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Abstract: The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the
ability to harness light as an energy source. The most successful type of photosynthesis utilizes a
virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies
on time and intensity scales of several orders of magnitude. Such rapid and steep changes in en-
ergy availability are potentially devastating for biological systems. To enable a safe and efficient
light-harnessing process, photosynthetic organisms tune their light capturing, the redox connections
between core complexes and auxiliary electron mediators, ion passages across the membrane, and
functional coupling of energy transducing organelles. Here, microalgal species are the most diverse
group, featuring both unique environmental adjustment strategies and ubiquitous protective mecha-
nisms. In this review, we explore a selection of regulatory processes of the microalgal photosynthetic
apparatus supporting smooth electron flow in variable environments.
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1. Introduction
1.1. The Diversity of Microalgal Oxygenic Photosynthesis

Photosynthesis is a relatively ancient development of life on earth that uses light to
capture CO2 via Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activity.
This review will focus on the most successful type of photosynthesis which is oxygenic
and uses water as an electron donor for CO2 fixation in the Calvin Benson Bassham (CBB)
cycle. It was initially developed in proto-cyanobacterial organisms which are dated as
far as 2.3 Ga [1], with the earliest fossil findings pointing to 1.9 Ga [2]. As of now, there
is an agreement that all oxygenic photosynthesizers originate from a single lineage of
organisms, which possessed both type I and II photosynthetic reaction centers (aka PSI
and PSII) [3–5]. These proto-cyanobacteria later evolved to the current day cyanobacteria
to eventually engage in an endosymbiosis event (or events, see [6–8]), giving rise to the
O2-producing plastids occurring in the lineage of Archaeplastida which includes green and
red algae as well as Glaucophytes, but also in other domains such as Stramenopiles (e.g.,
diatoms) and Alveolata (e.g., dinoflagellates and Chromerida) [9]. As a very diverse group,
microalgae can be found virtually everywhere, conquering both aquatic and terrestrial
habitats including soil, aeroterrestrial and epiphytic habitats by developing unique adapta-
tions [10]. The combination of a relatively short life cycle paired with a large eukaryotic
genome, around 20–150 Mb (excluding exceptions [11]), might have helped microalgae to
succeed in a competitive environment. Unsurprisingly, species of the same genus, such as
Chlorella, were found in completely different environments—from Antarctic oceans [12,13]
to Mediterranean deserts [14]—and in many cases feature distinct gene expression patterns
in response to their habitat and the associated stress types [15], yet holding little genomic
variation. On the other hand, the phenotypic expression of different algal lineages of similar
habitats exhibits such converged traits that previous classification attempts led to a grand
mix-up of genetic lineages [16]. In this review, we will shed light on the regulation of
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electron transfer processes that generate a transmembrane electrochemical proton gradi-
ent, also referred to as proton motive force (pmf ). Our focus will be on how the pmf is
fine-tuned for sustained photosynthetic productivity and how environmental adaptations
altered these regulatory processes in different microalgae. However, functional microalgal
photosynthesis research is entangled with research on other phototrophs since conserved
fundamental processes are involved, such as energy stabilization upon water splitting in
the oxygen-evolving complex (OEC). To fully cover how the pmf is regulated, this review
will also lean on extrapolated knowledge derived from other photosynthetic domains. We
will provide an overview of unique aspects of photosynthesis regulation in a selection of
microalgal examples, acknowledging that covering the entirety of microalgal diversity will
be beyond the scope of this review. To illustrate the heterogeneity of the term ‘microalgae’,
we included a simplified phylogenetic tree (Figure 1, based on recent studies [9,17,18]),
presenting the most relevant model organisms of eukaryotic microbial phototrophs.
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1.2. The Oxygenic Photosynthetic Apparatus

In all oxygenic photosynthesizers, the pmf across the thylakoid membrane is consti-
tuted of two components: chemical (osmotic H+ gradient, ∆pH) and electric (membrane
potential, ∆Ψ). The electrons which are released during water oxidation (at the OEC of
PSII) reduce a plastoquinone (PQ) molecule, situated in the acceptor side of PSII (QB),
converting it to plastoquinol (PQH2). As PQH2 diffuses within the membrane, it can
reduce the cytochrome b6f complex (Cytb6f ) and by doing so, increase the capacity of
pmf generation [19,20]. The electron transfer between Cytb6f and PSI is then mediated
by either plastocyanin (Pc) or cytochrome c6 (Cytc6). This variation originates from the
altered metal cofactors and their environmental abundance, which in some cases deter-
mines the expression levels of Pc (containing a copper atom) and Cytc6 (containing an
iron–heme cofactor) [21]. Some lineages, such as red algae, have lost the genes encoding
Pc, while other lineages such as Charophytes and the derivative lineage of land plants
almost exclusively rely on it. These lineages were thought to have completely lost the genes
encoding Cytc6, although recent studies discovered Cytc6 orthologs that are still poorly
characterized (e.g., Cytc6A and Cytc6B) [22]. Adequately, these adaptations also triggered
alterations of the interacting residues, situated on the PSAF loop of PSI, in both the green
lineage during the transition to land [23] and across other photosynthetic lineages [24–26].
Following Pc/Cytc6 diffusion towards and reduction of photo-oxidized PSI, the energy
stored within its excitation is channeled to the three [4Fe–4S] centers (FX, FA, FB). PSI then
most prominently reduces ferredoxin (FDX), which is a small soluble electron carrier [27,28]
that mediates a plethora of redox reactions, such as NADPH production via FDX:NADP+

