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Abstract: Lemon, as an important cash crop with rich nutritional value, holds significant cultiva-
tion importance and market demand worldwide. However, lemon diseases seriously impact the
quality and yield of lemons, necessitating their early detection for effective control. This paper
addresses this need by collecting a dataset of lemon diseases, consisting of 726 images captured under
varying light levels, growth stages, shooting distances and disease conditions. Through cropping
high-resolution images, the dataset is expanded to 2022 images, comprising 4441 healthy lemons
and 718 diseased lemons, with approximately 1–6 targets per image. Then, we propose a novel
model lemon surface disease YOLO (LSD-YOLO), which integrates Switchable Atrous Convolution
(SAConv) and Convolutional Block Attention Module (CBAM), along with the design of C2f-SAC
and the addition of a small-target detection layer to enhance the extraction of key features and the
fusion of features at different scales. The experimental results demonstrate that the proposed LSD-
YOLO achieves an accuracy of 90.62% on the collected datasets, with mAP@50–95 reaching 80.84%.
Compared with the original YOLOv8n model, both mAP@50 and mAP@50–95 metrics are enhanced.
Therefore, the LSD-YOLO model proposed in this study provides a more accurate recognition of
healthy and diseased lemons, contributing effectively to solving the lemon disease detection problem.

Keywords: lemon disease; YOLOv8; small objects; attention mechanisms; object detection

1. Introduction

The lemon, a small evergreen tree of the genus Citrus in the Rutaceae family, is prized
for its tart flavor and distinctive refreshing aroma, making it a popular ingredient in cooking,
flavoring, and beverage preparation. Lemons are rich in vitamin C, citric acid, and high
levels of potassium [1], all of which provide significant health benefits. Additionally, lemons
are reputed to have some medicinal properties [2] and are used in the treatment colds [3],
as well as in the prevention and management of hypertension and symptoms of myocardial
infarction. Lemon trees exhibit rapid growth and thrive in warm climates. By 2022, the area
dedicated to lemon cultivation in China reached 125,070 hectares, yielding a production
of 2,697,500 tons. However, the expansion of lemon cultivation has been accompanied
by an increased incidence of pests and diseases, significantly impacting the quality and
yield of lemons [4]. The manual identification of diseased lemons for subsequent control is
labor-intensive and resource-consuming and is prone to errors and omissions, making it
inadequate for large-scale farmland management. Fortunately, advancements in artificial
intelligence offer an effective solution to this problem [5].

With the rapid development of deep learning techniques, numerous target detectors
have been proposed, including Faster RCNN [6], YOLO [7], SSD [8], RetinaNet [9]. Many
of these detectors have been effectively applied to the detection of plant diseases. For
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instance, Kundu et al. effectively improved disease detection accuracy by using the k-
means algorithm to extract regions of interest, thus reducing interference from irrelevant
features [10]. Gangwar et al. integrated the VGG16, VIT [11], and CvT [12] models,
simplifying the depth of transformer blocks, which reduced both training time and storage
space requirements [13]. Yin et al. [14] incorporated deformable convolutions into the
SSD network to improve the representation of target detail features and the identification
of weak information, achieving an average accuracy (mAP@50) of 97.1%. Li et al. [15]
integrated SENet [16] and ResNeXt [17] into YOLOv3 [18] to design a model with reduced
computational complexity and enhanced feature extraction capability, resulting in an
average accuracy of 96.28%, with a detection speed of 106 frames per second. Zhang
et al. [19] replaced the backbone of the YOLOv4 [20] model with MobileNet-V2 [21] and
integrated a three-layer Bi- FPN [22] to ensure the creation of a lightweight model, achieving
an overall accuracy of 89%. By applying deep learning to plant diseases, not only can the
health and yield of crops be effectively improved, but it also helps to transform agricultural
resource management, achieving agricultural sustainability [23].

