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Abstract: The efficient protoplast transient transformation system in plants is an important tool to
study gene expression, metabolic pathways, and various mutagenic parameters, but it has not been
established in Phelipanche aegyptiaca. As a root parasitic weed that endangers the growth of 29 species
of plants in 12 families around the world, there is still no good control method for P. aegyptiaca. Even
the parasitic mechanisms of P. aegyptiaca and the related genes regulating parasitism are not yet
understood. In this study, by comparing the factors related to protoplast isolation and transfection,
we developed the optimal protocol for protoplast isolation and transfection in Phelipanche aegyptiaca
haustorium. The optimal protoplast yield and activity were 6.2 × 106 protoplasts/g fresh weight [FW]
and 87.85%, respectively, by using 0.5 mol/L mannitol, enzyme concentrations of 2.5% cellulase R-10
and 0.8% Macerozyme R-10 at 24 ◦C for 4 h. At the same time, transfection efficiency of protoplasts
was up to 78.49% when using 30 µg plasmid, 40% polyethylene glycol (PEG) concentration, 24 ◦C
incubation temperature, and 20 min transfection time. This is the first efficient protoplasts’ isolation
and transient transformation system of Phelipanche aegyptiaca haustorium, laying a foundation for
future studies on the gene function and mechanisms of haustorium formation in parasitic plants.

Keywords: Phelipanche aegyptiaca; haustorium; protoplasts’ isolation; transient transformation

1. Introduction

The Phelipanche aegyptiaca is an annual chlorophyll-free obligatory root-parasitic weed
in the family Orobanchaceae, belonging to the Phelipanche. This parasitic weed (P. aegyptiaca)
seriously endangers global agricultural production and is mainly distributed in the Middle
East, Africa, the Mediterranean, China, and other semi-arid regions of the world. It
parasitizes nearly 29 species from 12 different plant families, such as tomato, potato,
melon, bean, pepper, tobacco, and carrot, affecting crop yield and quality, and causing
significant losses to global agricultural production [1–3]. In 2018, it was estimated that
global annual losses owing to Orobanche damage were USD 1.3–2.6 billion [4]. Currently,
there are no effective preventive measures against this weed. Haustorium, a critical organ
in P. aegyptiaca, serves as a bridge between host and parasite, facilitating the acquisition of
water, nutrients, RNA, proteins, and hormones from the host [5]. Therefore, preventing
haustorium formation or its connection with the host will be a fundamental method to
control P. aegyptiaca.

Recent research indicates that haustorium-repressing factors, particularly nitrogen, can
disrupt parasite–host interactions by promoting abscisic acid (ABA) levels, resulting in the
repression of genes essential for haustoria development in Phtheirospermum japonicum [6,7].
Additionally, quinone-type HIFs likely affect CARD1 activation, a membrane-bound kinase,
which triggers YUCCA3-mediated auxin biosynthesis at the haustorium apex, potentially
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leading to haustorium formation [5]. However, the limited understanding of haustorium-
specific signaling pathways and gene interactions in P. aegyptiaca has hindered studies on
haustorium formation.

Although there is information about stable genetic transformation and plant regen-
eration of P. aegyptiaca, it is mostly related to host, which may interfere with the study of
P. aegyptiaca gene function. Transient protoplasts’ expression is a validated approach for
researching gene function and the signaling pathway, effectively providing insights into
molecular mechanisms in plant immunity, hormone signal transduction, and physiologi-
cal processes, including growth and development. Researchers have used this approach
to screen synthetic promoters in poplar leaf mesophyll protoplasts, as demonstrated by
Yang et al. [8], and to uncover the transcriptional regulation of BrpHMA2 under cadmium
stress in Brassica parachinensis protoplasts [9]. Similarly, high-efficiency, regeneration-free
transient expression in haustorium protoplasts of P. aegyptiaca could support an efficient
system for studying genes and signaling pathways specific to haustoria. The key to the
successful transient expression in protoplasts lies in the efficient digestion system for
high-yield, high-activity haustorium protoplasts, and an effective transient transformation
system of protoplasts. The present methods for plant tissue protoplasts’ digestion mainly
include mechanical, chemical, and enzymatic methods, with the enzymatic method being
notably efficient [10]. However, there have been no effective and sustainable protocols for
P. aegyptiaca protoplasts’ digestion [11].