oxidoreductase (FNR) [29,30]. The photo-reduced [2Fe-2S] cluster of FDX feeds into diverse
redox carrier pools, such as thioredoxins and thioredoxin-like proteins [31]. Broadly, these
processes are fine-tuned by an intricate regulatory network, aiming to maintain a proper
pmf which allows bioenergetic membranes to engage in chemiosmosis via ATP synthase
(FOF1) [32]. In Figure 2, we present a schematic illustration of the photosynthetic apparatus,
based on green microalgal physiology. The boxes highlight the sections covered in this
review, comprising a selection of the latest findings in the field.
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compartment; adhering to a green lineage blueprint), but also extending to the cytosol, peroxisomes
(round object), and mitochondria (brown compartment). The green lines in box five represent vascular
plant pathways. 2-OG: 2-oxoglutarate; 2-PG: 2-phosphoglycolate; 3-PGA: 3-phosphoglycerate; ATP:
adenosine triphosphate; ANT: ATP and ADP translocases; AOX: alternative oxidase; b6f: cytochrome
b6f complex; C: respiratory complex; c6: cytochrome c6; CBB: Calvin–Benson–Bassham; CEF: cyclic
electron flow; CLC: Cl- channel; FDX: ferredoxin; FNR: FDX:NADP+ oxidoreductase; FLV: flavodiiron
protein; Gln: glutamine; Glu: glutamate; Gly: glycine; H2ase: hydrogenase; KEA3: K+ Exchange
Antiporter 3; LCI20: low-carbon-inducible20; Mal: malate; NAD(P)H: reduced nicotinamide adenine
dinucleotide (phosphate); MiTC14: mitochondrial substrate carrier protein 14; NDH: NAD(P)H
dehydrogenase; NPQ: non-photochemical quenching; NTT: nucleoside triphosphate transporter;
OAA: oxaloacetate; OMT: 2-OG/Mal translocator; Pc: plastocyanin; PGR5: proton gradient regulation
5 polypeptide; PSC: photosynthetic control; PSI/II: photosystem I/II; PQ: plastoquinone; PTOX:
plastid terminal oxidase; RuBisCO: Ribulose-1,5-bisphosphate carboxylase/oxygenase; Ser: serine;
SOD: Superoxide dismutase; UQ: ubiquinone. The illustration was created using Biorender.com.

2. Maintaining Proper Water Splitting
2.1. Spatial Separation of the Thylakoid Membrane

To date, most of our knowledge on the regulatory aspects of membranal organization
is based on land plant thylakoids, but microalgal studies are on the rise owing to recent
advances in cryo-focused ion beam milling and cryo-electron tomography [33–35]. Accord-
ingly, structural properties shared between plant and green microalgal membranes are the
division into appressed (aka grana) and non-appressed (aka stromal lamellae) domains [36].
However, unlike the 4–20 layered cylinders that form vascular plant grana stacks [37],
thylakoid stacking is less pronounced in nonvascular plants [38] and even further reduced
in green microalgae such as Chlamydomonas reinhardtii [33,34,39]. While red algae and
Glaucophytes have unstacked thylakoids likely due to their phycobilisomes, appressed
membrane bands are usually found in secondary and tertiary plastids of Stramenopiles,
Haptophytes, dinoflagellates, and Cryptophytes. The distinction between appressed and
non-appressed membranes results in a lateral heterogeneity among the distribution of
photosynthetic membrane protein complexes: PSII tends to be localized in membrane
stacks, while PSI and FOF1 reside in unstacked membranes [40]. The Cytb6f is present in
both domains and laterally mobile [41,42]. Lateral heterogeneity might help to separate
PSI from PSII to prevent energy spillover [43]. The latter may be differently controlled
within red algal membranes, being predominantly non-appressed with homogeneously
distributed complexes [39]. Here, a row-like organization of phycobilisome-covered PSII
might control spillover efficiencies [44]. Furthermore, a feedback mechanism was recently
postulated that connects grana stacking with the pmf in the form of light-dependent lumi-
nal cation concentration [45]. Indeed, it was shown that in the absence of adequate grana
stacking, the stress adaptability of vascular plants was diminished [46]. Accordingly, such
de-stacking might deregulate the spatial separation of the two photosystems and/or diffu-
sion of the electron carriers. Data from vascular plants suggest that the spatial separation
of the two photosystems limits electron flow to some extent due to the diffusion of PQH2
and Pc/Cytc6, and at least the luminal diffusion was reported to be dependent on the
intermembrane space [47,48]. In land plants, the diffusion of PQ/PQH2 within the mem-
brane was shown to be regulated by the formation of super-complexes and the viscosity of
the membrane [49]. Microalgal studies in this context are scarce, but a functional link of
PQ/PQH2 diffusion and/or membrane viscosity to PSII repair was recently proposed [50].
Interestingly, one converged adaptation to cold environments, such as in Antarctica, is the
desaturation of fatty acids. This was demonstrated to increase the fluidity of the thylakoid
membrane [51]. Some green algal species, such as the Antarctic Chlamydomonas raudensi [52]
but also the temperate Lobosphaera incisa [53], contain polyunsaturated fatty acids which
greatly increase lipid fluidity. Accordingly, these adaptations were shown to increase the
mobility of PQ/PQH2 molecules in the membrane, and were postulated to play an essential
role in enabling adequate gas exchange [54]. By coping with such restraints, these branches
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of the photosynthetic lineage conquered some of the harshest environments, which seem
to be inhabitable to most other oxygenic phototrophs. Similar adaptations were reported
to play a key role in regulating electron flux rates in Stramenopiles, such as Phaeodactylum
tricornutum, where the saturation state of thylakoid fatty acids increased in correlation
with PQ pool oxidation, promoting PQ/PQH2 diffusion [55]. Taken together, microalgae
may provide versatile solutions to establish photosynthetic resilience, and combined ef-
forts of ultrastructural and functional studies will be required to elucidate the diversity of
microalgal adaptations.

2.2. Intrinsic PSII Regulation

Oxygenic photosynthesis depends on the common reaction of water oxidation by the
OEC, situated in PSII (for a full review on the history of PSII discoveries, see [56]; for a
detailed review covering PSII function, see [57]). Briefly, excited electrons are channeled to
a semi-quinone, located in the permanent QA site of PSII, from which they are transferred
to a PQ molecule, situated in the QB site (aka PSII acceptor side [58]). One of the main
hazards related to PSII activity is the formation of singlet oxygen at the P680 reaction
center, being generally very destructive for living organisms [59,60]. Therefore, PSII is
one of the most regulated complexes in the chloroplast. Damaged reaction centers are
routinely degraded, while the chassis of the peripheral subunits stays untouched during
swift reassembly [61]. The rate at which this chain operates depends on many factors. The
antenna size and configuration determine the amount of energy that enters the system
(see Section 2.3). In addition, it was shown that low HCO3

− availability in the lumen can
inhibit the activity of the OEC [62], as can increasing concentrations of ascorbate [63,64].
One way PSII senses downstream bottlenecks is by the availability of PQ, which reflects
changes in Cytb6f activity (see Section 3.1). In the absence of available PQ, electrons fail
to exit the QA site and therefore perform a back reaction potentially ending up in singlet
oxygen formation [65]. It was postulated that at this point, QA can reduce O2 to relieve
the redox pressure on the center. However, when O2 is not available due to increased
mitochondrial activity or external hypoxia, the mode of operation alters [66]. In mature
PSII complexes, the non-heme iron, situated between the QA and QB sites, is in complex
with an HCO3

