Characterization of Genetic Variability of Common and Tartary Buckwheat Genotypes Using Microsatellite Markers
Abstract
:1. Introduction
2. Results
2.1. Genetic Variability Based on the Occurrence of Alleles and Frequency of the SSR Markers Used
2.2. Genetic Relationships in the Fagopyrum Species
2.3. Population Structure and Genetic Diversity Analysis between Fagopyrum Species
2.4. Population Structure and Genetic Diversity Analysis within the Fagopyrum Species
3. Discussion
4. Material and Methods
4.1. Biological Material
4.2. DNA Extraction of Plant Material
4.3. Visualization and DNA Quantification
4.4. PCR Amplification and Fragment Analysis
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bashir, E.; Mahajan, R.; Mir, R.A.; Dar, W.A.; Zargar, S.M. Unravelling the genetic variability and population structure of buckwheat (Fagopyrum spp.): A collection of north western Himalayas. Nucleus 2021, 64, 93–101. [Google Scholar] [CrossRef]
- Joshi, B.K. Buckwheat (F. esculentum Moench and F. tataricum Gaertn). In Neglected and Underutilized Crops; Academic Press: Cambridge, MA, USA, 2023; pp. 151–200. [Google Scholar]
- Fang, X.; Zhang, Y.; Cui, J.; Yue, L.; Tao, J.; Wang, Y.; Zhang, R.; Liu, J.; Jiang, A.; Zhang, J.; et al. Genetic Map Construction, QTL Mapping, and Candidate Genes Screening of Grain Size Traits in Common Buckwheat (Fagopyrum esculentum M.). Agronomy 2022, 12, 2062. [Google Scholar] [CrossRef]
- Hou, S.; Ren, X.; Yang, Y.; Wang, D.; Du, W.; Wang, X.; Li, H.; Han, Y.; Liu, L.; Sun, Z. Genome-Wide Development of Polymorphic Microsatellite Markers and Association Analysis of Major Agronomic Traits in Core Germplasm Resources of Tartary Buckwheat. Front. Plant Sci. 2022, 13, 819008. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Yasui, Y. Genetic and genomic research for the development of an efficient breeding system in heterostylous self-incompatible common buckwheat (Fagopyrum esculentum). Theor. Appl. Genet. 2020, 133, 1641–1653. [Google Scholar] [CrossRef] [PubMed]
- Luthar, Z.; Golob, A.; Germ, M.; Vombergar, B.; Kreft, I. Tartary Buckwheat in Human Nutrition. Plants 2021, 10, 700. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhuo, C.; Yumei, D.; Dongmei, L.; Keyu, B.; Devra, J.; Jinchao, F.; Chunlin, L. Diversity of Tartary Buckwheat (Fagopyrum tataricum) Landraces from Liangshan, Southwest China: Evidence from Morphology and SSR Markers. Agronomy 2022, 12, 1022. [Google Scholar] [CrossRef]
- Tang, Y.; Ding, M.Q.; Tang, Y.X.; Wu, Y.M.; Shao, J.R.; Zhou, M.L. Germplasm resources of buckwheat in China. In Molecular Breeding and Nutritional Aspects of Buckwheat; Zhou, M., Kreft, I., Woo, S.H., Chrungoo, N.K., Wieslander, G., Eds.; Academic Press: Amsterdam, The Netherlands, 2016; pp. 13–20. [Google Scholar]
