In Vitro Propagation and Conservation of Lavandula stoechas subsp. luisieri and Pterospartum tridentatum, Two Important Medicinal and Aromatic Species from Portugal
Abstract
:1. Introduction
2. Results
2.1. In Vitro Establishment and Multiplication
2.2. Ex Vitro Rooting
2.3. Slow-Growth Conservation
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. In Vitro Establishment and Multiplication
4.3. Ex Vitro Rooting
4.4. Slow-Growth Conservation Assay
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IUCN. The IUCN Red List of Threatened Species; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 2016. [Google Scholar]
- Canhoto, J.M. Biotecnologia Vegetal: Da Clonagem de Plantas à Transformação Genética; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2010. [Google Scholar]
- Máthé, Á.; Hassan, F.; Kader, A.A. In Vitro Micropropagation of Medicinal and Aromatic Plants. In Medicinal and Aromatic Plants of the World. Medicinal and Aromatic Plants of the World; Máthé, Á., Ed.; Springer: Dordrecht, The Netherlands, 2015; Volume 1, pp. 305–336. [Google Scholar]
- Coelho, N.; Gonçalves, S.; Romano, A. Endemic plant species conservation: Biotechnological approaches. Plants 2020, 9, 345. [Google Scholar] [CrossRef] [PubMed]
- El-Dawayati, M.M.; Zaid, Z.E.; Elsharabasy, S.F. Effect of conservation on steroids contents of callus explants of date palm cv. sakkoti. Aust. J. Basic Appl. Sci. 2012, 6, 305–310. [Google Scholar]
- Reed, B.M.; Gupta, S.; Uchendu, E.E. In vitro genebanks for preserving tropical biodiversity. In Conservation of Tropical Plant Species; Normah, M.N., Chin, H., Reed, B., Eds.; Springer: New York, NY, USA, 2013; pp. 77–106. [Google Scholar]
- Benelli, C.; Tarraf, W.; Izgu, T.; De Carlo, A. In Vitro Conservation through Slow Growth Storage Technique of Fruit Species: An Overview of the Last 10 Years. Plants 2022, 11, 3188. [Google Scholar] [CrossRef] [PubMed]
- Bednarek, P.T.; Orłowska, R. Plant tissue culture environment as a switch-key of (epi) genetic changes. Plant Cell Tissue Organ Cult. 2020, 140, 245–257. [Google Scholar] [CrossRef]
- Novais, M.H.; Santos, I.; Mendes, S.; Pinto-Gomes, C. Studies on pharmaceutical ethnobotany in Arrábida natural park (Portugal). J. Ethnopharmacol. 2004, 93, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Videira, R.; Castanheira, P.; Grãos, M.; Salgueiro, L.; Faro, C.; Cavaleiro, C. A necrodane monoterpenoid from Lavandula luisieri essential oil as a cell-permeable inhibitor of BACE-1, the β-secretase in Alzheimer’s disease. Flavour Fragr. J. 2013, 28, 380–388. [Google Scholar] [CrossRef]
- Martins, V.M.; Simões, J.; Ferreira, I.; Cruz, M.T.; Domingues, M.R.; Coimbra, M.A. In vitro macrophage nitric oxide production by Pterospartum tridentatum (L.) Willk. inflorescence polysaccharides. Carbohydr. Polym. 2017, 157, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.; Sousa, C.; Cavaleiro, C.; Cruz, M.T.; Salgueiro, L. The anti-inflammatory response of Lavandula luisieri and Lavandula pedunculata essential oils. Plants 2022, 11, 370. [Google Scholar] [CrossRef] [PubMed]
- González-Coloma, A.; Delgado, F.; Rodilla, J.M.; Silva, L.; Sanz, J.; Burillo, J. Chemical and biological profiles of Lavandula luisieri essential oils from western Iberia Peninsula populations. Biochem. Syst. Ecol. 2011, 39, 1–8. [Google Scholar] [CrossRef]
- Domingues, J.; Goulão, M.; Delgado, F.; Gonçalves, J.C.; Gonçalves, J.; Pintado, C.S. Essential oils of two portuguese endemic species of Lavandula as a source of antifungal and antibacterial agents. Processes 2023, 11, 1165. [Google Scholar] [CrossRef]