− ion [45,67–69]. HCO3
− is incorporated during PSII maturation replacing

a Glu sidechain complexed with non-heme iron [68]. Recent observations showed that
a similar, yet analogous maturation process precedes the incorporation of the OEC in
cyanobacterial systems [70]. This could represent a universal photoprotective strategy
during PSII maturation to limit singlet oxygen formation. Indeed, it was reported that
replacing HCO3

− with glycolate decreased PQ reduction and boosted O2 reduction at
the QA site [71]. Moreover, the output of electrons into the PQ pool was observed to be
decreased in such conditions [62,72,73], leading some authors to postulate that the redox
change alters the electron flow pathway to a PSII-cyclic mode [74–77]. This mechanism
might involve a yet to be characterized QC site [78,79] and/or an intrinsic route involving
cytochrome b559 [80–82]. In any case, these redox changes within PSII were associated with
an increased or highly variable pmf formed across the thylakoid membrane.

2.3. Rapid Adjustments of Light-Harvesting Capacity

Light-harvesting determines the energy input into the photosynthetic electron transport
chain, so that fine-tuning of light-harvesting is vital to balance energy supply with metabolic
demands and to diminish the production of harmful reactive oxygen species (ROS), such as
the aforementioned singlet oxygen. Energy-dependent (qE) non-photochemical quenching
(NPQ) mediates the thermal dissipation of excess excitation energy. Thereby, the effective
photosynthetic contribution of PSII can be fine-tuned on a short time scale. In the green algal
model species Chlamydomonas reinhardtii, qE depends on light harvesting complex stress-
related 3 (LHCSR3) [83] and to a minor extent on LHCSR1 [84]. PSBS, the main qE catalyst
in vascular plants [85], likely contributes to the structural reorganization occurring during
qE induction as well as a minor LHCSR-independent qE component [86–89]. Likewise,
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LHCSR3 and PSBS facilitate qE during the first phase of the photoprotective response in the
green microalga Haematococcus lacustris, whereas during the second phase, optical shielding
by astaxanthin accumulated in the mature hematocysts predominates [90]. The molecular
docking site of LHCSR at PSII-LHCII is elusive. In Chlamydomonas reinhardtii, PSBR is
required for efficient LHCSR3 binding to PSII-LHCII [91,92], and LHCB5 [93,94] as well as
LHCBM1 [95] have been reported to be essential for qE. LHSCR proteins bind pigments
and sense the lumen pH via protonatable residues [96–98]. This creates a regulatory
feedback loop between electron transfer and light-harvesting, since the lumen pH reflects
the redox state of the electron transport chain: Lumen acidification triggers protonation-
induced conformational changes of LHCSR [99], leading to a functional switch of the LHCII
antennae system from a light-harvesting to an energy-dissipating state [100].

Among other factors, LHCSR and PSBS accumulation in Chlamydomonas reinhardtii de-
pends on light and intracellular CO2. Thus, LHCSR and PSBS levels are a function of excitation
energy availability and metabolic sink capacity: Expression of both LHCSR3 [83,97,98,101]
and to a lesser extent LHCSR1 [84,102] is induced in response to high light, while PSBS
expression occurs transiently following the onset of high light [87–89]. LHCSR1 and PSBS
expression is primarily promoted in response to UV light, a condition in which LHCSR3
accumulates to a lesser extent [86,103,104]. Interestingly, expression of LHCSR and PSBS
in response to light is differentially regulated in the green alga Haematococcus lacustris, ex-
emplifying the diversity of qE regulation even within the group of green microalgae [105].
Furthermore, LHCSR3 and PSBS expression in Chlamydomonas reinhardtii is induced in
response to low CO2 levels via a shared EEC enhancer sequence motif [87,106,107]. No-
tably, the carbon-concentrating mechanism (CCM) master regulator CIA5/CCM1 [108,109]
promotes LHCSR3 expression and slightly induces PSBS expression, even in the absence
of light, whereas it inhibits LHCSR1 accumulation [104,110]. Light- and CO2-dependent
signaling partially intertwines [111], resulting in a coregulation of photoprotection- and
CCM-related genes [104,110,112]. The differential expression patterns of LHCSR3 and
LHCSR1 in response to light and CO2 signals suggest these proteins may play complemen-
tary roles in balancing photoprotection with light-harvesting efficiency [113].

Moreover, lumen acidification induces the two-step enzymatic de-epoxidation of
violaxanthin to antheraxanthin and zeaxanthin reversibly associated with LHCII [114].
Although in Chlamydomonas reinhardtii a contribution of zeaxanthin and/or LHCII aggrega-
tion to qE has been previously discarded [115], other recent studies report the existence of
a zeaxanthin-dependent qE component [98] as well as the capability of aggregated LHCII
trimers to mediate qE via LHCBM1 and LHCBM5 [116,117]. Intriguingly, Chlamydomonas
reinhardtii features an atypical violaxanthin de-epoxidase, being located to the stromal face
of the thylakoid membrane [118] and not relying on ascorbate as a reductant [119]. In
contrast, in the green alga Chlorella vulgaris, qE clearly depends on zeaxanthin accumulation
mediated by a plant-like violaxanthin-de-epoxidase [120]. In Chlamydomonas reinhardtii
and other green algae as well as algae containing secondary green plastids, an additional
xantophyll cycle involving lutein and loroxanthin operates on longer time scales, similar to
the lutein–epoxide/lutein cycle in plants [121].

In microalgal species containing secondary red plastids, qE unambiguously relies on
the xanthophyll cycle. In Chromera velia (Alveolata), qE is induced by a fast de-epoxidation
of violaxanthin to zeaxanthin in response to lumen acidification [122]. In Stramenopiles
such as Nannochloropsis gaditana [123] and Nannochloropsis oceanica [124,125], qE involves
LHCX proteins quenching LHCs at both photosystems as well as zeaxanthin-dependent
quenching of LHCII. Likewise, in other Stramenopile model species such as Phaeodactylum
tricornutum, LHCX proteins play a major role in qE [126], with different isoforms being
expressed in response to a multitude of abiotic factors and mediating distinct quenching
mechanisms [127–130]. Notably, unlike LHCSR proteins, LHCX proteins are not involved
in sensing the lumen pH, while diadinoxanthin/diatoxanthin binding is essential for qE
induction [131,132]. The modulation of qE in diatoms occurs via activity regulation of both
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xanthophyll cycle enzymes, diadinoxanthin de-epoxidase and diatoxanthin-epoxidase,
mediating the single-step conversion between diadinoxanthin and diatoxanthin [133,134].