In recent years, both domestic and international scholars have made significant contribu-
tions to the task of detecting diseases of various fruits by exploring and optimizing methods
from different perspectives, such as feature extraction and neural network architectures. De-
spite this progress, relatively little research has been dedicated to the specific task of lemon
disease recognition. Therefore, further research and investment are needed to address the
challenges posed by lemon diseases and to support the lemon industry effectively. The study
of lemon and its disease identification face challenges due to factors such as variations in differ-
ent growth stages, lighting conditions, and random shading. Additionally, the varying degrees
of disease severity contribute to the diversity and complexity of affected areas, complicating
the accurate identification of lemons and their diseases. To address the above challenges, we
collected 726 relevant images and then cropped the high-resolution images to finally obtain
a total of 2022 images. Subsequently, this study utilized the YOLOv8 [24] target detector,
which ultimately led to the proposal of a new LSD-YOLO. This model incorporates the CBAM
attention mechanism [25] and the SAConv convolutional block [26], alongside an additional
small-target detection layer to enhance the detection performance. The experimental results
demonstrate that the improved algorithm more accurately localizes healthy and diseased
lemons and adapts more effectively to complex natural environments.

2. Related Work
2.1. Attentional Mechanisms

Attentional mechanisms have become pivotal in enhancing the performance of deep
learning models by enabling dynamic focus on the most relevant parts of the input data. In
the domain of computer vision, attention mechanisms have been extensively applied to im-
prove the accuracy and efficiency of target detection tasks. For instance, the Convolutional
Block Attention Module (CBAM) proposed by Woo et al. [25] integrates spatial and channel
attention to refine feature representations and has demonstrated significant improvements
in various vision tasks. Similarly, the work of Hu et al. [16] on squeeze-and-excitation
networks introduced channel-wise attention, which adaptively recalibrates channel-wise
feature responses and has been influential in improving model performance.

In the context of object detection, attention mechanisms have been integrated into
several state-of-the-art models. Lin et al. [9] introduced the RetinaNet, which utilizes a
focal loss function to handle class imbalance, while subsequent works have incorporated
attention modules to further enhance feature discrimination. Zhang et al. [19] enhanced
the YOLOv4 model with MobileNet-V2 and Bi-FPN, demonstrating the utility of attention
in lightweight models for maintaining high accuracy.

The Transformer [27] model by Vaswani et al. has also significantly influenced the use of
attention in computer vision. Dosovitskiy et al. extended the Transformer architecture to vision
tasks, resulting in the Vision Transformer (ViT) [11], which employs self-attention to process
image patches and has achieved competitive performance on image classification benchmarks.
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These advancements highlight the critical role of attentional mechanisms in modern
computer vision applications, underscoring their ability to improve feature extraction,
enhance model interpretability, and increase overall detection accuracy. In this work, we
integrated the CBAM into our model to help the network to emphasize critical features.

2.2. Small Object Detection

The detection of small objects is a critical challenge in computer vision, primarily due
to their low resolution, low contrast, and small size. These characteristics make it difficult
for standard object detection algorithms to accurately identify and localize small objects.
These factors often hinder accurate detection in images. To address this, researchers have
developed various methods to improve the detection performance for small objects.

One such technique is feature pyramid networks (FPNs) [28], introduced by Lin et al.,
which leverage a pyramid structure to create high-level semantic feature maps at different
scales. This allows the detection of objects of varying sizes, including small objects, by
combining feature maps from different layers. Another significant contribution is the
single-shot multibox detector (SSD) by Liu et al., which incorporates multi-scale feature
maps and default boxes of different aspect ratios into its framework. The SSD can detect
objects at multiple scales, improving the detection accuracy for smaller objects.

Regarding the YOLO series of models, YOLOv3 introduced a multi-scale detection
head, which helps in detecting small objects by combining information from different
resolutions. Subsequent versions of YOLOv3 have also incorporated strategies for better
small object detection.

Attention mechanisms, such as the CBAM, have been applied to emphasize critical
features and suppress irrelevant ones. This helps models focus more on small objects within
an image. Similarly, the use of channel and spatial attention mechanisms has been shown to
improve the detection accuracy for small objects by dynamically adjusting the importance
of feature maps.

2.3. Switchable Atrous Convolution

Ordinary convolution operations extract local features in an image by performing
sliding operations on the input data through a convolution kernel. This approach has
made great progress in tasks such as image classification and target detection. However,
it also presents challenges, particularly with a fixed receptive field size, which may limit
the model’s ability to capture information at different scales in the input data. Local con-
nectivity may also cause the model to ignore global information, adversely affecting the
performance. In contrast, Switchable Atrous Convolution (SAConv) can significantly im-
prove the performance of object detection by applying different atrous rate for convolution.
Furthermore, it incorporates a global context module and a new weight locking mechanism,
which improve the model’s ability to capture and utilize information from both local and
global contexts.

