Functional Characterization of the Paeonia ostii P5CS Gene under Drought Stress
Abstract
:1. Introduction
2. Results
2.1. PoP5CS Positively Responds to Drought Stress
2.2. PoP5CS is Located in the Cytoplasm
2.3. PoP5CS-Silenced P. ostii Show More Sensitivity to Drought
2.4. Overexpression of PoP5CS Increases Drought Tolerance in Nicotiana tabacum
2.5. PoP5CS Regulates Drought Tolerance by Promoting Proline Accumulation
3. Discussion
3.1. PoP5CS is a Member of the P5CS Family
3.2. PoP5CS Exhibits a Positive Response to Drought Stress Conditions
3.3. PoP5CS Improves Plant Drought Resistance by Accumulating Proline Content
4. Materials and Methods
4.1. Plant Materials and Drought Treatment
4.2. Gene Cloning, Multiple Sequence Alignment, and Phylogenetic Analysis
4.3. RT-qPCR Analysis
4.4. Subcellular Localization
4.5. VIGS Assay
4.6. Heterologous Overexpression Assay
4.7. Physiological Index Measurement
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef] [PubMed]
- Quan, R.D.; Shang, M.; Zhang, H.; Zhao, Y.X.; Zhang, J.R. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol. J. 2004, 2, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Li, X.; Wan, H.J.; Zhou, G.Z.; Cheng, Y. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato. Sci. Hortic. 2020, 270, 109444. [Google Scholar] [CrossRef]
- O’Brien, M.J.; Valtat, A.; Abiven, S.; Studer, M.S.; Ong, R.; Schmid, B. The role of soluble sugars during drought in tropical tree seedlings with contrasting tolerances. J. Plant Ecol. 2020, 13, 389–397. [Google Scholar] [CrossRef]
- Wu, G.Q.; Zhang, L.N.; Wang, Y.Y. Response of growth and antioxidant enzymes to osmotic stress in two different wheat (Triticum aestivum L.) cultivars seedlings. Plant Soil. Environ. 2012, 58, 534–539. [Google Scholar] [CrossRef]
- De Caroli, M.; Rampino, P.; Curci, L.M.; Pecatelli, G.; Carrozzo, S.; Piro, G. CiXTH29 and CiLEA4 role in water stress tolerance in Cichorium intybus varieties. Biology 2023, 12, 444. [Google Scholar] [CrossRef]
- Verslues, P.E.; Sharma, S. Proline metabolism and its implications for plant-environment interaction. Arab. Book 2010, 8, e0140. [Google Scholar] [CrossRef]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Alvarez, M.E.; Savouré, A.; Szabados, L. Proline metabolism as regulatory hub. 2022. Trends Plant Sci. 2022, 27, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.A.; Delauney, A.J.; Verma, D.P.S. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc. Natl. Acad. Sci. USA 1992, 89, 9354–9358. [Google Scholar] [CrossRef] [PubMed]
- Strizhov, N.; Abraham, E.; Okresz, L.; Blickling, S.; Zilberstein, A.; Schell, J.; Koncz, C.; Szabados, L. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, AB/1 and AXR2 in Arabidopsis. Plant J. 1997, 12, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.S.; Lu, Q.; Verma, D.P.S. Characterization of Δ1-pyrroline-5-carboxylate synthetase gene promoter in transgenic Arabidopsis thaliana subjected to water stress. Plant Sci. 1997, 129, 81–89. [Google Scholar] [CrossRef]
- Yamchi, A.; Jazii, F.R.; Mousavi, A.; Karkhane, A.A. Proline accumulation in transgenic tobacco as a result of expression of Arabidopsis Δ1-pyrroline-5-carboxylate synthetase (P5CS) during osmotic stress. J. Plant Biochem. Biot. 2007, 16, 9–15. [Google Scholar] [CrossRef]
- Hur, J.; Jung, K.H.; Lee, C.H.; An, G. Stress-inducible OsP5CS2 gene is essential for salt and coldtolerance in rice. Plant Sci. 2004, 167, 417–426. [Google Scholar] [CrossRef]
- Verdoy, D.; Coba De La Peña, T.; Redondo, F.J.; Lucas, M.M.; Pueyo, J.J. Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant Cell Environ. 2006, 29, 1913–1923. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Guo, Z.H.; Zhang, Y.B.; Wang, Y.J.; Yang, G.; Yang, L.; Wang, R.Y.; Xie, Z.K. Characterization of LhsorP5CS, a gene catalyzing proline synthesis in oriental hybrid Lily sorbonne: Molecularmodelling and expression analysis. Bot. Stud. 2017, 58, 10. [Google Scholar] [CrossRef]