Evolutionarily earlier branching microalgae sustained both phycobilisomes (for recent
reviews see [135–137]) and light-harvesting antenna proteins, concomitant with diverse
photoprotective mechanisms. In the Cryptophyte Rhodomonas salina, qE is independent of a
xanthophyll cycle, but involves the protonation of light-harvesting antenna proteins [138].
Being independent of both a xantophyll cycle and a ∆pH, qE in the Rhodophyte Dixoniella
giordanoi has been attributed to a functional disconnection of phycobilisomes from PSII [139].
In contrast, pH-induced qE in other Rhodophytes such as Porphyridium purpureum occurs
at the PSII core antenna and likely involves a yet to be identified qE effector protein [140].

qE genetic regulation in response to light intensity and quality proceeds via photore-
ceptor-mediated anterograde signaling. In Chlamydomonas reinhardtii, the blue-light pho-
toreceptor phototropin (PHOT) controls LHCSR3 induction [141,142]: Upon blue-light
sensing by the PHOT-LOV domains, signal transduction is initiated via the PHOT-kinase
domain and results in a derepression of LHCSR3 transcription via inhibition of the involved
ubiquitin ligase complex [143–145]. Intriguingly, blue-light sensing in the Stramenopile
Phaeodactylum tricornutum proceeds similarly via the LOV domain of AUREO1c. However,
AUREO1c directly activates LHCX transcription via a bZIP domain, enabling a more rapid
induction of gene expression. These findings illustrate a case of convergent evolution be-
tween green algae and diatoms in terms of signal perception, with diverging downstream
gene regulatory processes [146].

2.4. State Transitions Redistribute Energy Conversion Efficiencies

State transition-dependent NPQ (qT) is realized within minutes based on a redistribu-
tion of excitation energy between the two photosystems in response to the redox state of
the PQ/PQH2 pool. If PQ reduction prevails over PQH2 oxidation, a transition from state I
to II is induced: A mobile fraction of LHCII is phosphorylated and dissociates from PSII to
reversibly associate with PSI, thereby readjusting the relative absorption cross-section and
re-establishing the redox poise of the photosynthetic electron transport chain [147,148]. As
already reported by early studies, the relative absorption cross-section in the green algal
model species Chlamydomonas reinhardtii is modulated by 50–80% [149,150], promoting both
photosynthetic efficiency in low light and photoprotection in high light [101,151,152]. In
Chlamydomonas reinhardtii, redox-induced phosphorylation of LHCII is mediated by the
membrane-associated Ser-Thr kinase STT7 [153], while dephosphorylation of LHCII occurs
constantly via the PP2C-type phosphatases PPH1 and PBCP [154]. So far, high-resolution
structures of algal state transition complexes have been obtained from Chlamydomonas rein-
hardtii [155,156] and the primordial green alga Ostreococcus tauri [157]. In both PSI-LHCI-
LHCII/LHCP structures, association of one LCHII/LHCP trimer involves an N-terminal
phosphorylated Thr residue of LHCII/LHCP and PSAH/PSAL/PSAO. The overall num-
ber and positioning of LHCII/LHCP trimers however differs between the two species: In
Chlamydomonas reinhardtii, binding of a first LHCII trimer is facilitated by LHCBM1 phos-
phorylated at Thr27, whereas association of a second LHCII trimer relies on interactions of
LHCBM5 phosphorylated at Thr33 with PSAH/LHCA2 [156]. In Ostreococcus tauri, three
LHCP trimers associate with PSI-LHCI between LHCA6 and PSAK [157].

3. Regulations Revolving around Cytochrome b6f
3.1. Photosynthetic Control Diminishes Cytochrome b6f Activity to Protect PSI

PQH2 oxidation at the luminal Qo site of Cytb6f is pH-dependent and limits the rate
of photosynthetic electron transfer [158–161]. Thus, in addition to light-harvesting, lumen
acidification modulates electron flow, a mechanism termed photosynthetic control [162,163].
On a molecular level, it has been proposed that low lumen pH results in the protonation
of a Rieske ISP His residue ligating the [2Fe-2S] cluster [164], impacting the switching
rate of Rieske ISP between the distal and the proximal position and thereby decelerating
PQH2 oxidation. An alternative mechanistic model was postulated [165], supported by
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functional cytochrome bc1 complex studies from respiratory membranes [166,167]: A
disulfide of unknown function, adjacent to the Rieske [2Fe-2S] cluster, influences the
redox midpoint potential upon enzymatic formation of the luminal disulfide [168] and
dithiol [169], respectively. Photosynthetic control mutants are available with alterations
in the proximity of the [2Fe-2S] cluster and the disulfide. The substitution of a conserved
Rieske ISP Pro with Leu hypersensitizes Cytb6f for ∆pH in Arabidopsis thaliana [170,171] and
Chlamydomonas reinhardtii [172]. This amplification of photosynthetic control presumably
stems from a shift of the pKa and/or the redox potential of Rieske ISP. However, on first
approximation, the Rieske ISP point mutation was less efficient in slowing down the
electron transfer chain in Chlamydomonas reinhardtii. One possible explanation could be a
unique algal lumen pH during the induction of photosynthesis, hardly reaching a critical
acidification at which the Rieske ISP point mutation excessively limits photosynthesis in
Arabidopsis thaliana. There is further evidence, partially derived from photosynthetic control
experiments, that microalgal photosynthesis operates at different lumen acidification levels.
When compared with green algae, which show half-maximal inhibition at pH 6.3 [173],
it appears that photosynthetic control of Cytb6f in diatoms is shifted towards lower pH
values of around 4.7 [174]. This might as well coincide with a similar lumen pH shift to
induce NPQ in diatoms [174] and could point to variances in the H+/ATP ratio imposed by
the FOF1-ATP synthase (see Section 6.1).

