-type TKS under standard growth conditions (Figure 7). Figure 7A–C present
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representative images obtained during the phenotypic assessment of wild-type and OE1
transgenic lines. Figure 7D provides a bird’s-eye view, showing the overall growth of the
aboveground parts of both OE-TkMYC2 transgenic TKS and wild-type TKS. Figure 7E
displays the extracted NR from both OE-TkMYC2 transgenic TKS and wild-type TKS.
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of TKS roots between wild-type and OE-TkMYC2-type. (D) Comparison of growth status between
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fibrous and lateral root weight, dry/wet leaf weight, dry/wet root weight, and dry NR content for
wild-type and OE-TkMYC2-transgenic TKS. (T1, T2, T3, T4) represent the four biological replicates of
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TKS. (OE1, OE2, OE3) represent the three groups of OE-TkMYC2-transgenic plant lines (* p < 0.05,
** p < 0.01, *** p < 0.0005, **** p < 0.0001, ns p > 0.05).

The data measurement results indicate that, compared to wild-type TKS, the OE-
TkMYC2 transgenic TKS exhibits reduced leaf sizes (Figure 7F–H), longer roots (Figure 7I),
and increased biomass in both fibrous and lateral roots (Figure 7J,K). Subsequently, dehy-
dration treatment was applied to both wild-type and OE-TkMYC2 transgenic TKS. The
results showed no significant difference in the leaf dry weight to wet weight ratio between
the overexpression lines and the wild type (Figure 7L). However, the root dry weight to
wet weight ratio in OE-TkMYC2 transgenic TKS was significantly higher than that in the
wild type (Figure 7M).

This suggests that the roots of OE-TkMYC2 transgenic TKS may have synthesized
more secondary metabolites, and the plant’s nutrient allocation strategy resulted in the
reduction in leaf size in TKS. To further investigate, we utilized an alkaline boiling method
to extract NR from the roots of six-month-old wild-type and OE-TkMYC2 transgenic TKS,
followed by weight determination. The results indicated that six-month-old OE-TkMYC2
transgenic TKS had a higher NR content compared to the wild type (Figure 7N).

The DNA-PCR and qRT-PCR analyses for the identification of overexpressed TKS are
presented in Figures S1 and S2.
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2.8. TkMYC2 Regulates TkSRPP/REF1 Gene Expression Increase Natural Rubber Yield

To elucidate the underlying reasons for the increased NR production observed in OE-
TkMYC2 transgenic TKS, we analyzed RNA-seq data focusing on the small rubber particle
protein (TkSRPP) and rubber elongation factor (REF) gene family members under MeJA
treatment (Figure 8A). Furthermore, their expression levels were detected by qRT-PCR in
OE-TkMYC2 transgenic TKS (Figure 8C). As shown in Figure 8A,C, the MeJA-RNA-seq
data analysis revealed increased expression levels of TkSRPP4 and TkREF1. In the qRT-
PCR analysis, the expression levels of TkSRPP and REF genes in OE-TkMYC2 transgenic
TKS exhibited varying degrees of upregulation compared to wild-type TKS. Notably, the
TkREF1 gene was upregulated 3.7-fold in response to TkMYC2 overexpression. These
results indicate that TkMYC2 can regulate the expression of TkSRPP and REF family genes.
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Figure 8. Expressional patterns of the TkSRPP/REF gene family. (A) Hierarchical clustering and
heat map representation of TkSRPP/REF expression based on the MeJA-RNA-seq data; MJ0, MJ6,
and MJ24 represent MeJA processing time; R1, R2, and R3 represent three biological replicates.
(B) Pearson correlation coefficient analysis of the TkSRPP/REF genes based on the MeJA-RNA-seq
data used in (A). (C) Expression levels of eight TkSRPP/REF genes were analyzed by qRT-PCR in
OE-TkMYC2-transgenic TKS roots. The data represent relative expression levels normalized to those
of wild-type TKS TkSRPP/REF, presented as means ± standard error (SE) from three independent
biological replicates. (* p < 0.05, ** p < 0.01).

Based on the aforementioned findings, TkMYC2 may be regulated by the JA signaling
pathway and can enhance the production of NR in TKS by upregulating the expression of
TkSRPP and REF family genes.

Furthermore, an examination of the Pearson correlation coefficient (PCC) was per-
formed on the TkSRPP/REF transcription data (Figure 8B). The findings demonstrated
significant correlations between the expression levels of TkREF1, TkSRPP5, TkSRPP6, and
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TkSRPP9 and the majority of other TkSRPP/REF genes. Combined with the qRT-PCR results,
this suggests that TkREF1, TkSRPP5, TkSRPP6, and TkSRPP9 may play more pivotal roles
in NR biosynthesis and are worthy of further investigation.