The PEG-mediated method is widely adopted for plant protoplasts’ transient trans-
formation for its efficiency, cost effectiveness, and lack of specialized equipment require-
ments [12]. Zhang’s work with cotton root protoplasts, achieving an 80% transformation
efficiency, exemplifies its potential [13]. However, established PEG-mediated systems
predominantly focus on model plants and major crops, with transformation parameters
varying across different species and even organs within the same species.

This study will focus on the isolation of haustorium protoplasts from P. aegyptiaca
by modulating key factors, including enzyme solution composition, digestion conditions,
and centrifugation speed. Moreover, by evaluating temperature, incubation time, PEG
concentration, and plasmid content on transformation efficiency, we propose an advanced
and efficient transformation protocol for haustorium protoplasts from P. aegyptiaca. This re-
search will offer a robust method for isolating P. aegyptiaca protoplasts, facilitating molecular
research on the haustorium of P. aegyptiaca.

2. Materials and Methods
2.1. Plant Materials

The P. aegyptiaca seeds used in this experiment were all collected from tomato fields in
Jimusar County, Xinjiang province, China in 2020 [14].

2.2. Materials for Protoplasts’ Isolation of P. aegyptiaca Haustorium

The seed were surface-sterilized with 2% v/v sodium hypochlorite in water for 15 min
and 75% v/v ethanol in water for 3 min, and then the seed were washed five times with
sterile water to remove the residual sterilant. The sterilized seeds were placed in 24-
well plate and preconditioning with sterile water in a darkness at 28 ◦C. After 2 days of
preconditioning, the rac-GR24 (1 × 10−7 mol/L) was then transferred into 24-well plate to
induce seed germination for 3 days. After seed germination, rac-GR24 was removed and
auxin IAA (1 × 10−4 mol/L), which can induce haustorium formation, was transferred to
the 24-well plate and induced in darkness for 10 days [14]. Record radicle morphological
changes, such as length and width. Radicle morphology hardly changes after haustorium
formation, so the best time selection period is when radicle morphology stops changing.

2.3. Protoplasts’ Isolation and Purification

The protoplasts’ isolation and purification were modified based on Poddar and Yang’s
protocols [15,16]. Approximately 0.1 ± 0.05 g of P. aegyptiaca seedlings with haustorium
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were placed in a 10 mL sterile tube and 5 mL of enzymatic solution was added to it. The
sterile tube was then placed in a shaker at 23–27 ◦C and shaken at 80 rpm for 2–6 h away
from light to remove the cell walls and release protoplasts. The enzymatic solution consists
of 0.1%BSA, 10 mmol/L CaCl2, 0.1%MES and specific concentrations of mannitol, cellulase
R-10 (YAKULT, Tokyo, Japan) and macerozyme R-10 (YAKULT, Japan); the concentrations
of the latter three are shown in Table 1. In order to optimize the conditions of the enzymatic
solution and improve the quality of protoplasts, the time and temperature of the enzymatic
solution and the centrifugation of protoplasts are shown in Table 1. Therefore, the six factors
and five levels orthogonal experiment (L25(56)) was used, which contains 25 treatments.

For purification, the enzyme lysate was filtered twice through a 70 µm cell filter
to remove larger tissues. Subsequently, the filtrate was centrifuged for 5 min by the
centrifugal force in Table 1 to remove the supernatant. The protoplast pellets at the bottom
were then washed 3 times with 5 mL W5 solution (154 mmol/L NaCl, 125 mmol/L CaCl2,
5 mmol/L KCl, 5 mmol/L glucose, 2 mmol/L MES). Finally, the washed protoplast pellets
were gently resuspended with 1 mL MMG solution (15 mmol/L MgCl2, 4 mmol/L MES,
0.5 mol/L mannitol) and placed on ice for 30 min for subsequent protoplast yield and
viability evaluation and transient transformation execution. The protoplasts’ isolation and
purification process of P. aegyptiaca is described in Figure 1.
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Table 1. Factor and level table.

Factor Cellulase R-10
(%)

Macerozyme
R-10 (%)

Mannitol
(mol/L)

Enzymolysis
Time (h)

Enzymolysis
Temperature (◦C)

Centrifugal
Gravity (× g)

Level 1 1.5 0.6 0.3 2 23 60
Level 2 2 0.7 0.4 3 24 70
Level 3 2.5 0.8 0.5 4 25 80
Level 4 3 0.9 0.6 5 26 90
Level 5 3.5 1 0.7 6 27 100

2.4. Protoplasts’ Yield and Viability Assessment

The protoplasts’ yield was determined using a light microscope (Olympus, Tokyo,
Japan, BX61). The protoplasts’ yield was calculated as follows: Protoplasts’ yield (pro-
toplasts/g FW) = number of the protoplasts yielded in enzymolysis/fresh weight of the
materials.