3.2. Cyclic Electron Flow Maintains ATP Levels in Relation to NADPH Production

Cyclic electron flow (CEF) recycles electrons from the PSI acceptor side to upstream
components of the electron transport chain [175]. In this way, CEF impacts the pmf and es-
tablishes a key regulatory feedback loop. CEF provides additional ATP that is independent
from NADPH production and can be used for CO2 fixation, which was shown in green
algae to require an NADPH/ATP ratio of 2:3 [176]. Moreover, CEF sustains CCM, photores-
piration and other metabolic processes [177,178]. It also induces ∆pH-dependent photopro-
tective mechanisms such as qE and photosynthetic control [179]. Early inhibitor studies
with Chlamydomonas reinhardtii [180] and isolated Pisum sativum chloroplasts [181] distin-
guished two distinct CEF pathways: antimycin A-insensitive CEF involving NAD(P)H
dehydrogenase complexes (NDH-dependent CEF) and antimycin A-sensitive CEF relying
on an FDX-PQ reductase activity (FQR-dependent CEF). In Chlamydomonas reinhardtii and
most other green algae, NDH-dependent CEF is facilitated by a monomeric type II NDH
complex (NDA2) [182,183]. NDA2 exhibits two Rossmann-fold domains mediating FMN
and NAD(P)H binding, and the enzyme is located at the stromal side of the thylakoid
membrane [184]. Recombinantly overexpressed NDA2 preferentially oxidizes NADH [185],
implying that NDA2 might rely on a transhydrogenase for substrate supply in vivo [186].
NDA2 exhibits two EF hands hinting at a potential Ca2+-dependent regulation [187]. Fur-
thermore, NDA2 has been detected phosphorylated in reducing conditions [188]. In
Chlamydomonas reinhardtii, the proportion of light-dependent PQ reduction derived from
NDH-dependent CEF is negligible [189]. However, NDA2 accesses NAD(P)H from en-
dogenous carbon sources for PSII-independent H2 production [190–192]. Moreover, NDA2
mediates light-independent PQ reduction as the first step of chlororespiration [193], being
completed by O2 reduction via PQH2-terminal-oxidase (PTOX) as a second step [194–197].
Chlororespiration is a part of cellular dark metabolism and has been suggested to poise
the PQ/PQH2 pool for the onset of illumination [193,198]. In species that do not rely on
monomeric type II NDH complexes, the NDH-dependent CEF pathway is electrogenic.
Therefore, chlororespiration could also sustain membrane polarization in the dark. Further-
more, it was shown to be an important valve under restricting conditions, as demonstrated
in starch deficient mutants of Chlamydomonas reinhardtii [199] or in nutrient-deprived Ostre-
ococcus species [200]. In Chlorella ohadii, which was reported to be exceptionally resilient to
high light exposure [201,202], chlororespiration was shown to play an important role in
fast adaptations to high irradiance [203].
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3.3. Ferredoxin-Plastoquinone-Reductase-Dependent Cyclic Electron Flow

FQR-dependent CEF is the predominant CEF pathway in the green algal model
species Chlamydomonas reinhardtii [204,205]. Dating back to first experiments with isolated
Spinacia oleracea chloroplasts [206,207], the molecular mechanism of antimycin A-sensitive
CEF has not been elucidated yet. Interestingly, early inhibitor studies of FQR-dependent
CEF in Spinacia oleracea and Pisum sativum hint at an involvement of Cytb6f [208] and
FNR [209–211]. Furthermore, studies in Arabidopsis thaliana [212,213] and Chlamydomonas
reinhardtii [214–218] identified proton gradient regulation 5 (PGR5) and its interaction
partner PGR5-like 1 (PGRL1) as factors implicated in antimycin A-sensitive CEF. FQR-
dependent CEF appears to be functional in the absence of PGRL1 [189,219] and recent
studies in Chlamydomonas reinhardtii imply that Cytb6f may in fact represent the elusive
FQR, with PGR5 being required for sustained stromal electron input [220,221], presumably
via supporting the association of FNR with the thylakoid membrane [222]. Surprisingly,
these CEF pathways seem to be missing under permissive conditions in Euglena gracilis,
an organism containing secondary green plastids [223]. However, this photosynthetic alga
is known to display a robust metabolism which might compensate the absence of CEF,
possibly by having acquired genes from a multitude of photosynthetic organisms [224].
Interestingly, two of the Cytb6f subunits usually encoded in the chloroplast genome of
photosynthetic eukaryotes that display CEF, Cytochrome-f (PetA), and subunit-IV (PetD)
are exported to the nuclear genome of Euglena gracilis [225]. This raises the question to
which extent certain euglenoid Cytb6f functions have been sacrificed during this peculiar
evolutionary history. Notably, the secondary red plastids of diatoms such as Phaeodacty-
lum tricornutum and Thalassiosira pseudonana feature PGR5/PGRL1 homologues [226,227]
potentially implicated in CEF [228]. Despite low constitutive CEF rates reported in most
diatoms [229], CEF may play an essential role in response to stress conditions [230].

In the green algal model species Chlamydomonas reinhardtii, a PSI–Cytb6f supercom-
plex potentially mediating CEF has been isolated from conditions where it is required to
alleviate stromal reducing pressure [188,231–234]. Besides PGRL1 and FNR, PSI–Cytb6f
included CAS, ANR1, and PETO as potential further actors of FQR-dependent CEF: Being
a Ca2+-sensing protein involved in the regulation of photoprotection- and CCM-related
gene expression [107,214,235], CAS has been suggested to facilitate Ca2+-dependent activ-
ity regulation of FQR-dependent CEF [232,236]. ANR1 has been proposed to sense the
PQ/PQH2 redox state or the pmf and the algal Cytb6f subunit PETO has been hypothe-
sized to sense the stromal redox state [237]. Alternatively, ANR1 and PETO have been
postulated to mediate FDX binding to Cytb6f [238]. In addition, the interaction interface
of PETO with the Cytb6f encompasses several STT7-dependent phosphorylation sites and
both ANR1 and PGRL1 have been observed phosphorylated as well [188,221,238,239],
implying a phosphorylation-dependent regulation of FQR-dependent CEF. Although in
the green algal model the molecular mechanisms are still elusive, even less details are
available in other microalgal groups, and it remains to be seen if these organisms also
engage specific auxiliary CEF proteins or show phosphorylation-dependent fine-tuning of
the involved players.