The architecture of SAC (Switchable Atrous Convolution) consists of three main parts:
the SAC component and two global context modules positioned before and after it. The
SAConv structure is shown in Figure 1. These modules help the network to adaptively
adjust the sensing field according to the changes in the scale and position of the target in
the image, capturing the global information of the overall image and enabling the SAC
component to work efficiently in a wider range of contexts.

SAC employs a varying null rate for the convolution operation when processing the
same input features. Null convolution effectively extends the receptive field by introducing
extra space in the convolution kernel, together with a switching function to fuse the results
of different convolutions, thus making the network more flexible with respect to the size
and scale of different features.

Qiao et al. [26] use y = Conv(x ; w; r) to denote the convolution operation, with x as
the input, y as the output, weights as w, and the atrous rate as r Then, we can convert a
convolutional layer to SAC as follows:
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Conv(x, w, 1)Convert→
to SAC

S(x) · Conv(x, w, 1) + (1 − S(x)) · Conv(x, w + ∆w, r) (1)

where r is the hyperparameter of the SAC, ∆w is the trainable weights, and the switching
function S(·) is implemented as an average pooling layer with a kernel of 5 × 5 and a
convolutional layer of 1 × 1. This switching allows the convolutional computation to be
soft-switched between different atrous rates.
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3. Materials and Methods
3.1. Data Acquisition and Processing

In this study, we conducted fieldwork in the renowned lemon-producing region of
Anyue County, Ziyang City, Sichuan Province. Over the fruiting season of lemons, spanning
from September to November in 2023, a comprehensive collection comprising 726 images
of lemons and diseased specimens was amassed. These images were captured under
varying weather conditions, including sunny and lightly raining environments. Each image
encapsulated diverse lighting scenarios, including front light, back light, and incidental
shadows, with variations in angles and distances. The dataset comprised 424 close-up shots
and 302 high-resolution images from varying distances. Then, we crop the high-resolution
images, by finding the location of the target, and then crop 1024 × 1024-sized images
from the original images and re-generate the annotation data, and the edge coordinate
information generated by the cropping process is also preserved. The 726 original images
were finally expanded to 2022 cropped images. The augmentation strategy not only
improves the richness of the dataset but also mitigates potential overfitting risks, thereby
enhancing the model’s performance and generalization capabilities. Figure 2 shows some
samples of healthy and diseased lemon datasets under different conditions.

Before the data can be subjected to the target detection algorithm, the targets need
to be labeled. In this process, we divided the dataset into two categories of lemon data
according to whether the target was diseased or not (healthy lemons and diseased lemons),
and the labeling information focused on the category of the target, as well as the location of
the center point and the length and width. The labeling process was performed using the
cvat tool, which then generated the dataset format in the YOLO format. In order to better
evaluate the model’s performance and improve the generalization ability and stability
of the model, we use a five-fold cross-validation [29] approach, which ensures that each
sample can be present in both the training and validation sets by dividing the dataset
into five subsets, using four of these subsets for training at a time and then validating the
dataset on one of the remaining subsets. The data distribution between these sets is shown
in Table 1.
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Table 1. Division of datasets.

Name Lemon Instances Disease Instance Total

Split1 Training set 3542 591 4133
Validation set 899 127 1026

Split2 Training set 3525 599 4124
Validation set 916 119 1035

Split3 Training set 3530 562 4092
Validation set 911 156 1067

Split4 Training set 3595 577 4172
Validation set 846 141 987

Split5 Training set 3572 543 4115
Validation set 869 175 1044

3.2. The Proposed LSD-YOLO Model

In reality, diseased lemons present dynamic and complex characteristics such as
color depth, shape and size due to different degrees of disease, which, together with
problems such as shading and the angle of lighting in a real environment, add considerable
difficulty to identify diseased lemons more accurately [30]. At the same time, the color
similarity between normal lemons and leaves, random occlusion and other issues are also a
challenging problem. At the same time, the YOLOv8 downsampling multiplier is relatively
large, which makes the small target lemon and disease area small; the characteristics of
disease spot dispersion are more difficult to be learned in a more top-level module. To
overcome the above problems, we proposed the LSD-YOLO model based on YOLOv8.
Based on YOLOv8, we introduced SAConv in the backbone network and designed C2f-
SAC, which allowed the model to adapt to features of different scales more flexibly. And
the CBAM attention mechanism is added to let the model focus on important features and
suppress unnecessary features. For small targets, we add extra detection heads to improve
the performance of recognizing small targets. The LSD-YOLO structure proposed in this
paper is shown in Figure 3.
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SAConv can make the network more flexible in adapting to features of different scales
to recognize objects in images more accurately. The SAC component and global context
module occupied by SAConv can well optimize the fixed sensory field and local continuity
problems brought by ordinary convolution. Therefore, we incorporate it into the backbone
of YOLOv8, and also incorporate SAConv into C2f to get the C2f_SAC module, the specific
structure of C2f_SAC module is shown in Figure 4. In C2f_SAC, the input of the previous
layer, after passing through a SAConv, can capture the information in the input feature
maps in different scales, and dynamically fuses the convolution results at these different
atrous rate. At the same time, while keeping the feature map size constant, it can capture
the feature information at different scales and integrate the global information efficiently at
the global scale.