3. Discussion

The JAZ gene family has been found in numerous species, including Arabidopsis [7],
Solanum lycopersicum [40], Hevea brasiliensis [41], and sunflowers [42], thanks to the enrich-
ment of whole genome sequencing data. However, not much is known about this gene
family’s expression and function in TKS, a crop that shows promise as a substitute for
producing NR [6]. As a result, our objective was to conduct a genome-wide search for
JAZ genes in TKS to elucidate their involvement in the JA signaling pathway and their
regulatory role in NR biosynthesis. Based on the 2017 TKS genome data [38], we conducted
a comprehensive identification of JAZ proteins in TKS and further investigated their evolu-
tionary relationships, protein structure, gene structure, predicted and studied subcellular
locations, protein–protein interactions, and gene expression profiles. This work establishes
a foundation for subsequent functional analyses of JAZ genes, aimed at advancing our
understanding of JA signaling in TKS. Here, through a local BLAST analysis using the
protein sequences of the Arabidopsis JAZ family as the query and a database search for the
TIFY/JAS domain, 11TkJAZ genes were identified in the 2017 TKS genome and the cDNAs
were successfully cloned and sequenced (Table 1). After sequencing, these JAZ sequences
were highly similar to those identified in the 2017 TKS database [38]. BLAST comparison
and collinearity analysis revealed that seven of them have counterparts in the recently
released 2022 TKS genome, while the remaining four show less than 90% similarity [39].
These results potentially indicate genuine discrepancies between the two TKS genomes
from different germplasms or variations in genome assembly and annotation pipelines.

Phylogenetic analysis revealed that the 57 JAZ proteins from four species formed
five groups (Figures 1A and 2A). It is worth noting that most TkJAZs and HbJAZs are
in the same subfamily and have close genetic relationships; the only similarity between
rubber trees and TKS is that they both can biosynthetically produce NR. Studies have
shown that the drainage and de novo biosynthesis of latex is actually a wound response of
rubber trees [37]. JA, a master phytohormone, mediates wound responses that have been
extensively elucidated in Arabidopsis and numerous other plant species. This phylogenetic
relationship suggests that NR biosynthesis in TKS may be linked to the stress response
regulated by the JA signaling pathway.

The JA signaling pathway is crucial for plants to respond to both abiotic and biotic
stress. Key regulatory factors in this pathway include the alkaline spiral loop transcription
factors MYC2, MYC3, MYC4, and MYC5, which initiate the expression of JA-responsive
genes [43,44]. Among them, MYC2 is often seen as the central regulators of JA signal-
ing [27]. In this study, protein interaction prediction and TkJAZs expression patterns can
support these viewpoints. In Figure 3A, it can be observed that TKJAZs may interact with
TkCOI1 and TkMYC2, TkMYC3, and TkMYC4, respectively. Therefore, we further analyzed
the regulatory relationship of JAZ in the JA signaling pathway using transcriptome data,
and the results showed that the expression of TkCOI1 seemed to be consumptive. After
treatment with MeJA, the TkCOI1 expression level decreased, while the expression level of
TkJAZs increased. The expression patterns of TkMYC2 and TkJAZs were similar (Figure 3B).
These results provide preliminary evidence for the interaction between TkJAZs and Tk-
MYC2 in TKS. To further validate these results, we performed subcellular localization and
bimolecular fluorescence complementary analysis on TkJAZs and TkMYC2.

The results of subcellular localization, Y2H, and BiFC experiments show that both
TkJAZs and TkMYC2 are located in the nucleus, and all TkJAZs and TkMYC2 interact with
each other in the nucleus (Figures 4–6). This indicates that TkMYC2 is the regulatory target
of all TkJAZs in TKS, and also demonstrates the crucial role of TkMYC2 in the JA signaling
pathway. Therefore, we will shift the focus of our work to the TkMYC2 gene.
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MYC2 was found to be involved in plant growth and development in rice [45], and
some studies have also found that AtMYC2 can inhibit the growth of the main root and
promote the occurrence of lateral roots [46]. Our study found that OE-TkMYC2-transgenic
TKS roots were longer than wild-type roots (Figure 7). This has a promoting effect on
both the main and lateral roots, indicating that overexpression of TkMYC2 is effective in
promoting root elongation in TKS. The reason may be that the MYC2 gene of different
species exhibits functional diversity or that JA can regulate latex tube differentiation and
latex synthesis [37]. Moreover, gum-producing plants have special latex duct tissue, and
TkMYC2 may regulate the expression of genes related to latex duct cell differentiation,
leading to root elongation. However, its molecular mechanism still needs further research.