4. PSI Acceptor Side Downstream Processes
4.1. Algal Response to Excess Light Bursts

Microalgae face an ever-changing environment as many of them live in murky ponds
or oceans. As mentioned above, they experience and safely deal with abrupt light fluctu-
ations in their habitats. Microalgae not only rely on light supply to fix carbon and store
metabolites, they also regulate their life cycles in a light-dependent manner [240]. Yet,
many of their stress responses and regulatory processes revolve around the photosystems.
In contrast to PSII, the PSI core is very inert and cannot go through an efficient repair
process [241–243]. Therefore, once the P700 reaction center is excited, it has to be relieved or
else the entire complex will degrade while reducing O2 to form potent radical species [59].
Acceptor side limiting conditions can generate a severe bottleneck for electron transport
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out of the PSI reaction center, so that photosynthetic organisms have developed several
protective valves to minimize the lifetimes of excited states within the complex. These
strategies sustain the electron transfer activity and the associated pmf generation for ATP
synthesis. The most imminent sink that PSI has is situated within the complex itself: O2
molecules can be reduced by the phylloquinones of PSI in a process termed ‘Mehler re-
action’, yielding superoxide anion radicals [244]. This can take place concomitant with
NADPH formation [245] and could be regarded as the default release valve, since owing
to the conserved structure of PSI, Mehler reactions occur throughout all photosynthetic
organisms [246]. For instance, Mehler reactions have been reported to play a central role
in photoprotection of coral-symbiont species (Symbiodinium sp., dinoflagellates) [247]. Im-
portantly, the extent of superoxide anion radical formation due to Mehler reactions is far
greater than the amount of ROS formed elsewhere in the photosynthetic apparatus under
various conditions [248]. Yet, unlike other O2 scavenging processes, the Mehler reaction
involves only a single electron transfer step and no intermediate complex is formed, i.e.,
superoxide anion radicals are released directly to the stroma. However, this type of ROS is
considered to be less damaging [249], since superoxide anion radicals are rapidly converted
into hydrogen peroxide by superoxide dismutase [250]. The formed hydrogen peroxide
can either induce gene expression [251–253] or is further detoxified to water by catalase,
completing the ‘Water–water cycle’ [254].

4.2. Oxygen Coupled Scavengers Avert Excessive Reduction and Serve as Electron Sink

Upon the reduction of FDX, the oxidized PSI acceptor side [4Fe–4S] clusters are pre-
pared for the next photoreduction. It is for that reason that FDX plays a crucial role in
maintaining the functionality of the electron transport chain. However, when the light
energy input surpasses the capacity of downstream production (and consumption) of
metabolites with limited pool sizes, such as NADPH, the cells will direct excess energy
towards other pathways. Evidently, many of these pathways are O2 scavengers, which
reduce O2 to hydrogen peroxide. These processes may be mediated by FDX itself [255],
being referred to as pseudo-Mehler reactions. However, other O2-reducing pathways con-
sume NADPH and thus result in a dual benefit: First, they provide the oxidized substrate
for FNR, and second, they help to adjust the NADPH/ATP ratio for the CBB cycle (in
addition to FQR-dependent CEF mentioned in Section 3.3). One example is the activation
of flavodiiron proteins (FLVs), being crucial for the stress response in microalgae [256–258]
as well as photosynthetic organisms from other branches, excluding angiosperms [259].
Interestingly, many organisms hold at least two variants of these proteins, which are ex-
pressed differently under constitutive versus stress conditions. Some isoforms were found
to be highly expressed in response to high light, in which the NADPH/ATP ratio is very
high [259]. Moreover, increased NADPH levels would result in an additional reduction
of the PQ pool by NDH-dependent CEF, which would in turn generate additional limi-
tations at the PSII acceptor side and induce state transitions (see Section 2.4). Increased
FLV expression was also observed under carbon limitations [259], in which high levels of
NAPDH may promote the oxygenation reaction catalyzed by RuBisCO (see Section 5.1).
The consumption of both NADPH and O2 in a single process seems to be the simplest
logical path, as has been shown to be the case in a cyanobacterial system [260]. Other
strategies include extended pyruvate or acetyl-CoA fermentation, which results in in-
creased energy channeling to other organelles (see Section 5.2). Spread across oxygenic
photosynthesizers and predating endosymbiosis, these pathways include pyruvate:NADP+
oxidoreductase (PNO) or pyruvate:ferredoxin oxidoreductase (PFO) as well as pyruvate
formate–lyase (PFL) and aldehyde/alcohol dehydrogenase (ADHE) [261–263]. However,
when microalgae experience anaerobiosis, due to excessive respiration or environmental
conditions, the lack of O2 hinders PSII activation [66,72,264]. This poses a potential threat
to the system, where the rapid onset of primary photochemistry would occur in the absence
of immediate electron acceptors (PQ, FDX). As a response, algal gene expression alters and
promotes a ‘brace for impact’ state. Notably, hydrogenase (H2ase), which acts as ‘rapid
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response valve’, is present in all unicellular photosynthetic branches, ranging from sulfur
bacteria to algae [265–267]. Their assimilation in the eukaryotic lineages can be traced to
different origins and was postulated to be the outcome of independent endosymbiosis
events [268], and H2ase activity was identified in many Archaeplastidae species (excluding
Mamiellophyceae and Streptophytes, which have lost the encoding genes), as well as
Stramenopiles [263]. When activated, H2ase reduces two protons to molecular H2 in a
reversible manner [269–271]. These enzymes are very sensitive to O2 and are only highly
expressed under dark anaerobiosis [272]. When exposed to light bursts, algae evolve H2 at
high rates which decrease once the system adjusts to shift into CO2 fixation mode [273]. A
similar gene expression pattern is observed for the FQR-dependent CEF auxiliary protein
anaerobic response 1 (ANR1), demonstrating that the purposeful competition between
sustained H2ase activity [186,274–276] and NADPH production for CO2 fixation facilitates
a smooth transition to O2 production in the light.