The protoplasts’ viability was determined by double staining with 2 µM Calcein-AM
(Beyotime, Haimen, China) and 10 µM PI (Biorigin, Beijing, China) for 10 min at 37 ◦C in
the dark. After staining, these were centrifuged for 5 min, washed with PBS once, and
100 µL PBS suspended protoplasts was added after washing. Then, the protoplasts were
observed under a fluorescence microscope (Zeiss, Oberkochen, Germany, Axio Imager M2),
and Calcein-AM reacted with living cells to fluoresce green under excitation light of 488
nm, while dead cells fluoresce red under excitation light of 535 nm under the action of PI.
Protoplasts’ viability was calculated as follows: protoplasts’ viability (%) = (number of
protoplasts with green fluorescence/total number of observed protoplasts) × 100%.

All the experiments were repeated three times. The process of determining the yield
and viability of P. aegyptiaca protoplasts is described in Figure 1.

2.5. Protoplasts’ Transformation

PEG-mediated transient transformation in P. aegyptiaca haustorium protoplasts was
performed based on the previously reported PEG-mediated transient transformation of
kiwifruit and eggplant protoplasts [17,18] with slight modifications. The transformation
process of P. aegyptiaca is described in Figure 1.

The fresh protoplasts were added to 2.5 × 105 protoplasts/mL with MMG solution.
Then, 200 µL protoplasts was taken and placed in a 2 mL tube. The pCAMBIA3301-35S-
eGFP plasmid DNA and PEG solution (PEG4000, 0.5 mol/L mannitol, 0.1 mol/L CaCl2)
were immediately added to it and the solution was gently mixed. To optimize plasmid
content and PEG concentration, different amounts of plasmid (5, 10, 20, 30, 40 µg) and
multiple concentrations of PEG4000 (20%, 30%, 40%, 50%, 60% w/v) were assayed (The
PEG solution was filter sterilized using a 0.22 µm membrane filter). The mixture was then
incubated at a specific temperature for a few minutes. To optimize incubation temperature
and time, different temperatures (18, 21, 24, 27, 30 ◦C) and times (10, 20, 30, 40 min) were
tested. After incubation, 1 mL W5 solution was slowly added to the mixture to stop the
transformation. Then, the mixture was centrifuged at 100× g for 5 min to remove the
liquid supernatant, and the remaining protoplast pellets were washed 2 times with W5
solution. The washed protoplasts were gently resuspended with 200 µL W5 solution. The
transformed protoplasts were cultured in the dark at 28 ◦C for 12 h and then observed under
fluorescence microscope. The GFP can be observed in the transfected protoplasts under
a ZEISS Axio Imager M2 fluorescence microscope (excitation 488 nm). Transformation
efficiency was calculated as follows:

The transfection efficiency (%) = (the number of fluorescent protoplasts/the total
number of protoplasts) × 100%.

All the experiments were repeated three times and five fields were observed for each
replicate.
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2.6. Detection of pCAMBIA3301, NPTII and eGFP in the Transfected Protoplasts by PCR

The transfected protoplasts’ and nontransfected protoplasts’ (control) total genomic
DNA of P. aegyptiaca haustorium was extracted by using the Super Plant Genomic DNA Kit
(TIANGEN). The presence of pCAMBIA3301 (pCAMBIA3301-NPTII-eGFP) in transfected
protoplasts and its absence in nontransfected protoplasts was confirmed using pCAM-
BIA3301 primer (forward: 5′-CAGGAAACAGCTATGAC-3′; reverse: 5′-GTAAAACGACGG
CCAGT -3′); NPTII primer (forward: 5′-AACTCACGTTAAGGGATTTTGGTCAT-3′; reverse:
5′-TCTTGGGGTATCTTTAAATACTGTAGAAAAGAGGA-3′) and eGFP primer (forward:
5′-GGTACCCGGGGATCCTCT-3′; reverse: 5′-GAAAGCTCTGCAGGAATTCGATT-3′).

PCR condition: [94 ◦C (3 min) [94 ◦C (30 s) 58 ◦C (30 s) 72 ◦C (1 min)] × 35 cycles
72 ◦C (5 min)]. PCR products were analyzed by 1% (w/v) agarose gel electrophoresis and
ethidium bromide stain.