To improve the characterization of the network, we use the CBAM attention mech-
anism. It is not only a lightweight module, but it also takes into account both channel
and spatial dimensions. The channel dimension focuses on “categories”, while the spa-
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tial dimension focuses on “locations”, and these two dimensions complement each other.
We set the ratio parameter to a small value of 8, which increases the impact of the av-
erage pooling operation and makes the model more concerned with global information.
Meanwhile, considering that the stacking of blocks of the same shape, as pointed out by
VGGNet [31], can obtain a fairer result, we set the convolution in the spatial attention
module to 3 × 3 convolution. The detailed operation is as follows.

Ms(F) = σ
(

f 3×3([AvgPool(F); MaxPool(F)])
)

= σ
(

f 3×3
([

Fs
avg ; Fs

max

])) (2)

where σ denotes the sigmoid function and f 3 × 3 denotes a convolution operation with a
convolution kernel size of 3 × 3. Fs

avg ; Fs
max denote the average pooling feature and the

maximum pooling feature, respectively.
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The FPN + PAN [32] method used in YOLOv8 fuses feature maps of multiple scales
together to obtain feature maps of 80 × 80 × 256, 40 × 40 × 516, 20 × 20 × 1024. And we
fused more shallow features 160 × 160 × 64 on this basis; this shallow feature map has
more detailed information, which helps to better detect and localize small targets. At the
same time, the shallower feature maps are stitched together with the deeper feature maps,
which effectively retains more detailed information in the shallow feature maps while also
capturing the global context and abstract features of the objects in the deeper features. A
new 160 × 160 × 128 feature map is finally obtained, which leads to a new detection head
to improve the detection performance of the model for small targets.

3.3. Evaluation Indicators for the Model

The experimental environment of this paper was conducted using Python 3.10, CUDA
12.1, and the PyTorch 2.2.1 deep learning development framework. The computer used
in the study is equipped with Intel(R) Core(TM) i9-14900K (Intel Corporation, santa
Clara, CA, USA), 24 core CPU and NVIDIA GeForce RTX 090 GPU, running on the
Ubuntu 22.04 operating system.

In this study, the relevant hyperparameters are as follows: a 640 × 640 pixel image is
taken as the same input, and AdamW [33] is used as the optimizer, with an initial learning
rate of 0.001667, a momentum of 0.9, and a weight decay value of 0.0005. After considering
the memory requirement, convergence speed, generalization ability, this paper sets the batch
size during training to 8 and the number of iterations for training the same set to 200 rounds.

In order to accurately measure the performance of the algorithm in different aspects,
we choose a series of classical performance metrics, including Precision, Recall, mean
average precision (mAP), overall standard deviation (σ), etc., to measure the performance
of the algorithm. Among them, Precision and Recall are used to measure the precision
and coverage of the algorithm. Precision indicates the ratio between the number of targets
correctly detected by the model and the number of all detected targets, while Recall
indicates the ratio between the number of targets correctly detected by the model and the
number of all targets in the dataset. mAP is used to assess the performance of the algorithm
on different categories and is a comprehensive metric. The overall standard deviation
assesses the stability of the model. The formulas for these metrics are as follows.
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Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

AP =
∫ 1

0
P(R)dR (5)

mAP =
AP1 + AP2 + · · ·+ APn

n
(6)

µ =
1
5

5

∑
i=1

xi (7)

σ =

√
∑5

i=1(xi − µ)2

5
(8)

where TP represents the number of correctly identified positive samples, FP is the number
of negative samples incorrectly identified as positive samples, and FN is the number of
positive samples incorrectly identified as negative samples. n represents the number of
categories, xi is the data for the i-th indicator, µ is the mean value of the indicator, and σ is
the overall standard deviation.