- Ikeda, K.A.; Asami, Y. Mechanical characteristics of buckwheat noodles. Fagopyrum 2000, 17, 67–72. [Google Scholar]
- Zhang, Z.-L.; Zhou, M.-L.; Tang, Y.; Li, F.-L.; Tang, Y.-X.; Shao, J.-R.; Xue, W.-T.; Wu, Y.-M. Bioactive compounds in functional buckwheat food. Food Res. Int. 2012, 49, 389–395. [Google Scholar] [CrossRef]
- Fang, X.; Huang, K.; Nie, J.; Zhang, Y.; Zhang, Y.; Li, Y.; Wang, W.; Xu, X.; Ruan, R.; Yuan, X.; et al. Genome-wide mining, characterization, and development of microsatellite markers in Tartary buckwheat (Fagopyrum tataricum Garetn.). Euphytica 2019, 215, 183. [Google Scholar] [CrossRef]
- Gaberščik, A.; Grašič, M.; Vogel-Mikuš, K.; Germ, M.; Golob, A. Water Shortage Strongly Alters Formation of Calcium Oxalate Druse Crystals and Leaf Traits in Fagopyrum esculentum. Plants 2020, 9, 917. [Google Scholar] [CrossRef]
- Campbell, C.G. Buckwheat: Fagopyrum esculentum Moench; Bioversity International: Rome, Italy, 1997; Volume 19. [Google Scholar]
- Rana, J.C.; Singh, M.; Chauhan, R.S.; Chahota, R.K.; Sharma, T.R.; Yadav, R.; Archak, S. Genetic Resources of Buckwheat in India. In Molecular Breeding and Nutritional Aspects of Buckwheat; Zhou, M., Kreft, I., Woo, S.-H., Chrungoo, N., Wieslander, G., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 109–135. [Google Scholar]
- Monshi, F.I.; Katsube-Tanaka, T. 2S albumin g13 polypeptide, less related to Fag e 2, can be eliminated in common buckwheat (Fagopyrum esculentum Moench) seeds. Food Chem. Mol. Sci. 2022, 5, 100138. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Li, R.; Chen, Q.; Li, Y.; Pan, F.; Chen, Q. De novo sequencing of seed transcriptome and development of genic-SSR markers in common buckwheat (Fagopyrum esculentum). Mol. Breed. 2017, 37, 12. [Google Scholar] [CrossRef]
- Song, J.-Y.; Lee, G.-A.; Yoon, M.-S.; Ma, K.-H.; Choi, Y.-M.; Lee, J.-R.; Jung, Y.-J.; Park, H.-J.; Kim, C.-K.; Lee, M.-C. Analysis of Genetic Diversity and Population Structure of Buckwheat (Fagopyrum esculentum Moench) Landraces of Korea Using SSR Markers. Korean J. Plant Resour. 2011, 24, 702–711. [Google Scholar] [CrossRef]
- Türkoglu, A.; Haliloglu, K.; Mohammadi, S.A.; Öztürk, A.; Bolouri, P.; Özkan, G.; Bocianowski, J.; Pour-Aboughadareh, A.; Jamshidi, B. Genetic Diversity and Population Structure in Türkiye Bread Wheat Genotypes Revealed by Simple Sequence Repeats (SSR) Markers. Genes 2023, 14, 1182. [Google Scholar] [CrossRef] [PubMed]
- Asmamaw, M.; Keneni, G.; Tesfaye, K. Genetic diversity of Ethiopian durum wheat (Triticum durum Desf.) landrace collections as reveled by SSR markers. Adv. Crop Sci. Technol. 2019, 7, 413. [Google Scholar] [CrossRef]
- Belete, Y.; Shimelis, H.; Laing, M.; Mathew, I. Genetic diversity and population structure of bread wheat genotypes determined via phenotypic and SSR marker analyses under drought-stress conditions. J. Crop Improv. 2020, 35, 303–325. [Google Scholar] [CrossRef]