2.7. Statistical Analysis

The significant differences between different treatments were analyzed using the
Tukey’s HSD test method at a significance level of p ≤ 0.05 by SPSS Version 22.0 (SPSS,
Inc., Chicago, IL, USA). Conducting range analysis on orthogonal test results, the range
value (R value) represents the quality of the factor’s effect on the experimental results. LSD
multiple comparison analysis is used to assess the effects of 6 factors with 5 levels on the
isolation and viability of protoplasts.

3. Results
3.1. Selection of Optimal Materials for Protoplasts’ Isolation of P. aegyptiaca Haustorium

After preconditioning, P. aegyptiaca seeds germinate white radicles under the induction
of rac-GR24, and the radicles differentiate into haustoria under the induction of auxin. The
morphological changes in the radicle during auxin-induced haustorium formation in P.
aegyptiaca include the termination of radicle elongation, radial expansion of the meristematic
region, and finally the epidermal cells at the haustorium initiation site form protrusions
(Figure 2A–D) [5]. Therefore, radicles induced by auxin were selected for observation,
and the length and width of the radicle at different times were compared (Figure 2E,F). In
general, radicle elongation almost stopped under the induction of auxin, which mainly
showed expansion of the meristematic region. By the 7th day, many protrusions formed
on the radicle surface, and the radicle width reached a peak, after which the expansion
of meristematic region stopped (Figure 2G,H). Thus, we suggested that haustoria were
induced by applying auxin for 7 days after removing the rac-GR24 and were the optimal
material for protoplasts’ isolation from P. aegyptiaca haustoria.
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Figure 2. The process through which P. aegyptiaca seeds germinate (A,B) and form haustorium
(C,D) morphological changes in radicle during auxin induction P. aegyptiaca haustorium formation.
Scale bars = 200 µm. Morphological changes in seed radicle (E) at 10 days after auxin treatment.
Morphological changes in seed radicle (F) at 10 days after H2O treatment (CK). Scale bars = 200 µm.
The seed radicle was 10-day length (G) and width (H) under IAA and H2O treatment. Data presented
are means ± SE. ns, **, *** indicate significant differences at p > 0.05, p < 0.01, p < 0.001, respectively,
by Least Significance Difference Tests (LSDTs).

3.2. Selection of Optimal Factors for Protoplasts’ Isolation of P. aegyptiaca Haustorium

The results of the orthogonal experiment showed significant differences in the yield
and activity of protoplasts across 25 different treatments. Among these, treatment 20 had
the lowest protoplasts’ yield and activity, with 3.58 × 106 p/g FW and 66.48%, respectively,
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and treatment 18 had the highest yield and activity, with 7.41 × 106 p/g FW and 82.12%,
respectively (Figures 3 and 4 and Supplementary Materials Table S1). Therefore, we
concluded that protoplasts’ enzyme conditions, including the concentration of cellulase and
macerozyme, the concentration of mannitol, the time and temperature of enzymolysis, and
the centrifugation conditions, influence protoplasts’ isolation from P. aegyptiaca haustorium.
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The height of the rectangle indicates mean ± SE, and different letters indicate significant differences,
p < 0.05.

The range analysis results of protoplasts’ yield and activity showed that factors such
as cellulase and macerozyme concentration, mannitol concentration, enzymolysis time and
temperature, and centrifugal force have varying influences on the yield and viability of pro-
toplasts’ isolation from P. aegyptiaca haustorium (Table 2). Among the six factors influencing
protoplasts’ yield, the most influential is enzymolysis time, followed by Cellulase R-10,
temperature, and mannitol concentration (Table 2). However, for protoplasts’ viability, the
influence sequence of the six factors was mannitol > Macerozyme R-10 > Cellulase R-10
> enzymolysis temperature > centrifugal gravity > enzymolysis time (Table 2). The influ-
ence of different factors on the protoplasts’ yield and viability is different. Cellulase R-10,
Macerozyme R-10 and mannitol have obvious influence on the protoplasts’ viability, while
enzymolysis time, enzymolysis temperature and centrifugal gravity have great influence
on the protoplasts’ yield.

