Extraction of Bioactive Compounds from the Fruits of Jambolan (Syzygium cumini (L.)) Using Alternative Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Jambolan Pulp
2.2. Extraction of Bioactive Compounds with Different Types of Alternative Solvents
2.3. Anthocyanins by UPLC-MS/MS
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Source of Fruits and Sample Preparation
3.3. Extraction and Concentration
3.4. Jambolan Pulp Characterization
3.5. Analysis of Bioactive Compounds
3.5.1. Total Phenolic Compounds (TPCs)
3.5.2. Total Flavonoids (TFs)
3.5.3. Total Monomeric Anthocyanins (TMAs)
3.5.4. Antioxidant Activity
Ferric Reducing Antioxidant Power (FRAP)
DPPH Assay
ABTS Assay
3.5.5. Identification of Anthocyanins by UPLC-MS
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cock, I.E.; Cheesman, M. Plantas do gênero Syzygium (Myrtaceae): Uma revisão sobre etnobotânica, propriedades medicinais e fitoquímica. In Compostos Bioativos de Plantas Medicinais: Propriedades e Potencial Para a Saúde Humana; Goyal, M.R., Ayeleso, A.O., Eds.; Apple Academic Press: Cambridge, MA, USA, 2019; pp. 36–84. [Google Scholar]
- Akter, M.S.; Oh, S.; Eun, J.B.; Ahmed, M. Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: A review. Food Res. Int. 2011, 44, 1728–1732. [Google Scholar] [CrossRef]
- Madani, B.; Mirshekari, A.; Yahia, E.M.; Golding, J.B.; Hajivand, S.; Dastjerdy, A.M. Jamun (Syzygium cumini L. Skeels): A promising fruit for the future. Hortic. Rev. 2021, 48, 275–306. [Google Scholar] [CrossRef]
- Nascimento-Silva, N.R.R.; Bastos, R.P.; Silva, F.A. Jambolan (Syzygium cumini (L.) Skeels): A review on its nutrients, bioactive compounds, and health benefits. J. Food Compos. Anal. 2022, 109, 104491. [Google Scholar] [CrossRef]
- Sabino, L.B.S.; Brito, E.S.; Junior, J.S. Jambolan—Syzygium jambolanum. In Guia de Referência de Frutas Exóticas; Rodrigues, S., Silva, E.O., de Brito, E.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 251–256. [Google Scholar] [CrossRef]
- Kowalska, G.; Wyrostek, J.; Kowalski, R.; Pankiewicz, U. Evaluation of glycerol usage for the extraction of anthocyanins from black chokeberry and elderberry fruits. J. Appl. Res. Med. Aromat. Plants 2021, 22, 100296. [Google Scholar] [CrossRef]
- López, C.J.; Caleja, C.; Prieto, M.A.; Sokovic, M.; Calhelha, R.C.; Barros, L.; Ferreira, I.C. Stability of a cyanidin-3-O-glucoside extract obtained from Arbutus unedo L. and incorporation into wafers for coloring purposes. Food Chem. 2019, 275, 426–438. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3589–3784. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.C.P.; Gonçalves, E.C.B.A. Effect of different extracting solvents on antioxidant activity and phenolic compounds of a fruit and vegetable residue flour. Sci. Agropecu. 2016, 7, 7–14. [Google Scholar] [CrossRef]
- Ferreira, V.F.; Rocha, D.R.; Silva, F.C. Química Verde, Economia Sustentável e Qualidade de Vida. Rev. Virtual Quim. 2014, 6, 85–111. [Google Scholar] [CrossRef]
- Nenadis, N.; Wang, L.F.; Tsimidou, M.; Zhang, H.-Y. Estimation of Scavenging Activity of Phenolic Compounds Using the ABTS+ Assay. J. Agric. Food Chem. 2004, 52, 4669–4674. [Google Scholar] [CrossRef]
- Santos, E.L.L.B.; Setti, G.P.P.; Mendonça, L.M.V.L.; Sanches, W.M.; Pereira, R.J. Composição e fitoquímicos de frutos de Syzygium cumini (L.) Skeels cultivados no Tocantins. Encicl. Biosf. 2020, 17, 227–238. [Google Scholar] [CrossRef]
- Pereira, R.J.; Cardoso, M.G.; Vilas Boas, E.V.B.; Pereira, R.J. Aspectos de qualidade e composição centesimal dos frutos de Sygygium cumini (L.) Skeels e Sygygium paniculatum gaertn. Rev. Cereus 2015, 7, 60–74. Available online: http://ojs.unirg.edu.br/index.php/1/article/view/726 (accessed on 10 March 2024).