- Gregáňová, Ž.; Kraic, J.; Gálová, Z. Effectiveness of microsatellites in differentiation of elite wheat cultivars. Biologia 2005, 60, 665–670. [Google Scholar]
- Vyhnánek, T.; Nevrtalová, E.; Slezáková, K. Detection of the genetic variability of triticale using wheat and rye SSR markers. Cereal Res. Commun. 2009, 37, 23–29. [Google Scholar] [CrossRef]
- Balážová, Ž.; Trebichalský, A.; Gálová, Z.; Hornyák-Gregáňová, R. Application of wheat SSR markers for detection of genetic diversity in triticale (× Triticosecale witt.). Genetika 2015, 47, 983–992. [Google Scholar] [CrossRef]
- Aljumaili, S.J.; Rafii, M.Y.; Latif, M.A.; Sakimin, S.Z.; Arolu, I.W.; Miah, G. Genetic Diversity of Aromatic Rice Germplasm Revealed by SSR Markers. BioMed Res. Int. 2018, 2018, 7658032. [Google Scholar] [CrossRef]
- Adu, G.B.; Awuku, F.J.; Amegbor, I.K.; Haruna, A.; Manigben, K.A.; Aboyadana, P.A. Genetic characterization and population structure of maize populations using SSR markers. Ann. Agric. Sci. 2019, 64, 47–54. [Google Scholar] [CrossRef]
- Vivodík, M.; Gálová, Z.; Balážová, Ž.; Petrovičová, L. Genetic variation of european maize genotypes (Zea mays L.) Detected using ssr markers. Potravinárstvo Slovak J. Food Sci. 2017, 11, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Vivodík, M.; Saadaoui, E.; Balážová, Ž.; Gálová, Z. Genetic diversity and relationship of Tunisian castor (Ricinus communis L.) genotypes revealed by SSR markers. Genetika 2020, 52, 765–776. [Google Scholar] [CrossRef]
- Iwata, H.; Imon, K.; Tsumura, Y.; Ohsawa, R. Genetic diversity among Japanese indigenous common buckwheat (Fagopyrum esculentum) cultivars as determined from amplified fragment length polymorphism and simple sequence repeat markers and quantitative agronomic traits. Genome 2005, 48, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Konishi, T.; Ohnishi, O. Close genetic relationship between cultivated and natural populations of common buckwheat in the Sanjiang area is not due to recent gene flow between them-An analysis using microsatellite markers. Genes Genet. Syst. 2007, 82, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Shi, T.L.; Zhang, Z.W. Development of microsatellite markers from Tartary buckwheat. Biotechnol. Lett. 2007, 29, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.H.; Kim, N.S.; Lee, G.A.; Lee, S.Y.; Lee, J.K.; Yi, J.Y.; Park, Y.J.; Kim, T.S.; Gwag, J.G.; Kwo, S.J. Development of SSR markers for studies of diversity in the genus Fagopyrum. Theor. Appl. Genet. 2009, 119, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Sun, Z.; Linghu, B.; Xu, D.; Wu, B.; Zhang, B.; Wang, X.; Han, Y.; Zhang, L.; Qiao, Z.; et al. Genetic Diversity of Buckwheat Cultivars (Fagopyrum tartaricum Gaertn.) Assessed with SSR Markers Developed from Genome Survey Sequences. Plant Mol. Biol. Rep. 2016, 34, 233–241. [Google Scholar] [CrossRef]