5. Inter-Organellar Interaction
5.1. Photorespiration and Dealing with a Nondiscriminatory RuBisCO

As mentioned above, oxygenic photosynthesis relies on a calculated lack of energy
stored based on linear electron flow alone, being exemplified by the mismatched energy
carrier ratio of ATP to NADPH required for CO2 fixation. Therefore, photosynthesis
cannot be an isolated process to ensure cell survival but is interconnected with several
metabolic pathways across organelles in eukaryotic species. Importantly, the modules
plugged into the photosynthetic membranes evolved in an environment of high CO2 and
low O2 concentrations—much different from today’s atmospheric levels. Accordingly,
phototrophs are constantly facing consequences of nondiscriminatory O2-fixing RuBisCO
reactions. Besides CO2 fixation, RuBisCO promiscuously reacts with O2 which produces
the toxic intermediate 2-phosphoglycolate (2-PG) that inhibits several CBB enzymes [277].
To prevent the accumulation of this dead-end intermediate, 2-PG undergoes a series of
enzymatic reactions to be recycled back into the CBB cycle intermediate 3-phosphoglycerate
in a process called ‘photorespiration’ [278]. This recycling pathway uses ancient metabolic
modules and requires about ten core enzymes which, in land plants, are located in chloro-
plasts, peroxisomes, and mitochondria. Photorespiration accounts for a loss of CO2, NH3,
as well as energy in the forms of ATP and NADPH. However, this process is of tremen-
dous importance, especially in terrestrial photosynthesis, as there is a 25% chance of the
oxygenation reaction catalyzed by RuBisCO in a C3 leaf [279]. Overall, photorespiration
fuels mitorespiration by forming NADH upon the CO2-releasing conversion of two Gly
to Ser, but the pathway is less well-studied in marine phototrophs such as diatoms. This
diverse group of microalgae possesses very efficient CCMs resulting in low photorespi-
ration rates which limits further insights on metabolic shortcomings in the absence of
2-PG recycling [280,281]. This is better understood in green algae such as Chlamydomonas
reinhardtii, in which photorespiration proceeds differently compared to land plants. Indeed,
the alga seems to bypass the peroxisome to some extent. This might be linked to the fact
that the number of peroxisomes is strongly dependent on the availability of reduced carbon
in the growth medium of Chlamydomonas reinhardtii [282]. Moreover, the organelles are
much more primitive and, like in many microalgae [283,284], catalase is not the typical
peroxisomal marker known from vascular plants [285]. Accordingly, a photorespiratory
bypass of the organelle might allow for a more reliable flux management. For instance [286],
glyoxylate formation from glycolate occurs in the mitochondria (rather than the perox-
isomes) through glycolate dehydrogenase (rather than glycolate oxidase). An unusual
localization also applies to the penultimate photorespiratory step, where Ser stemming
from the mitochondria is converted on the level of hydroxypyruvate reductases (HPR), of
which the alga possesses an array of extra-peroxisomal isoforms [287,288]. Accordingly,
HPR1 from Chlamydomonas reinhardtii is located in the mitochondria and its deletion has
severe growth defects [288], whereas the isoform from Arabidopsis thaliana is located in the
peroxisome and mutant plants display no noticeable phenotype [289,290]. This indicates
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that, despite the microalgal CCM to counter O2 fixation via RuBisCO, photorespiration is a
vital process for unicellular phototrophs. Future studies in freshwater and marine models
are required to clarify if there is a general dependency of photorespiration redundancy on
CCM efficiency, i.e., if photorespiratory activities are recruited under specific conditions
in microalgae.

5.2. Malate Shuttle Dissipates Plastidial Redox Pressure and Is Auxiliary to Photorespiration

The malate (Mal) shuttle, also referred to as Mal valve [291], can be regarded as another
inter-organellar safety mechanism to lower the plastidial redox pressure in the stroma,
thereby establishing metabolic connectivity with other cellular compartments. Unlike
NAD(P)H, Mal is efficiently trafficking across organellar membrane barriers thanks to
various Mal translocator and interconversion systems (reviewed in [292]). Best understood
in land plants, the Mal shuttle comes in different flavors: An important player involves Mal
dehydrogenases (MDH) which interconvert Mal with oxaloacetate (OAA) by coupling its re-
versible activity to the NAD(P)+/NAD(P)H pools [293]. Chloroplast, cytosolic, peroxisomal,
and mitochondrial MDH are important contributors to the cellular redox landscape. MDHs
provide substrates for the Mal/OAA translocators that can be found at least in chloroplast
and mitochondrial membranes. The concerted action of MDH and Mal/OAA translocators
connect ATP production via photophosphorylation and oxidative phosphorylation. By
consuming NADPH in the chloroplast, Mal formation sustains electron transfer coupled to
light-driven ATP synthesis, whereas mitochondrial OAA formation yields NADH to fuel
mitochondrial electron transfer for oxidative phosphorylation. Mitochondrial ATP could
be imported into the plastid via nucleoside triphosphate transporters and other pathways
reviewed in [294]. While plant homologs are better understood (reviewed in [292]), only
putative candidates are available to catalyze Mal/OAA exchange in the green algal model
organism Chlamydomonas reinhardtii, i.e., the plastidial 2-oxoglutarate (2-OG)/Mal translo-
cator (OMT1/2) and the mitochondrial substrate carrier protein 14 (MiTC14) [295]. The
very same shuttle components were also shown to function as Mal/2-OG translocators
in vitro [296]. This represents another variation to shuttle organellar Mal in exchange for
cytosolic 2-OG. Finally, via low-carbon-inducible 20 (LCI20) [295], Chlamydomonas rein-
hardtii may also directly reimport Mal into the chloroplast in exchange for Glu. LCI20 in
conjunction with Mal/2-OG translocators could partake in a zero-sum Mal exchange with
the cytosol. Accordingly, 2-OG is imported into the chloroplast as a carbon skeleton for
the plastidial FDX-dependent glutamine 2-oxoglutarate aminotransferase. The activity of
the latter sustains photosynthetic electron transfer by oxidizing the PSI electron acceptor
pool, and producing Glu which can then be exported into the cytosol. Interestingly, Mal
trafficking is crossing photorespiration pathways on multiple occasions, thereby helping
to convert glyoxylate into Gly, but it might be nuanced in terms of organellar routes de-
pending on the organism. In conclusion, the Mal shuttle helps to keep up photosynthesis
by adjusting the ATP/NADPH ratio in chloroplasts. Although our detailed understanding
of the process is built on a multitude of land plant studies, recent works from diatoms [229]
and green algae [297] show that the Mal shuttle is actively contributing to photosynthetic
fitness even in organisms that possess CCMs to keep photorespiration rates low. CCMs
and photorespiratory bypass strategies are only two good examples of how microalgae
inspire current research approaches to improve photosynthesis in land plants [298].