- Vital, A.R.; Jardim, F.B.B.; Santos, E.N.F.; Jerônimo, M.; Paciulli, S.D. Caracterização físico-química e compostos bioativos em polpa de jambolão (Syzygium cumini). In Prática e Pesquisa em Ciência e Tecnologia de Alimentos; Silva, F.F., Ed.; Atena: Ponta Grossa, Brazil, 2020; pp. 22–32. [Google Scholar] [CrossRef]
- Branco, I.G.; Moraes, I.C.F.; Argandoña, E.J.S.; Madrona, G.S.; dos Santos, C.; Ruiz, A.L.T.G.; de Carvalho, J.E.; Haminiuk, C.W.I. Influence of pasteurization on antioxidant and in vitroanti-proliferative effects of jambolan (Syzygium cumini (L.) Skeels) fruit Pulp. Ind. Crop. Prod. 2016, 89, 225–230. [Google Scholar] [CrossRef]
- Coelho, E.M.; Azevedo, L.C.; Corrêa, L.C.; Bordignon-Luiz, M.T.; Lima, M.S. Phenolic profile, organic acids and antioxidant activity of frozen pulp and juice of the jambolan (Sygygium cumini). J. Food Biochem. 2016, 40, 211–219. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef]
- Kuskoski, E.M.; Asuero, A.G.; Morales, M.T.; Fett, R. Frutos tropicais silvestres e polpas de frutas congeladas: Atividade antioxidante, polifenóis e antocianinas. Ciênc. Rural 2006, 36, 1283–1287. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Romanini, E.B.; Silva, E.; Pilau, E.J.; Costa, S.C.; Madrona, G.S. Camu-camu bioactive compounds extraction by eco-friendly sequential processes (ultrasound-assisted extraction and reverse osmosis). Ultrason. Sonochem. 2020, 64, 105017. [Google Scholar] [CrossRef]
- Lestario, L.N.; Howard, L.R.; Brownmiller, C.; Stebbins, N.B.; Liyanage, R.; Lay, J.O. Changes in polyphenolics during maturation of Java plum (Syzygium cumini Lam.). Food Res. Int. 2017, 100, 385–391. [Google Scholar] [CrossRef]
- Ghosh, P.; Pradhan, R.C.; Mishra, S.; Patel, A.S.; Kar, A. Physicochemical and nutritional characterization of jamun (Syzygium cuminii). Curr. Res. Nutr. Food Sci. 2017, 5, 35. [Google Scholar] [CrossRef]
- Kapoor, S.; Ranote, P.S.; Sharma, S. Bioactive Components and Quality Assessment of Jamun (Syzygium cumini L.) Powder Supplemented Chapatti. Indian J. Sci. Technol. 2015, 8, 287–295. [Google Scholar] [CrossRef]
- Machado, W.M.; Pereira, A.D.; Marcon, M.V. Efeito do processamento e armazenamento em compostos fenólicos presentes em frutas e hortaliças. Publ. UEPG Ci. Exatas Terra, Ci. Agric. Eng. 2013, 19, 17–30. [Google Scholar] [CrossRef]
- Andrade, P.T.A.S.; Rigueira, L.M.B.; Baliza, P.X.; Mizobutsi, G.P. Effect of thermal treatment on the concentration of total phenolic compounds and Anthocyanins present in guava (Psidium guajava). Braz. J. Dev. 2022, 8, 45191–45201. [Google Scholar] [CrossRef]