- Barcaccia, G.; Volpato, M.; Gentili, R.; Abeli, T.; Galla, G.; Orsenigo, S.; Citterio, S.; Sgorbati, S.; Rossi, G. Genetic identity of common buckwheat (Fagopyrum esculentum Moench) landraces locally cultivated in the Alps. Genet. Resour. Crop Evol. 2016, 63, 639–651. [Google Scholar] [CrossRef]
- Sabreena, M.N.; Mahajan, R.; Hashim, M.J.; Iqbal, J.; Alyemeni, M.N.; Bashir, A.G.; Zargar, S.M. Deciphering allelic variability and population structure in buckwheat: An analogy between the efficiency of ISSR and SSR markers. Saudi J. Biol. Sci. 2021, 28, 6050–6056. [Google Scholar] [CrossRef]
- Pipan, B.; Sinkovič, L.; Neji, M.; Janovská, D.; Zhou, M.; Meglič, V. Agro-Morphological and Molecular Characterization Reveal Deep Insights in Promising Genetic Diversity and Marker-Trait Associations in Fagopyrum esculentum and Fagopyrum tataricum. Plants 2023, 12, 3321. [Google Scholar] [CrossRef] [PubMed]
- Grahić, J.; Kurtović, M.; Šimon, S.; Đikić, M.; Gaši, F. Genetic purity assessment of common buckwheat variety ‘Darja’ with the use of SSR molecular markers. Genet. Appl. 2017, 1, 8–13. [Google Scholar] [CrossRef]
- Mascher, M.; Schreiber, M.; Scholz, U.; Graner, A.; Reif, J.C.; Stein, N. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 2019, 51, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Kishore, G.; Gupta, S.; Pandey, A. Assessment of population genetic diversity of Fagopyrum tataricum using SSR molecular marker. Biochem. Syst. Ecol. 2012, 43, 32–41. [Google Scholar] [CrossRef]
- Facho, Z.H.; Khan, F.; Tao, W.; Ali, S. Species divergence and diversity in buckwheat landraces collected from the western Himalayan region of Pakistan. Pak. J. Bot. 2019, 51, 6. [Google Scholar] [CrossRef] [PubMed]
- Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000, 18, 233. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zhang, Z.; Wu, B. Construction and application of SSR molecular markers system for genetic diversity analysis of Chinese tartary buckwheat germplasm resources. Scientia Agricultura Sinica. 2012, 45, 1042–1053. [Google Scholar]
- Pipan, B.; Meglič, V. Diversification and genetic structure of the western-to-eastern progression of European Phaseolus vulgaris L. germplasm. BMC Plant Biol. 2019, 19, 442. [Google Scholar] [CrossRef] [PubMed]
- Park, S. Microsatellite Toolkit; Department of Genetics, Trinity College: Dublin, Ireland, 2001. [Google Scholar]
- Peakall, R.; Smouse, P.E. GenAlEx 6: Genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Earl, D.A.; vonHoldt, B.M. Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
Locus | Range of Allele Lengths (bp) | No | He | Ho | MI | PIC | Fst | Fis | Fit | I |
---|---|---|---|---|---|---|---|---|---|---|