- Shi, X.L.; Xue, X.; Xu, H.M.; Yang, Y.Q.; Kuang, Z.X.; Hou, X.G. Amelioration of salt-induced damage on Paeonia ostii 'Fengdan' by exogenous application of silicon. Agronomy 2023, 13, 1349. [Google Scholar] [CrossRef]
- Guo, L.L.; Li, Y.Y.; Wei, Z.Z.; Wang, C.; Hou, X.G. Reference genes selection of Paeonia ostii ‘Fengdan’ under osmotic stresses and hormone treatments by RT-qPCR. Mol. Biol. Rep. 2023, 50, 133–143. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Fang, Z.W.; Liu, H.N.; Zhao, D.Q.; Tao, J. Exogenous calcium-induced physiological and biochemical changes in tree peony (Paeonia section Moutan DC.) under drought stress. Photosynthetica 2019, 57, 904–911. [Google Scholar] [CrossRef]
- Zhao, D.Q.; Fang, Z.W.; Tang, Y.H.; Tao, J. Graphene oxide as an effective soil water retention agent can confer drought stress tolerance to Paeonia ostii without toxicity. Environ. Sci. Technol. 2020, 54, 8269–8279. [Google Scholar] [CrossRef]
- Fang, Z.W.; Wang, X.X.; Zhang, X.Y.; Zhao, D.Q.; Tao, J. Effects of fulvic acid on the photosynthetic and physiological characteristics of Paeonia ostii under drought stress. Plant Signal. Behav. 2020, 15, e1774714. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.W.; Zhang, X.Y.; Tao, J.; Zhao, D.Q. Ameliorative effect of ferulic acid on Paeonia ostii under drought stress. Bull. Bot. Res. 2020, 40, 353–359. [Google Scholar]
- Zhao, D.Q.; Luan, Y.T.; Shi, W.B.; Zhang, X.Y.; Meng, J.S.; Tao, J. A Paeonia ostii caffeoyl-CoA O-methyltransferase confers drought stress tolerance by promoting lignin synthesis and ROS scavenging. Plant Sci. 2021, 303, 110765. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Zhang, S.; Li, M.; Wang, J.; Wu, T. The PoLACS4 gene may participate in drought stress resistance in tree peony (Paeonia ostii ‘Feng Dan Bai’). Genes 2022, 13, 1591. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.L.; Shen, J.J.; Zhang, C.J.; Guo, Q.; Liang, H.Y.; Hou, X.G. Characterization and bioinformatics analysis of ptc-miR396g-5p in response to drought stress of Paeonia ostii. Non-Coding RNA Res. 2022, 7, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.Q.; Zhang, X.Y.; Fang, Z.W.; Wu, Y.Q.; Tao, J. Physiological and transcriptomic analysis of tree peony (Paeonia section Moutan DC.) in response to drought stress. Forests 2019, 10, 135. [Google Scholar] [CrossRef]
- Trovato, M.; Mattioli, R.; Costantino, P. Multiple roles of proline in plant stress tolerance and development. Rend. Lincel-Sci. Fis. 2008, 19, 325–346. [Google Scholar] [CrossRef]
- Mattioli, R.; Costantino, P.; Trovato, M. Proline accumulation in plants: Not only stress. Plant Signal. Behav. 2009, 4, 1016–1018. [Google Scholar] [CrossRef]
- Igarashi, Y.; Yoshiba, Y.; Sanada, Y.; Yamaguchi-Shinozaki, K.; Wada, K.; Shinozaki, K. Characterization of the gene for DELTA-1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol. Biol. 1997, 33, 857–865. [Google Scholar] [CrossRef]
- Su, J.; Wu, R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci. 2004, 166, 941–948. [Google Scholar] [CrossRef]
- Ku, H.M.; Hu, C.C.; Chang, H.J.; Lin, Y.T.; Jan, F.J.; Chen, C.T. Analysis by virus induced gene silencing of the expression of two proline biosynthetic pathway genes in Nicotiana benthamiana under stress conditions. Plant Physiol. Bioch. 2011, 49, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Surekha, C.; Kumari, K.N.; Aruna, L.V.; Suneetha, G.; Arundhati, A.; Kishor, P.B.K. Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell Tiss. Org. 2014, 116, 27–36. [Google Scholar] [CrossRef]