4. Results and Discussion
4.1. Comparison Experiment

To verify the accuracy, validity, and stability of LSD-YOLO, we compared LSD-YOLO
with YOLOv8n, YOLOv7-tiny [34], YOLOv5n6, and YOLOv5n [35], which are advanced
target detection methods. Tables 2 and 3 present the Precision (P), Recall (R), mAP@50,
mAP@50–95, overall standard deviation, and parameter count discerned by these various
models.

Table 2. Comparative analysis of model accuracy metrics at IOU = 0.5.

Model Lemon (%) Disease (%) mAP@50 (%) σmAP@50 Parameter

YOLOv5n 91.47 85.32 88.40 0.73 1.77 M
YOLOv5n6 90.30 84.26 87.28 1.93 3.10 M

YOLOv7-tiny 90.03 83.71 86.87 1.16 6.02 M
YOLOv8n 91.69 84.28 87.98 2.16 3.01 M

LSD-YOLO 92.89 88.36 90.62 1.73 3.35 M

Table 3. Comparative analysis of metrics across different models.

Model Precision (%) Recall (%) Lemon (%) Disease (%) mAP@50–95 (%) σmAP@50–95

YOLOv5n 87.41 81.76 74.90 74.57 74.73 0.92
YOLOv5n6 85.26 80.14 74.10 73.20 73.65 1.85

YOLOv7-tiny 85.02 80.66 72.57 72.16 72.36 1.02
YOLOv8n 87.54 79.71 78.98 76.77 77.87 1.99

LSD-YOLO 89.22 83.96 80.53 81.15 80.84 1.21

From the experimental results, our LSD-YOLO has better accuracy, completeness and
precision in lemon detection, with mAP@50 reaching 92.89% and 88.36% for healthy lemons
and diseased lemons, respectively, as well as higher scores for other metrics. Compared with
the original YOLOv8n algorithm, LSD-YOLO reached 90.62% for mAP@50, an improvement
of 2.64%, and 80.84% for mAP@50–95, an improvement of 2.97%, with only a 0.34 M
parameter increase, which is significantly higher than the detection accuracy of other
models. Moreover, the overall standard deviation of the improved LSD-YOLO is smaller
than that of the original algorithm for mAP@50 and mAP@50–95, which fully demonstrates
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the better stability and robustness of the present model. The fluctuations in accuracy across
the five models during the training process are depicted in Figures 5–9.
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4.2. Visualization

To gain a more intuitive understanding of the model’s performance in detecting lemon
diseases in natural environments and to compare the reliability of each model, we visualized
the detection results of different models. We selected four images in the validation set of the
divided split2 and evaluated them using YOLOv5, YOLOv5n6, YOLOv7-tiny, YOLOv8n,
and LSD-YOLO. The visualization results of true positives (TPs), false positives (FPs), and
false negatives (FNs) for the five models are shown in Figure 10 below.

From the Figure 10, it is evident that each model exhibits better recognition perfor-
mance when the target is large and located in the center of the image. However, as the target
size decreases, the environmental occlusions and interference from foliage at the edges
affect detection accuracy. Under these challenging conditions, the improved LSD-YOLO
demonstrates significantly better recognition performance than the other models. This
observation confirms that LSD-YOLO offers superior accuracy and reliability.

4.3. Ablation Study

In this paper, three methodologies were been employed to enhance the model. To
ascertain the efficacy of these methodologies on the model’s performance, ablation exper-
iments were conducted on YOLOv8n. Eight distinct experimental configurations were
devised through permutations of various modules. Evaluation metrics including mAP@50,
mAP@50–95, the overall standard deviation of the corresponding indicators, and parame-
ters count were employed for assessment. The nomenclature utilized for clarity designates
the module dedicated to small object detection as SOD, the Spatial Attention Convolution
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as SAC, and the Convolutional Block Attention Module as CBAM. Detailed outcomes are
presented in Table 4.
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Table 4. Results of the ablation study.