Fem1303 | 198–354 | 13 | 0.549 | 0.614 | 0.742 | 0.742 | 0.416 | −0.362 | 0.205 | 0.774 |
Fem1322 | 129–379 | 9 | 0.531 | 0.550 | 0.743 | 0.743 | 0.477 | −0.369 | 0.284 | 0.716 |
Fem1407 | 173–225 | 12 | 0.600 | 0.886 | 0.782 | 0.782 | 0.263 | −0.487 | −0.097 | 1.041 |
Fem1840 | 170–296 | 13 | 0.525 | 0.736 | 0.851 | 0.851 | 0.299 | −0.214 | 0.149 | 1.063 |
SXAU060 | 170–366 | 12 | 0.586 | 0.486 | 0.741 | 0.741 | 0.488 | −0.234 | 0.368 | 0.681 |
SXAU089 | 190–266 | 17 | 0.610 | 0.471 | 0.803 | 0.803 | 0.413 | 0.020 | 0.425 | 0.857 |
SXAU129 | 276–370 | 9 | 0.394 | 0.421 | 0.673 | 0.673 | 0.498 | −0.177 | 0.409 | 0.640 |
SXAU138 | 167–245 | 12 | 0.540 | 0.536 | 0.728 | 0.728 | 0.453 | −0.307 | 0.285 | 0.792 |
Ft1_114 | 160–186 | 8 | 0.560 | 0.286 | 0.666 | 0.666 | 0.606 | −0.022 | 0.597 | 0.482 |
Ft2_1743 | 152–327 | 16 | 0.549 | 0.714 | 0.802 | 0.802 | 0.355 | −0.351 | 0.129 | 0.871 |
Ft3_572 | 143–478 | 10 | 0.555 | 0.907 | 0.829 | 0.829 | 0.266 | −0.458 | −0.071 | 1.093 |
Ft4_2725 | 232–322 | 13 | 0.531 | 0.921 | 0.812 | 0.812 | 0.292 | −0.564 | −0.107 | 0.973 |
Ft5_2899 | 140–310 | 12 | 0.583 | 0.936 | 0.818 | 0.818 | 0.250 | −0.489 | −0.117 | 1.083 |
Ft6_2849 | 202–332 | 6 | 0.311 | 0.543 | 0.427 | 0.427 | 0.260 | −0.551 | −0.148 | 0.527 |
Ft7_382 | 211–385 | 13 | 0.359 | 0.671 | 0.799 | 0.799 | 0.372 | −0.312 | 0.176 | 0.917 |
Ft8_605 | 192–416 | 15 | 0.420 | 0.943 | 0.846 | 0.846 | 0.323 | −0.617 | −0.095 | 0.968 |
GB-FE-025 | 126–288 | 13 | 0.353 | 0.986 | 0.801 | 0.801 | 0.236 | −0.570 | −0.199 | 1.087 |
GB-FE-121 | 160–272 | 14 | 0.344 | 0.621 | 0.608 | 0.608 | 0.271 | −0.367 | 0.003 | 0.818 |
GB-FE-035 | 172–390 | 14 | 0.348 | 0.950 | 0.679 | 0.679 | 0.179 | −0.610 | −0.322 | 0.983 |
TBP5 | 218–388 | 11 | 0.376 | 0.986 | 0.764 | 0.764 | 0.307 | −0.789 | −0.240 | 0.853 |
TBP6 | 205–211 | 2 | 0.369 | 0.007 | 0.007 | 0.007 | 0.122 | −0.143 | −0.004 | 0.011 |
Total | 244 | |||||||||
Average | 11.62 | 0.477 | 0.675 | 0.711 | 0.711 | 0.340 | −0.380 | 0.078 | 0.820 |
Source | df | SS | MS | Est. Var. | % |
---|---|---|---|---|---|
Among Pops | 34 | 756.539 | 22.251 | 2.292 | 24% |
Among Indiv | 105 | 410.750 | 3.912 | 0.000 | 0% |
Within Indiv | 140 | 992.000 | 7.086 | 7.086 | 76% |
Total | 279 | 2159.289 | 9.378 | 100% | |
F-Statistics | Value | P(rand ≥ data) | |||
Fst | 0.294 | 0.010 | |||
Fis | −0.289 | 1.000 | |||
Fit | 0.091 | 0.010 | |||
Fst = AP/(WI + AI + AP) = AP/TOT | |||||
Fis = AI/(WI + AI) | |||||
Fit = (AI + AP)/(WI + AI + AP) = (AI + AP)/TOT | |||||
Key: AP = Est. Var. Among Pops, AI = Est. Var. Among Individuals, WI = Est. Var. Within Individuals |
(A) | ||
Cluster (K) | Genetic Distance | Fst for K |
1 | 0.712 | 0.238 |
2 | 0.683 | 0.092 |
Average | 0.698 | 0.165 |
(B) | ||
Cluster (K) | Genetic Distance | Fst for K |
1 | 0.448 | 0.062 |
2 | 0.389 | 0.291 |