- Guo, C.J.; Zhang, T.Y.; Leng, Q.Q.; Zhou, X.; Zhong, J.L.; Liu, J.L. Dynamic Arabidopsis P5CS filament facilitates substrate channelling. Nat. Plants 2024, 10, 880–889. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.S. Proline metabolism and molecular cloning of AmP5CS in the mangrove Avicennia marina under heat stress. Ecotoxicology 2020, 29, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.N.; Ni, R.Z.; Yang, S.A.; Pu, Y.A.; Qian, M.; Yang, Y.Q.; Yang, Y.P. Functional characterization of the Stipa purpurea P5CS gene under drought stress conditions. Int. J. Mol. Sci. 2021, 22, 9599. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Li, X.P.; Zou, Y.; Chen, W.X.; Lu, W.J. Cloning, characterization and expression analysis of Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene in harvested papaya (Carica papaya) fruit under temperature stress. Food Res. Int. 2012, 49, 272–279. [Google Scholar] [CrossRef]
- Cong, L.L.; Zhang, X.Q.; Yang, F.Y.; Liu, S.J.; Zhang, Y.W. Isolation of the P5CS gene from reed canary grass and its expression under salt stress. Genet. Mol. Res. 2014, 13, 9122–9133. [Google Scholar] [CrossRef]
- Bajji, M.; Kinet, J.M.; Lutts, S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stresstolerance test in durum wheat. Plant Growth Regul. 2002, 36, 61–70. [Google Scholar] [CrossRef]
- Morliere, P.; Moysan, A.; Santus, R.; Huppe, G.; Maziere, J.C.; Dubertret, L. UVA-induced lipid peroxidation in cultured human fibroblasts. BBA-Biomembr. 1991, 1084, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.B.; Yang, J.W.; Zhang, Z.Y.; Feng, X.F.; Wang, S.M. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. J. Genet. 2013, 92, 461–469. [Google Scholar] [CrossRef]
- Li, J.; Phan, T.T.; Li, Y.R.; Xing, Y.X.; Yang, L.T. Isolation, transformation and overexpression of sugarcane SoP5CS gene for drought tolerance improvement. Sugar Tech 2018, 20, 464–473. [Google Scholar] [CrossRef]
- Wei, C.; Cui, Q.; Zhang, X.Q.; Zhao, Y.Q.; Jia, G.X. Three P5CS genes including a novel one from Lilium regale play distinct roles in osmotic, drought and salt stress tolerance. J. Plant Biol. 2016, 59, 456–466. [Google Scholar] [CrossRef]
- Yu, Q.X.; Du, H.; Huang, Y.Y.; Lei, X.; Wu, X.T.; Jiang, J.Y.; Huang, W.; Ge, L.F. KINASE-INDUCIBLE DOMAIN INTERACTING 8 regulates helical pod morphology in Medicago truncatula. Plant Physiol. 2024, 195, 2016–2031. [Google Scholar] [CrossRef]
- Liu, Y.L.; Schiff, M.; Marathe, R.; Dinesh-Kumar, S.P. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 2002, 30, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Sunilkumar, G.; Vijayachandra, K.; Veluthambi, K. Preincubation of cut tobacco leaf explants promotes Agrobacterium-mediated transformation by increasing vir gene induction. Plant Sci. 1999, 141, 51–58. [Google Scholar] [CrossRef]
- Huang, X.S.; Wang, W.; Zhang, Q.; Liu, J.H. A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol. 2013, 162, 1178–1194. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, Y.; An, H.; Chen, Z.; Zhao, D.; Tao, J. Functional Characterization of the Paeonia ostii P5CS Gene under Drought Stress. Plants 2024, 13, 2145. https://doi.org/10.3390/plants13152145
Luan Y, An H, Chen Z, Zhao D, Tao J. Functional Characterization of the Paeonia ostii P5CS Gene under Drought Stress. Plants. 2024; 13(15):2145. https://doi.org/10.3390/plants13152145
Chicago/Turabian StyleLuan, Yuting, Honglei An, Zijie Chen, Daqiu Zhao, and Jun Tao. 2024. "Functional Characterization of the Paeonia ostii P5CS Gene under Drought Stress" Plants 13, no. 15: 2145. https://doi.org/10.3390/plants13152145
APA StyleLuan, Y., An, H., Chen, Z., Zhao, D., & Tao, J. (2024). Functional Characterization of the Paeonia ostii P5CS Gene under Drought Stress. Plants, 13(15), 2145. https://doi.org/10.3390/plants13152145