Method mAP@50 (%) σmAP@50 mAP@50–95 (%) σmAP@50–95 Parameter

YOLOv8n 87.98 2.16 77.87 1.99 3.01 M
YOLOv8n + SAC 89.65 1.60 79.46 1.36 3.35 M
YOLOv8n + SOD 87.98 1.88 77.69 1.50 2.93 M

YOLOv8n + CBAM 88.08 2.16 77.95 1.58 3.08 M
YOLOv8n + SAC + SOD 88.98 1.16 78.95 1.02 3.29 M

YOLOv8n + SOD + CBAM 88.25 2.03 78.18 1.76 2.99 M
YOLOv8n + SAC + CBAM 89.53 2.22 79.41 2.48 3.42 M

YOLOv8n + SAC + SOD + CBAM 90.62 1.73 80.84 1.21 3.35 M

Table 4 illustrates that the introduction of the SAConv module leads to notable im-
provements in mAP@50 and mAP@50–95 by 1.67% and 1.59%, respectively. This under-
scores the efficacy of incorporating global information and employing convolution with
varying atrous rates, with a switching function, to effectively broaden the receptive field.
Consequently, the network can capture a more extensive array of contextual information,
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facilitating efficient feature extraction. Additionally, the integration of the CBAM yields
significant performance improvements in the model. Remarkably, the sole introduction
of SOD results in a reduction in the overall variance and parameter count for each metric,
albeit with a decrease in accuracy. However, the combination of SOD and the CBAM
demonstrates effective enhancement. We posit that the initial introduction of SOD, through
dimensionality reduction and upgrading operations, leads to information loss. However,
the subsequent addition of the CBAM attention mechanism accentuates the compressed
low-dimensional features. Subsequent upgrading processes reconstruct and fortify the
features, thereby enhancing their expression. In summary, this study contends that the
synergy of these three parts constitutes a synergistic approach, resulting in qualitative im-
provements in detection accuracy with minimal parameter increments while concurrently
enhancing model stability.

4.4. Applicability

To further investigate the performance and applicability of the model in detecting
diseases in other fruits, this study utilized a dataset named “detection1” [36] from Roboflow,
specifically focusing on citrus fruits. The dataset comprises 2782 images of citrus fruits,
encompassing various degrees of rot, irregular shapes and sizes, and different levels of
occlusion. The dataset is categorized into two classes: ‘orange fraiche’ (fresh orange) and
‘orange pourrie’ (rotten orange). We partitioned the dataset in a 7:2:1 ratio, resulting in
1947 images for the training set, 556 for the validation set, and 279 for the test set. Table 5
lists the Precision (P), Recall (R), and mAP@50 of the LSD-YOLO model on this dataset.

Table 5. Metrics for different classes at IOU = 0.5.

Classes P (%) R (%) mAP@50 (%)

all 87.92 86.37 92.69
orange fraiche 88.03 78.84 88.57
orange pourrie 87.81 93.89 96.80

As shown in Table 5, the proposed LSD-YOLO model demonstrates commendable
performance on the citrus dataset. Specifically, the mAP@50 for fresh oranges and rotten
oranges achieved 88.57% and 96.80%, respectively, with an overall average mAP@50 of
92.69%. Additionally, other evaluation metrics also yielded satisfactory results. These
findings underscore the enhanced LSD-YOLO model’s applicability and flexibility in
detecting diseases across different plant species.

5. Conclusions

To address the issue of surface disease during lemon cultivation, this paper proposes
the LSD-YOLO model based on the YOLOv8n detector. By integrating the SAConv module
and improving the C2f module, we introduce the new C2f-SAC, which can better capture
global information and features at different scales. The inclusion of the CBAM attention
mechanism and a small-target detection layer further enhances the representation of key
features and the detection of small targets, making the model more adept at utilizing
and expressing features comprehensively. The experimental results indicate that the pro-
posed LSD-YOLO mAP@50 reaches 90.62% and mAP@50–95 reaches 80.84%. This model
demonstrates superior detection accuracy and stability compared to other commonly used
objective detection. Compared to the benchmark model, LSD-YOLO can show a better per-
formance in each evaluation metric with the introduction of the 0.34 M parameter number.
Therefore, this method proves feasible for lemon surface disease detection, and it can detect
healthy and diseased lemons more accurately in natural environments, which provides
more powerful technical support for the product quality control of lemons. However, it
should not be overlooked that the performance of the model can vary in different envi-
ronments or with different lemon varieties. Moreover, the difficulty in identifying subtle
symptoms makes early disease detection still challenging. In the future work, our study
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will further optimize the model’s structure, expand the scope of the dataset, especially
targeting early-stage disease, to achieve a more accurate identification of diseased lemons,
and facilitate the timely detection and treatment of lemon diseases.
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