Average | 0.419 | 0.177 |
N | Accession Number | Accession Name | Genus | Species | Country of Origin |
---|---|---|---|---|---|
1 | SVK001 Z50 00026 | Aiva 1 | Fagopyrum | esculentum Moench | LVA |
2 | SVK001 Z50 00004 | Ballada 1 | Fagopyrum | esculentum Moench | RUS |
3 | SVK001 Z50 00025 | Bamby 1 | Fagopyrum | esculentum Moench | AUT |
4 | SVK001 Z50 00003 | Bogatyr 1 | Fagopyrum | esculentum Moench | RUS |
5 | SVK001 Z50 00020 | Darina 1 | Fagopyrum | esculentum Moench | SVN |
6 | SVK001 Z50 00022 | Darja 1 | Fagopyrum | esculentum Moench | SVN |
7 | SVK001 Z50 00023 | Emka 1 | Fagopyrum | esculentum Moench | POL |
8 | SVK001 Z50 00015 | Amurskaja 1 FAG 29/79 | Fagopyrum | esculentum Moench | RUS |
9 | SVK001 Z50 00016 | Kazanska 1 FAG 38/82 | Fagopyrum | esculentum Moench | RUS |
10 | SVK001 Z50 00032 | Hruszowska 1 | Fagopyrum | esculentum Moench | POL |
11 | SVK001 Z50 00030 | Kasho-2 1 | Fagopyrum | esculentum Moench | JPN |
12 | SVK001 Z50 00024 | Kora 1 | Fagopyrum | esculentum Moench | POL |
13 | SVK001 Z50 00005 | La Harpe 1 | Fagopyrum | esculentum Moench | FRA |
14 | SVK001 Z50 00035 | Pulawska 1 | Fagopyrum | esculentum Moench | POL |
15 | SVK001 Z50 00007 | Pyra 1 | Fagopyrum | esculentum Moench | CZE |
16 | SVK001 Z50 00021 | Rana 60 1 | Fagopyrum | esculentum Moench | SVN |
17 | SVK001 Z50 00019 | Siva 1 | Fagopyrum | esculentum Moench | SVN |
18 | SVK001 Z50 00013 | St Jacut 1 | Fagopyrum | esculentum Moench | FRA |
19 | SVK001 Z50 00008 | Spacinska 1 1 | Fagopyrum | esculentum Moench | SVK |
20 | SVK001 Z50 00028 | Tohno Zairai 1 | Fagopyrum | esculentum Moench | CAN |
21 | SVK001 Z50 00034 | Winsor Royal 1 | Fagopyrum | esculentum Moench | USA |
22 | 01Z5100001 | PI 481644 2 | Fagopyrum | tataricum (L.) Gaertn. | BTN |
23 | 01Z5100009 | PI 481671 2 | Fagopyrum | tataricum (L.) Gaertn. | BTN |
24 | 01Z5100011 | 903016 2 | Fagopyrum | tataricum (L.) Gaertn. | PAK |
25 | 01Z5100013 | PI 451723 2 | Fagopyrum | tataricum (L.) Gaertn. | MEX |
26 | 01Z5100014 | PI 476852 2 | Fagopyrum | tataricum (L.) Gaertn. | USA |
27 | 01Z5100017 | Weswod Ican 2 | Fagopyrum | tataricum (L.) Gaertn. | Unknown |
28 | 01Z5100025 | 290 2 | Fagopyrum | tataricum (L.) Gaertn. | BTN |
29 | 01Z5100030 | PI 427239 2 | Fagopyrum | tataricum (L.) Gaertn. | NEP |
30 | 01Z5100037 | PI 481661 2 | Fagopyrum | tataricum (L.) Gaertn. | BTN |
31 | 01Z5100041 | Jianzui 2 | Fagopyrum | tataricum (L.) Gaertn. | CHN |
32 | 01Z5100042 | Liuqiao-3 2 | Fagopyrum | tataricum (L.) Gaertn. | CHN |
33 | 01Z5100044 | Zhaoqiao-1 2 | Fagopyrum | tataricum (L.) Gaertn. | CHN |
34 | 01Z5100046 | Jinqiao-2 2 | Fagopyrum | tataricum (L.) Gaertn. | CHN |
35 | 01Z5100050 | Sarasin a Ployes 2 | Fagopyrum | tataricum (L.) Gaertn. | USA |
Marker | Sequence F | Sequence R | Repeat Motif | Reference |
---|---|---|---|---|