- Matos, F.; Miguel, M.G.; Duarte, J.; Venâncio, F.; Moiteiro, C.; Correia, A.I.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Antioxidant capacity of the essential oils from Lavandula luisieri, L. stoechas subsp. lusitanica, L. stoechas subsp. lusitanica x L. luisieri and L. viridis grown in Algarve (Portugal). J. Essent. Oil Res. 2009, 21, 327–336. [Google Scholar] [CrossRef]
- Simões, M.A.; Pinto, D.C.; Neves, B.M.; Silva, A.M. Flavonoid profile of the Genista tridentata L., a species used traditionally to treat inflammatory processes. Molecules 2020, 25, 812. [Google Scholar] [CrossRef] [PubMed]
- Nobre, J. In vitro cloning and micropropagation of Lavandula stoechas from field-grown plants. Plant Cell Tissue Organ Cult. 1996, 46, 151–155. [Google Scholar] [CrossRef]
- Margara, J. Mise au point d’une gamme de milieux mineraux pour les conditions de la culture “in vitro”. Comptes Rendus L’Académie D’agriculture Fr. 1978, 64, 654–661. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Dias, M.C.; Almeida, R.; Romano, A. Rapid clonal multiplication of Lavandula viridis L’Her through in vitro axillary shoot proliferation. Plant Cell Tissue Organ Cult. 2002, 68, 99–102. [Google Scholar] [CrossRef]
- Costa, P.; Gonçalves, S.; Valentão, P.; Andrade, P.B.; Romano, A. Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L’Hér and their antioxidant and anti-cholinesterase potential. Food Chem. Toxicol. 2013, 57, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.R.; Dinis, A.M.; Cavaleiro, C.; Salgueiro, L.R.; Canhoto, J.M. Trichomes, essential oils and in vitro propagation of Lavandula pedunculata (Lamiaceae). Ind. Crops Prod. 2010, 32, 580–587. [Google Scholar] [CrossRef]
- Coelho, M.T.P.P.G.R. Estudos de Propagação In Vitro, Caracterização e Valorização de Carqueja (Pterospartum tridentatum (L.) Willk). Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 2015. [Google Scholar]
- Nakka, S.; Devendra, B.N. A rapid in vitro propagation and estimation of secondary metabolites for in vivo and in vitro propagated Crotalaria species, a Fabaceae member. J. Microbiol. Biotechnol. Food Sci. 2012, 2, 897–916. [Google Scholar]
- Hernández-García, A.; Ambriz-Parra, E.; López-Albarrán, P.; Cruz-de León, J.; Salgado-Garciglia, R. In vitro propagation from axillary buds of the endangered tree Dalbergia congestiflora Pittier (Fabaceae). Plant Biotechnol. 2021, 38, 409–414. [Google Scholar] [CrossRef]
- Cuenta, S.; Amo-Marco, J.B. In vitro propagation of two spanish endemic species of Salvia throught bud proliferation. Cell. Dev. Biol. Plant 2000, 36, 225–229. [Google Scholar]
- Yan, H.; Liang, C.; Yang, L.; Li, Y. In vitro and ex vitro rooting of Siratia grosvenorii, a traditional medicinal plant. Acta Physiol. Plant. 2010, 32, 115–120. [Google Scholar] [CrossRef]
- Nanos, C.; Tsoulpha, P.; Kostas, S.; Hatzilazarou, S.; Michail, I.; Anastasiadi, V.; Nianiou-Obeidat, I. Asexual propagation of greek Salvia officinalis L. populations selected for ornamental use. Horticulturae 2023, 9, 847. [Google Scholar] [CrossRef]
- Nicola, S.; Fontana, E.; Hoeberechts, J. Effects of rooting products on medicinal and aromatic plant cuttings. In Proceedings of the International Symposium on Protected Cultivation in Mild Winter Climate: Product and Process Innovation, Leuven, Belgium, 5–8 March 2002; Volume 614, pp. 273–278. [Google Scholar]
- Scowcroft, W.R. Genetic Variability in Tissue Culture: Impact on Germplasm Conservation and Utilization; IBPGR: Rome, Italy, 1984. [Google Scholar]