The genes belonging to the SRPP/REF family are crucial for the synthesis of rubber.
Rubber trees have been shown to have SRPP protein on the outside and REF protein
embedded in the lipid membrane of the rubber particle. To cooperatively control latex
synthesis, SRPP proteins can interact with one another and bind to REF protein [47]. The
TKS genome contained ten TkSRPP/REF family genes that were examined. MeJA-RNA-seq
was used to evaluate eight differentially expressed TkSRPP/REF family genes (Figure 8A).
MeJA induction resulted in the upregulation of three genes (TkSRPP3, TkSRPP34, and
TkREF1) (Figure 8A). According to a study, overexpression of TkSRPP3 in TKS can lead to
an increase in the amount of latex in roots, whereas RNAi-mediated downregulation of
TkSRPP3 expression can decrease this amount and lower the molecular weight of rubber
hydrocarbons [34]. Our study found that overexpression of the TkMYC2 gene can regulate
the upregulation of eight TkSRPP/REF family genes (Figure 8C).

The aforementioned findings suggest that the JA signaling pathway in TKS may
regulate the rubber synthesis route by controlling the expression of the TkMYC2 and
TkSRPP/REF family genes; however, additional experiments are necessary to confirm the
molecular mechanism involved.

4. Materials and Methods
4.1. Plant Materials

TKS was collected from the Ili region of the Tekes River basin in Xinjiang, China,
and successfully propagated and planted in our laboratory. Subsequently, non-sterile TKS
seedlings were cultured in the plant culture room under the following conditions (nutri-
tional soil/vermiculite = 1:1, temperature 25 ◦C, light 16 h/dark 8 h). In addition, sterile
cultivation was carried out after seed disinfection for gene overexpression experiments.
Subsequently, plant tissue materials for qRT-PCR were collected in tinfoil (three biological
replicates per plant tissue). Subsequently, the tin foil containing plant materials was rapidly
frozen using liquid nitrogen and stored in a −80 ◦C freezer.

4.2. Identification and Characterization of JAZ Genes in TKS

After downloading the 13 previously discovered and published JAZ protein sequences
in Arabidopsis from TAIR (https://www.Arabidopsis.org) [48], queries were used to perform
local BLAST algorithm-based searches against 2017 TKS genome databases from CNCB
(https://ngdc.cncb.ac.cn/) to identify JAZs from the 2017 TKS genome. Additionally, the
TKS genomics database was used to retrieve the protein sequences. Using Tbtools’ Simple
HMM search, the proteins containing the TIFY (PF06200) and Jas (PF09425) domains
were found [49]. To obtain JAZ candidate protein sequences, we combined these two
methods and obtained 11 JAZ candidate proteins. Then, using the NCBI’s CDD tools
(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi/, accessed on 12 March 2023),
we analyzed the 11 JAZ candidate protein sequences. The protein sequences were manually
selected based on the following criteria: a complete TIFY domain, followed by a complete
Jas domain (also known as CCT_2 domain), and no other domains, such as the GATA
domain [50]. Finally, all 11 JAZ candidate proteins were identified as JAZ proteins.

Subsequently, we performed motif analysis using the MEME program (http://meme-
suite.org/tools/meme accessed on 11 March 2023). Additionally, the length of the TkJAZs

https://www.Arabidopsis.org
https://ngdc.cncb.ac.cn/
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi/
http://meme-suite.org/tools/meme
http://meme-suite.org/tools/meme
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sequences was determined using the ExPASy tool [51] (https://web.expasy.org/compute_
pi/ accessed on 5 March 2023). Prediction of subcellular localization of TkJAZ proteins was
accomplished using Plant-mPLoc (http://www.csbio.sjtu.edu.cn/).

4.3. Phylogeny, Gene Structure, and Chromosomal Localization of TkJAZs

To investigate the phylogenetic relationships of TkJAZ proteins, JAZ protein sequences
from Hevea brasiliensis were obtained from Chao et al.‘s study [41], while rice JAZ protein
sequences were sourced from the UniProt database. Multiple sequence alignments (MSAs)
of JAZ protein sequences from TKS, rubber tree, rice, and Arabidopsis were conducted
using MEGA 7.0, and a phylogenetic tree was constructed with MEGA 7.0 using the
neighbor-joining (NJ) method with 1000 bootstrap replications [52]. Analysis of the exon
and intron organization of the TkJAZ gene was performed using the Gene Structure
Display Server (GSDS, http://gsds.gao-lab.org/) tool, which included examination of
intron distribution patterns, phases, and intron–exon boundaries [53]. The collinearity
analysis was completed using One-step MCscanX software in Tbtools v2.096 [49], and
visualization of conserved motifs, gene structures, and collinearity mapping was carried
out using Tbtools.