6. Ion Conductivity Regulation to Optimize ATP Yields
6.1. ATP Synthase Regulation

As outlined above, the pigment-containing complexes participating in the capture
and conversion of light energy into chemical energy display various fine-tuning features
to match electron transfer rates with the metabolic capacity of the cell. This fine-tuning
determines the competence to generate the light-driven pmf. The latter is an electrochemical
gradient across the photosynthetic membrane and here, we will focus on mechanisms
that regulate ion conductivity to optimize ATP yields. The FOF1-ATP synthase (FOF1) is
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an ancient enzyme that predates photosynthesis (and possibly electron transfer chains),
since it took over a fundamental role during early evolution of cellular bioenergetics [299].
FOF1 in the photosynthetic membrane of the green lineage [300] and diatoms [301] fol-
lows a simple architecture that resembles its eubacterial counterpart; it does not fulfill an
ultrastructural role as the homolog in eukaryotic oxidative respiration [302]. However,
the primary bioenergetic function of FOF1 is conserved: It matches the energies stored as
phosphorylation potential with the one stored as pmf. Accordingly, reversible ADP phos-
phorylation is carried out by the soluble F1 part in the photosynthetic cell compartment
in a reaction governed by the concentration ratio of nucleotides and inorganic phosphate,
i.e., ([ATP])/([ADP][Pi]). A high pmf will drive H+ passage from the lumen into the stroma
to yield ATP; H+ will be pumped into the lumen when ATP levels are high and/or the
pmf is low. F1 is a chemical motor composed of stochiometric subunits α3β3γ1δ1ε1 being
mechanically coupled to the electrochemical motor FO (composed of a1b1b’1cn subunits,
also called I1II1IIInIV1) that translocates n H+ ions during a full rotation to form/hydrolyze
3 ATP molecules. In photosynthetic membranes, a certain flexibility is seen when it comes
to the H+/ATP ratio imposed by the oligomerization state of the FO subunit c, leaning
towards larger ratios when compared to respiratory membranes. Hence, ATP synthesis can
be catalyzed at relatively low pmf levels and moderate lumen acidification [303]. Compared
to the c14 oligomer in vascular plants [304], there is preliminary evidence that c13 exists in
Chlamydomonas reinhardtii [305] and the requirement to elicit the pH response of Cytb6f and
NPQ under more acidic lumen conditions [173,174] might point to even smaller c rings
in diatoms. Evidently, FOF1 is the major H+ gate in photosynthesis and various environ-
mental stimuli shift the enzyme’s activation energy. This in turn influences the intricate
relationship FOF1 shares with the pmf, the master regulator of photosynthesis. NPQ and
photosynthetic control play a major protective role in response to ∆pH and under high light
conditions, these processes may be facilitated by a slowdown of H+ translocation activity
via FOF1. Such a slowdown of H+ translocation upon high light has been shown in vascular
plants [306] and green algae [307] but insights from other aquatic species are currently
missing. Other environmental stimuli associated with land plant FOF1 downregulation are
cold temperatures [308] or low CO2 levels [309] but, again, studies of FOF1 from aquatic
phototrophs under those conditions are scarce. In either case, FOF1 activity-tuning results
from the fact that the carbon metabolism is influenced by the environmental condition.
Since the light intensity can easily exceed the energy conversion capacity under those re-
stricted metabolic conditions, the need to regulate light-harvesting efficiencies and electron
transfer rates is obvious (see Sections 2.3 and 3.1).

6.2. Ion Channels for pmf Parsing

Over the last decades, more insights and concepts on pmf parsing, the fine-tuning of
∆Ψ and ∆pH, were postulated [310]. Here, we will briefly cover a selection of channels
and antiporters in the thylakoid membrane of microalgae (extensively reviewed in [311])
with immediate impact on the pmf. This excludes certain antiporters, such as triose phos-
phate/phosphate translocators that ensure optimal photo-assimilate exchange [312] and
Mal valve-related processes that have been mentioned in Section 5.2. Moreover, ion-
conducting proteins in the inner chloroplast envelope will not be covered here as the
stromal space is substantially larger than the lumen volume. One of the major proteins in
the context of pmf parsing is KEA3, the luminal H+/stromal K+ antiporter that converts
∆pH for ∆Ψ in land plants [313,314] and diatoms [174]. KEA3 is also encoded in other
microalgae, except for Glaucophytes [315], but functional studies are missing. By con-
suming ∆pH, KEA3 was shown to be important for NPQ relaxation during light intensity
transitions and kea3 mutants usually show excessive NPQ. The H+/K+ antiporter from
plants is supposedly tweaked by stromal nucleotides and NAD(P)H via its C-terminal
domain [316,317]. This domain takes over a similar role in diatoms, but there it contains
an EF-hand motif to bind Ca2+ [174]. This intriguing fine-tuning connects H+/K+ antiport
activity with the physiological state of the photosynthetic cell as levels of Ca2+, NAD(P)H,
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and ATP are variable throughout the day. Another example of fine-tuning pmf parsing
occurs via voltage-dependent anion channels. Here, photosynthesis-driven ∆Ψ, which
varies throughout the day, would trigger channel activation. Two types of Cl- channels
(CLC) are known to participate: CLCe members of the CLC family [318,319] and VCCN
members of a new family type [320,321]. The latter have been investigated in Arabidopsis
thaliana to influence the pmf by dissipating ∆Ψ in favor of ∆pH to induce NPQ. Although
homologs exist in microalgae [295,322] functional characterization data on CLCe [323,324]
and VCCN are limited in the literature. On top of that, CCM-related ion transporters have
also shown to impact pmf formation per se via the reversible protonation of CO2 upon its
passage into the lumen [325].

7. Concluding Remarks

The photosynthetic apparatus is a sophisticated and intertwined machinery that main-
tains efficient energy conversion rates under varying environmental conditions. In this
review, we covered the basic blueprint of how photosynthetic electron transfer generates
the pmf and how fine-tuning the latter is pivotal for survival in an everchanging surround-
ing. We highlighted several special adaptations of oxygenic photosynthesis in microalgal
systems. Besides already exploited feats such as sourcing lipid-rich biomass, the microalgal
group in its yet to be fully explored diversity holds promising photoprotective traits that
may be beneficial for photosynthesis in the field. Assembled data from different niches
should therefore hold a key constituent for future studies, which could pave the road for
bioengineering a more resistant, adaptable, and efficient system.
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