- Maran, J.P.; Priya, B.; Manikandan, S. Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruits pulp. J. Food Sci. Technol. 2014, 51, 1938–1946. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Lima, L.S. Solvente. Rev. Ciência Elem. 2014, 2, 131. [Google Scholar] [CrossRef]
- Mosier, N.S.; Ladisch, C.M.; Ladisch, M.R. Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol. Bioeng. 2002, 79, 610–618. [Google Scholar] [CrossRef]
- Todaro, A.; Cimino, F.; Rapisarda, P.; Caralano, A.E.; Barbagallo, R.N.; Spagna, G. Recovery of anthocyanins from eggplant peel. Food Chem. 2009, 114, 434–439. [Google Scholar] [CrossRef]
- Sousa, M.M.; Lima, A.; Araújo, B.Q.; Rocha, M.S.; Filho, E.S.M.; Sousa, R.P.; Citó, A.M.G.L.; Sattler, J.A.G.; Almeirda-Muradian, L.B.; Nogueira, N.N. Multi-response Optimization of a Solvent System for the Extraction of Antioxidants Polyphenols from Jambolan Fruit (Syzygium cumini (L.) Skeels). Food Anal. Methods 2022, 15, 34–45. [Google Scholar] [CrossRef]
- Qamar, M.; Akhtar, S.; Ismail, T.; Yuan, Y.; Ahmad, N.; Tawab, A.; Ismail, A.; Barnard, R.T.; Cooper, M.A.; Blaskovich, M.A.T.; et al. Syzygium cumini (L.), Skeels fruit extracts: In vitro and in vivo anti-inflammatory properties. J. Ethnopharmacol. 2021, 271, 113805. [Google Scholar] [CrossRef] [PubMed]
- Aquil, F.; Mungala, R.; Jeyabalan, J.; Joshi, T.; Gupta, R.; Singh, I.P. The Indian Blackberry (jamun), antioxidant capacity, and cancer protection. In Cancer: Oxidative Stress and Dietary Antioxidants; Academic Press: Cambridge, MA, USA, 2014; pp. 101–113. [Google Scholar] [CrossRef]
- Marcheafave, G.G.; Tormena, C.D.; Pauli, E.D.; Rakocevic, M.; Bruns, R.E.; Scarminio, I.S. Experimental mixture design solvent effects on pigment extraction and antioxidant activity from Coffea arábica L. leaves. Microchem. J. 2019, 146, 713–721. [Google Scholar] [CrossRef]
- Tavares, I.M.C.; Lago-Vanzela, E.S.; Rebello, L.P.G.; Ramos, A.M.; Gómez-Alonso, S.; García-Romero, E.; Da-Silva, R.; Hermosín-Gutiérrez, I. Comprehensive study of the phenolic composition of the edible parts of jambolan fruit (Syzygium cumini (L.) Skeels). Food Res. Int. 2016, 82, 1–13. [Google Scholar] [CrossRef]
- Koop, B.L.; Knapp, M.A.; Di Luccio, M.; Pinto, V.Z.; Tormen, L.; Valencia, G.A.; Monteiro, A.R. Bioactive Compounds from Jambolan (Syzygium cumini (L.)) Extract Concentrated by Ultra- and Nanofiltration: A Potential Natural Antioxidant for Food. Plant Foods Hum. Nutr. 2021, 76, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Ongkowijoyo, P.; Luna-Vital, D.A.; de Meji, E.G. Extraction techniques and analysis of anthocyanins from food sources by mass spectrometry: An update. Food Chem. 2018, 250, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A.C.; Gomes, J.P.; Silva, F.B.D.; Nunes, J.S.; Santos, F.S.D.; Silva, W.P.D.; Ferreira, J.P.L.; Queiroz, A.J.M.; Figueirêdo, R.M.F.; Lima, G.S.; et al. Optimization of Extraction Method of Anthocyanins from Red Cabbage. Molecules 2023, 28, 3549. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.I.M.; Nogueira, T.Y.K.; Mauro, M.A.; Gómez-Alonso, S.; Gomes, E.; Da-Silva, R.; Hermosín-Gutiérrez, I.; Lago-Vanzela, E.S. Dehydration of jambolan [Syzygium cumini (L.)] juice during foam mat drying: Quantitative and qualitative changes of the phenolic compounds. Food Res. Int. 2017, 102, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Bhat, F.M.; Riar, C.S. Extraction solvent concentration affecting the anthocyanins and other phytochemicals profile and antioxidant properties of bran extracts of pigmented rice cultivars. Sci. Iran. C 2018, 25, 3331–3344. [Google Scholar] [CrossRef]
- Taghavi, T.; Patel, H.; Rafie, R. Extraction Solvents Affect Anthocyanin Yield, Color, and Profile of Strawberries. Plants 2023, 12, 1833. [Google Scholar] [CrossRef] [PubMed]
- Instituto Adolfo Lutz. Métodos Físico-Químicos Para Análise de Alimentos, 1st ed.; Instituto Adolfo Lutz: São Paulo, Brazil, 2008. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Alothman, M.; Ravej, B.; Karim, A.A. Antioxidant Capacity and Phenolic Content of Selected Tropical Fruits from Malaysia, Extracted with Different Solvents. Food Chem. 2009, 115, 785–788. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Barnes, K.W.; Eisele, T.; Giusti, M.M.; Hach, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; et al. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Col-laborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Rodrigues, C.A.; Nicácio, A.E.; Jardim, I.C.S.F.; Visentainer, J.V.; Maldaner, L. Determination of Phenolic Compounds in Red Sweet Pepper (Capsicum annuum L.) using a Modified QuEChERS Method and UHPLC-MS/MS Analysis and Its Relation to Antioxidant Activity. J. Braz. Chem. Soc. 2019, 30, 1229–1240. [Google Scholar] [CrossRef]
Proximate Composition and Physicochemical Parameters | Bioactive Compounds and Antioxidant Activity | ||
---|---|---|---|
Parameter | Mean (Wet Basis) | Parameter | Mean (Wet Basis) |
Moisture (g/100 g) | 83.76 ± 0.45 | TPCs | 711.51 ± 7.57 |
Carbohydrates (g/100 g) | 14.68 ± 0.42 | TFs | 294.97 ± 4.59 |
Proteins (g/100 g) | 0.65 ± 0.01 | TMAs | 35.57 ± 6.47 |
Lipids (g/100 g) | 0.45 ± 0.01 | FRAP | 683.02 ± 9.83 |
Ashes (g/100 g) | 0.46 ± 0.01 | DPPH | 158.69 ± 3.20 |
Soluble solids (°Brix) | 13.30 ± 0.02 | ABTS | 98.97 ± 4.16 |
pH | 3.76 ± 0.01 | ||
Aw | 0.98 ± 0.01 | ||
Acidity (g of citric acid /100 g) | 0.88 ± 0.01 |
Samples | TPCs (mg GAE/100 g) | TFs (mg QE/100 g) | TMAs (mg c-3-g/100 g) | DPPH (μM TE/g) | ABTS (μM TE/g) | FRAP (μM eq Fe2SO4/g) |
---|---|---|---|---|---|---|