4.4. RNA Isolation and cDNA Synthesis

Total RNAs were collected from TKS roots following the instructions included with
the TransGen Biotech Corporation (TransGen Biotech, Beijing, China) general plant total
RNA extraction kit. RNA integrity was assessed by electrophoresis on a 2% agarose gel
following DNase I digestion to eliminate any remaining gDNA. Reverse transcription was
performed using 1 µg of total RNA with the EasyScript® One-Step gDNA Removal and
cDNA Synthesis Kit (TransGen Biotech, Beijing, China).

4.5. Subcellular Localization, Y2H, and BiFC Analysis of Eleven TkJAZ and TkMYC2 Proteins

To verify the predicted subcellular localization and protein–protein interactions of
TkJAZs and TkMYC2 proteins, the full-length coding sequences (CDSs) of all TkJAZs and
TkMYC2 genes were successfully cloned and ligated into the T-vector for sequencing. (listed
in Table S1). The CDSs of TkJAZs and TkMYC2 were amplified using primers containing
homologous arms compatible with the expression vectors (listed in Tables S2 and S3). Sub-
sequently, following the instructions of the ClonExpress® One Step Cloning Kit (Vazyme,
Nanjing, China), the sequences were cloned into the SmaI-digested pCAMBIA1300-eGFP,
pGBKT7, pGADT7, pSPYNE-35s, and pSPYCE-35s vectors by One Step Cloning. (The
pSPYNE-35s and pSPYCE-35s vectors contain the potent 35S promoter derived from
cauliflower mosaic virus (CaMV 35S), which exhibits strong transcriptional activity in
plant cells. This ensures high levels of target protein expression in gene expression experi-
ments.) The one-step cloning method is as follows: The vector is linearized, and the ends
of the linearized vector are incorporated into the 5′ ends of the forward and reverse PCR
primers. This ensures that the PCR products have sequences at their 5′ and 3′ ends that are
homologous to the ends of the linearized vector (15–20 bp). After mixing the PCR product
and the linearized vector in a specific ratio, the mixture is incubated at 37 ◦C for 30 min in
the presence of a recombinant enzyme to facilitate targeted cloning.

The PCR products of TkJAZ1-11 were inserted into pGADT7 to construct prey
vectors, while TkMYC2 was inserted into pGBKT7 to construct bait vectors. The suc-
cessfully constructed pGADT7-TkJAZs and pGBKT7-TkMYC2 plasmids were transferred
to the Y2HGold yeast strain to test the autoactivation of the bait vectors using yeast
strains containing pGBKT7-TkMYC2+pGADT7 vectors. To assess protein–protein inter-
actions, the corresponding bait and prey vectors (pGBKT7-TkMYC2+pGADT7-TkJAZs)
were co-transformed into Y2HGold. Then, the successfully transformed yeast strains
were spotted on the surfaces of solid SD/-Trp/-Leu, SD/-His/-Trp/-Ade/-Leu/, and
SD/-His/-Trp/-Ade/-Leu/X-α-Gal medium, and the growth and color development of
the colonies were observed.

https://web.expasy.org/compute_pi/
https://web.expasy.org/compute_pi/
http://www.csbio.sjtu.edu.cn/
http://gsds.gao-lab.org/
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Subsequently, the successfully constructed plasmid was transferred into Agrobac-
terium GV3101 using the conventional freeze–thaw method. Next, pCAMBIA1300-MADS-
mCherry, pCAMBIA1300-TkMYC2-GFP, pCAMBIA1300-TkJAZs-GFP, pSPYNE-TkMYC2,
and pSPYNE-TkJAZs GV3101 were quickly infiltrated into the strain using an expression
buffer (10 mM MES pH 5.6, 10 mM MgCl2, 200 µM acetosyringone) into 5-week-old N. ben-
thamiana leaves [54]. Among them, pSPYNE-TkMYC2 GV3101 was needed to co-infiltrate
with the different pSPYCE-TkJAZ GV3101. After the infiltrated N. benthamiana was cul-
tured in the dark for 16 h and then cultivated for 2–3 days in a normal environment
(light/dark:16 h/8 h), we took the leaf epidermis and made temporary glass slides. The
fluorescence signals were detected by a laser confocal microscope (Nikon AX R, Nikon,
Shanghai, China).

Physical maps of vectors are in Figure S3.