- Lambardi, M.; De Carlo, A. Application of tissue culture to the germplasm conservation of temperate broad-leaf trees. In Micropropagation of Woody Trees and Fruits; Jain, S.M., Ishii, K., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 815–840. [Google Scholar]
- Arbeloa, A.; Marín, J.A.; Andreu, P.; García, E.; Lorente, P. In vitro conservation of fruit trees by slow growth storage. Acta Hortic. 2017, 1155, 101–106. [Google Scholar] [CrossRef]
- Tahtamouni, R.; Shibli, R.; Al-Abdallat, A.; Al-Qudah, T. Analysis of growth, oil yield, and carvacrol in Thymbra spicata L. after slow-growth conservation. Turk. J. Agric. For. 2016, 40, 213–221. [Google Scholar] [CrossRef]
- Mascarello, C.; Sacco, E.; Di Silvestro, D.; Pamato, M.; Ruffoni, B. Reduction of the subculture frequency in three Mediterranean species during micropropagation. Acta Hort. 2017, 1155, 461–466. [Google Scholar] [CrossRef]
- Gonçalves, J.C.; Coelho, M.T.; Diogo, M.; Alves, V.D.; Bronze, M.R.; Coimbra, M.A.; Martins, V.M.; Moldão-Martins, M. In vitro shoot cultures of Pterospartum tridentatum as an alternative to wild plants as a source of bioactive compounds. Nat. Prod. Commun. 2018, 13, 1934578X1801300415. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines on Good Agricultural and Collection Practices (GACP) for Medicinal Plants; WHO: Geneva, Switzerland, 2003; Volume 80. [Google Scholar]
- Diogo, M.G.; Seco, M.F.; Moldão-Martins, M.; Alves, V.; Coelho, M.T.; Gonçalves, J.C.; Canavarro, M.C. Micropropagation of Pterospartum tridentatum (L.) Wilk—Multiplication phase. Acta Hortic. 2013, 990, 391–396. [Google Scholar] [CrossRef]
Nns | Ls (cm) | Mr | |
---|---|---|---|
L. stoechas subsp. luisieri | 3.3 ± 0.3 | 4.9 ± 0.2 | 6.8 ± 0.3 |
P. tridentatum | 6.8 ± 0.4 | 5.1 ± 0.1 | 13.3 ± 0.8 |
L. stoechas subsp. luisieri | P. tridentatum | |||||
---|---|---|---|---|---|---|
Rooting Rate (%) | Number of Roots | Length of the Longest Root (cm) | Rooting Rate (%) | Number of Roots | Length of the Longest Root (cm) | |
IBA | 73 a | 8.0 ± 5.1 b | 6.8 ± 2.6 b | 83 ab | 2.1 ± 1.0 a | 3.2 ± 1.3 a |
Clonex® | 77 a | 15.0 ± 6.5 a | 8.1 ± 1.6 a | 90 a | 2.1 ± 0.9 a | 3.6 ± 1.2 a |
Control | 67 a | 5.0 ± 2 b | 6.4 ± 2.6 b | 73 b | 0.9 ± 0.6 b | 3.6 ± 1.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domingues, J.; Eira, A.; Ramalho, I.; Barrocas, I.; Gonçalves, J.C. In Vitro Propagation and Conservation of Lavandula stoechas subsp. luisieri and Pterospartum tridentatum, Two Important Medicinal and Aromatic Species from Portugal. Plants 2024, 13, 2124. https://doi.org/10.3390/plants13152124
Domingues J, Eira A, Ramalho I, Barrocas I, Gonçalves JC. In Vitro Propagation and Conservation of Lavandula stoechas subsp. luisieri and Pterospartum tridentatum, Two Important Medicinal and Aromatic Species from Portugal. Plants. 2024; 13(15):2124. https://doi.org/10.3390/plants13152124
Chicago/Turabian StyleDomingues, Joana, Anabela Eira, Isa Ramalho, Inês Barrocas, and José Carlos Gonçalves. 2024. "In Vitro Propagation and Conservation of Lavandula stoechas subsp. luisieri and Pterospartum tridentatum, Two Important Medicinal and Aromatic Species from Portugal" Plants 13, no. 15: 2124. https://doi.org/10.3390/plants13152124
APA StyleDomingues, J., Eira, A., Ramalho, I., Barrocas, I., & Gonçalves, J. C. (2024). In Vitro Propagation and Conservation of Lavandula stoechas subsp. luisieri and Pterospartum tridentatum, Two Important Medicinal and Aromatic Species from Portugal. Plants, 13(15), 2124. https://doi.org/10.3390/plants13152124