W25 | 821.21 c ± 11.69 | 14.52 b,c ± 0.86 | 80.88 c ± 7.55 | 205.91 a ± 7.47 | 44.52 e ± 5.87 | 113.53 c ± 1.18 |
W50 | 1262.42 b ± 21.27 | 12.28 c ± 1.71 | 21.65 d ± 5.12 | 152.12 b ± 4.52 | 25.41 g ±1.07 | 80.53 e ± 3.63 |
W75 | 1347.27 a ± 20.65 | 19.59 a ± 1.05 | 24,32 d ± 7.73 | 207.06 a ± 0.92 | 34.86 f ± 2.14 | 92.37 d ± 1.61 |
CA2 | 528.48 f ± 27.52 | 7.78 d ± 0.57 | 110.04 b ± 8.26 | 106.95 e ± 4.35 | 64.63 c ± 2.91 | 73.72 e ± 2.97 |
CA9 | 655.15 e ± 2.80 | 1.57 e ± 0.14 | 99.58 b ± 4.88 | 115.08 d,e ± 1.98 | 54.85 d ± 1.35 | 30.36 f ± 0.45 |
WE | 738.78 d ± 16.89 | 13.95 b,c ± 0.28 | 35.23 d ± 1.86 | 122.97 c,d ± 1.99 | 86.86 a,b ± 2,71 | 137.70 b ± 4.63 |
EtOH | 744.24 d ± 24.20 | 16.26 b ± 0.72 | 25.38 d ± 6.95 | 159.20 b ± 2.21 | 81.19 b ± 2,69 | 133.53 b ± 3.59 |
WM | 549.69 f ± 3.75 | 21.78 a ± 0.86 | 185.30 a ± 8.86 | 126.01 c ± 0.54 | 90.75 a ± 1,07 | 157.78 a ± 1.42 |
Mean | 830.91 ± 10.46 | 13.47 ± 0.52 | 72.80 ± 2.95 | 149.41 ± 2.02 | 60.38 ± 1.73 | 102.44 ± 1.69 |
CV (%) | 2.18 | 6.77 | 7.01 | 2.32 | 4.98 | 2.86 |
Samples | Solvent | Temperature | Concentration |
---|---|---|---|
EtOH | Ethanol | 25 °C | 99.99% v/v |
EW | Ethanol + water | 25 °C | 50:50% v/v |
WM | Methanol + water | 25 °C | 50:50% v/v |
CA2 | Citric acid + water | 25 °C | 2.4:97.6% m/v |
CA9 | Citric acid + water | 25 °C | 9.6:90.4% m/v |
W25 | Water | 25 °C | 100% v/v |
W50 | Water | 50 °C | 100% v/v |
W75 | Water | 75 °C | 100% v/v |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artilha-Mesquita, C.A.F.; Stafussa, A.P.; Santos, P.D.S.d.; Santos, O.d.O.; da Costa, S.C.; Madrona, G.S. Extraction of Bioactive Compounds from the Fruits of Jambolan (Syzygium cumini (L.)) Using Alternative Solvents. Plants 2024, 13, 2065. https://doi.org/10.3390/plants13152065
Artilha-Mesquita CAF, Stafussa AP, Santos PDSd, Santos OdO, da Costa SC, Madrona GS. Extraction of Bioactive Compounds from the Fruits of Jambolan (Syzygium cumini (L.)) Using Alternative Solvents. Plants. 2024; 13(15):2065. https://doi.org/10.3390/plants13152065
Chicago/Turabian StyleArtilha-Mesquita, Carla Adriana Ferrari, Ana Paula Stafussa, Patrícia Daniele Silva dos Santos, Oscar de Oliveira Santos, Silvio Claudio da Costa, and Grasiele Scaramal Madrona. 2024. "Extraction of Bioactive Compounds from the Fruits of Jambolan (Syzygium cumini (L.)) Using Alternative Solvents" Plants 13, no. 15: 2065. https://doi.org/10.3390/plants13152065
APA StyleArtilha-Mesquita, C. A. F., Stafussa, A. P., Santos, P. D. S. d., Santos, O. d. O., da Costa, S. C., & Madrona, G. S. (2024). Extraction of Bioactive Compounds from the Fruits of Jambolan (Syzygium cumini (L.)) Using Alternative Solvents. Plants, 13(15), 2065. https://doi.org/10.3390/plants13152065