Fem1303 | F: AGGAGACGGGAGAGAAGCAG | R: GGATGTTTGGGTGATTTCAG | (AG)31 | [28] |
Fem1322 | F: AAGCATTCATTCATTCATTC | R: GAGTTTGTTGTGTTTGGAGG | (TC)32 | [28] |
Fem1407 | F: GTGATGAGTAGTTGCCTCTG | R: CTTGGCTTAGACCTCTCGTA | (CT)13A(CT)21(CA)9 | [28] |
Fem1840 | F: ACGACGAAGACAAATGAGGA | R: ATATGGACGGCCTGGATTAT | (GA)8 | [28] |
SXAU060 | F: TCCCAATAGCCAATAGTACATG | R: GACCTAATTAACCGTTAGCACA | (AAT)10 | [32] |
SXAU089 | F: CAAAAGAAAAGTGCCGAAGT | R: TTATGTCACCGCCATTGTT | (CCA)10 | [32] |
SXAU129 | F: CTCAAAGGATGCCATTGTAAC | R: GACTTTGAGAACGCCTTGAC | (TA)11 | [32] |
SXAU138 | F: CACCTGCTACAATACTCTCA | R: GCTTAATCAACAGTAGGCAC | (AGT)10 | [32] |
Ft1_114 | F: CAACAGCATCTTTCCCTTCA | R: CCATAAACACAGCAACAGCC | (T)24 | [11] |
Ft2_1743 | F: ACCACTGACAATAAGGGGGA | R: CAAAAGGTTGATGTGGATGG | (AT)37 | [11] |
Ft3_572 | F: CATCACCCCTCTCAAGACCT | R: AGAATCCTACCCCGTCCTTT | (TA)14 | [11] |
Ft4_2725 | F: TAGCGATTTGAAGGGGACTT | R: CGTAACAATGGTCGTTACTCG | (AT)10 | [11] |
Ft5_2899 | F: AAGCTTCCTTCCATGACCAC | R: GTTTCTTGTGTGGACCGTTG | (TA)11 | [11] |
Ft6_2849 | F: ACAATTCATCAAGCGACTCC | R: CTTTGCCGAATGTAGGGAAT | (AAAAC)4 | [11] |
Ft7_382 | F: TGGTCTCTAAAACGGACCGA | R: TCGGAACCGGATTCTCTTAC | (AT)27 | [11] |
Ft8_605 | F: AACGAGGGTACTAACCGGAA | R: CCCCAGCTGTAAAACAATCA | (ATA)19 | [11] |
GB-FE-025 | F: CAGATGTTACCCGAGGCA | R: ACCCATATGTCACGAGCG | (ACCTCC)6 | [31] |
GB-FE-121 | F: TCCATACCAAGCAGGTGG | R: GTGCCTGATGAGGTTCCA | (AGG)6 | [31] |
GB-FE-035 | F: TGCAATGACTTGGAGGAGA | R: ACCACCATTCAACAAGCG | (GAK)6 (GAT)3 (GAT)2 K(G/T) | [31] |
TBP5 | F: GGGGATTGATCGAGAAAG | R: CCGAAGAGTAACTAGGAC | - | [41] |
TBP6 | F: CGGCTAATAAGTCGTTTC | R: GGATCATAGGTCGTGAAT | - | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balážová, Ž.; Čišecká, L.; Gálová, Z.; Hromadová, Z.; Chňapek, M.; Pipan, B.; Meglič, V. Characterization of Genetic Variability of Common and Tartary Buckwheat Genotypes Using Microsatellite Markers. Plants 2024, 13, 2147. https://doi.org/10.3390/plants13152147
Balážová Ž, Čišecká L, Gálová Z, Hromadová Z, Chňapek M, Pipan B, Meglič V. Characterization of Genetic Variability of Common and Tartary Buckwheat Genotypes Using Microsatellite Markers. Plants. 2024; 13(15):2147. https://doi.org/10.3390/plants13152147
Chicago/Turabian StyleBalážová, Želmíra, Lucia Čišecká, Zdenka Gálová, Zuzana Hromadová, Milan Chňapek, Barbara Pipan, and Vladimir Meglič. 2024. "Characterization of Genetic Variability of Common and Tartary Buckwheat Genotypes Using Microsatellite Markers" Plants 13, no. 15: 2147. https://doi.org/10.3390/plants13152147
APA StyleBalážová, Ž., Čišecká, L., Gálová, Z., Hromadová, Z., Chňapek, M., Pipan, B., & Meglič, V. (2024). Characterization of Genetic Variability of Common and Tartary Buckwheat Genotypes Using Microsatellite Markers. Plants, 13(15), 2147. https://doi.org/10.3390/plants13152147