4.6. Overexpression of TkMYC2 and Expression Analysis of TkSRPP/REF Genes by MeJA-RNA-Seq
and qRT-PCR in TKS

The CDS of TkMYC2 was amplified using primers containing homologous arms
compatible with overexpression vectors. (listed in Table S4). Subsequently, following the
instructions of the ClonExpress® One Step Cloning Kit (Vazyme, Nanjing, China), the
TkMYC2 gene was cloned into the BamH1 and Pst1-digested pCAMBIA2300-35S vector
via one-step cloning (physical map of the pCAMBIA2300-35s vector is seen in Figure S3).
Then, the successfully constructed plasmid was transferred into Agrobacterium GV3101
using the conventional freeze–thaw method. Next, we obtained the sterile TkMYC2 gene
overexpressing TKS seedlings using the leaf disk method; the TKS plant tissue culture
methods refer to the research of Liang et al. [55]. We screened TKS tissue-cultured seedlings
infected with pCAMBIA2300-35s-TkMYC2, GV3101 using Kan resistance; after the initial
screening, the plants were cultured normally for 6 months to collect seeds, which were
sown in 1/2 MS medium containing Kan resistance for secondary screening. The plants
that survived and developed normally were cultured in nutrient soil for 3 months, and
root DNA and root RNA were extracted for PCR (PCR Master Mix Kit: Vazyme, Nanjing,
China) and qRT-PCR detection to determine whether the overexpressed genes were stably
inherited. DNA-PCR identified TKS candidate transgenic seedlings using 35S upstream
primers and target gene downstream primers (listed in Table S4). We identified gene
overexpression levels in transgenic TKS using qRT-PCR primers (listed in Table S5).

Primer 5 software was utilized to design primers specific for qRT-PCR (see Table S5).
Following the manufacturer’s instructions, the ChamQ Universal SYBR qPCR Master Mix
Kit (Vazyme, Nanjing, China) was employed to conduct qRT-PCR on a LightCycler 480TM.
The relative gene expression analysis was computed using the 2−∆∆Ct technique, with
GAPDH serving as the internal reference gene.

4.7. Natural Rubber Extraction

First, we chopped the roots finely and transferred them to a test tube with a capacity of
20 mL. Then, we added 8 mL of a 3% sodium hydroxide solution. After an hour of boiling,
we swapped out the test tube for a 3% sodium hydroxide solution and cooked it again for
an additional hour. After repeatedly washing the roots in clean water until colorless, we
crushed the roots into thin slices to extract the root core from the main root. After adding
8 mL of 4% diluted sulfuric acid, we boiled for a further 8 min. We removed the diluted
sulfuric acid liquid, and then neutralized it with 96% anhydrous ethanol. The root residue
was then placed in a beaker and dried at 60 ◦C to a consistent weight [56,57].

4.8. Transcriptome Data Analysis

With MeJA-treated transcriptome data from our published studies [58], MeJA treat-
ment was conducted on three-month-old wild seedlings. Nine seedlings of identical growth
stages and similar heights were randomly selected for exposure to 0.8 mmol/L MeJA. MeJA
was initially dissolved in absolute ethanol and subsequently diluted to the required con-
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centrations with distilled water. Treatments were administered for durations of 6 and 24 h,
while control seedlings remained untreated (0 h). Both primary and lateral roots were
harvested from both the control and experimental groups, with three biological replicates
performed. Collected samples were promptly frozen in liquid nitrogen and stored at
−80 ◦C for subsequent RNA extraction.

5. Conclusions

In summary, a total of 11 JAZ family members were identified from the 2017 TKS
genome database. Phylogenetic analysis categorized these proteins into two major groups
and six minor groups, which was supported by their exon/intron structures, motifs, and
domains. All TkJAZ proteins possess conserved TIFY and Jas domains. Subcellular
localization results indicated nuclear localization of TkMYC2 and all TkJAZs. Y2H and BiFC
assays demonstrated interactions between TkMYC2 and all TkJAZs. Finally, overexpression
of TkMYC2 increases the biomass of TKS roots and promotes the biosynthesis of TKS NR
by regulating the expression of the TkSRPP/REF gene family.

In this study, the overexpression of the TkMYC2 gene significantly impacted the
phenotype of TKS. Consequently, subsequent experiments should investigate the role of
TkMYC2 in stress resistance and focus on the effect of the TkSRPP/REF gene family on
NR biosynthesis.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/plants13152034/s1: Table S1: T-vector for sequencing; Table S2:
Subcellular localization vector construction primers; Table S3: BiFC vector construction primers;
Table S4: Overexpression vector construction primers; Table S5: qRT-PCR primers; Figures S1 and S2:
Overexpression verification; Figure S3: Physical maps of vectors.
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