Table 2. The range analysis results of orthogonal experiments.

yield

K1 4.09 4.57 5.01 3.24 5.22 4.71
K2 4.17 4.79 5.69 5.21 5.91 4.42
K3 4.87 4.92 5.38 5.92 4.61 4.92
K4 5.08 4.81 5.31 4.94 4.62 5.03
K5 6.31 5.42 4.02 5.20 4.15 5.43

Range 2.22 0.85 1.67 2.68 1.76 1.00
Rank enzymolysis time > Cellulase R-10 > enzymolysis temperature > mannitol > centrifugal gravity > Macerozyme R-10

viability

K1 81.18 81.20 75.40 78.15 76.92 78.86
K2 78.13 79.83 82.80 76.30 75.98 77.67
K3 78.65 79.48 82.95 77.12 78.42 76.68
K4 75.12 76.07 74.26 77.46 77.87 77.67
K5 74.31 70.81 71.97 78.35 78.20 76.50

Range 6.87 10.39 10.98 2.05 2.44 2.36
Rank mannitol > Macerozyme R-10 > Cellulase R-10 > enzymolysis temperature > centrifugal gravity > enzymolysis time
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treatment 18 (D–F). The protoplasts’ viability under treatment 20 (G–I) and treatment 18 (J–L) was
examined by Calcein-AM (G,J) and PI (H,K) double staining. Green denotes living cells. Red denotes
dead cells. All the bars are 200 µm except (A,D); (A,D) bars = 1000 µm.

To further determine the optimal levels of each factor of protoplasts’ isolation, we
performed LSD multiple comparison analysis of yield and activity at each level of the factors
(Figure 5). We found that protoplasts’ yield increased with the concentration of cellulase R-
10, while the protoplasts’ activity decreased as the concentration of Cellulase R-10 increased.
Moreover, the results in Table 2 show that the effect of Cellulase R-10 on protoplasts’ activity
is much greater than on yield. Therefore, the maximum concentration of cellulose R-10
should be 2.5% to ensure high protoplasts’ activity. The effect of Macerozyme R-10 on
protoplasts’ activity is similar to that of Cellulase R-10, but its impact on protoplasts’ yield
is not as significant. Therefore, the maximum concentration of Macerozyme R-10 before a
rapid decline in protoplasts’ activity should be 0.8%. The optimal mannitol concentration
and enzymolysis time for protoplasts’ isolation are 0.5 mol/L and 4 h, respectively. In
addition, at an appropriate temperature, the temperature has little effect on the activity
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of protoplasts. However, when the enzymolysis temperature is below or above 24 ◦C,
the protoplasts’ yield is lower. Therefore, 24 ◦C is the optimal enzymolysis temperature.
In conclusion, we determined that the optimal protocol for isolating protoplasts in the
haustorium of P. aegyptiaca is 2.5% cellulase R-10, 0.8% Macerozyme R-10, 0.5 mol/L
mannitol, enzymolysis temperature at 24 ◦C, enzymolysis time for 4 h, and centrifugation
at 100× g.
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Figure 5. The effect of cellulase R-10 concentration (A); macerozyme R-10 concentration (B); mannitol
concentration (C); enzymolysis time (D); enzymolysis temperature (E) and centrifugation (F) on
protoplasts’ isolation from P. aegyptiaca haustorium.

3.3. Assessment of the Optimal Protocol in Protoplasts’ Isolation of P. aegyptiaca Haustorium

The optimal enzymolytic combination obtained by orthogonal test was used to sepa-
rate the P. aegyptiaca haustorium protoplasts, and the protoplasts’ yield and viability were
measured. The protoplasts’ yield was 6.2 × 106 p/g FW, and the viability was 87.85%
(Figure 6). The protoplasts obtained from the haustorium are described in Figure 6C–E,
where most of the haustorium tissue is enzymatically decomposed into round proto-
plasts. The viability is illustrated by staining the protoplasts with Calcein-AM and PI
(Figure 6F–N). The yield and viability of protoplasts obtained from the optimal combina-
tion were compared with those obtained from treatment 18 and treatment 20, respectively.
We found that the yield and viability of protoplasts under the optimal combination were
significantly higher than those under treatment 20 (Figure 6B). Therefore, the optimal enzy-
molytic combination obtained by the orthogonal test can isolate the P. aegyptiaca haustorium
protoplasts with high yield and high viability.
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Figure 6. Protoplasts’ isolation in P. aegyptiaca; yield (A) and viability (B) of protoplasts’ isolation
from the P. aegyptiaca. Data presented are means ± SE. ns, *, **, *** indicate significant differences at
p > 0.05, p ≤ 0.05, p < 0.01, p < 0.001, respectively, by Least Significance Difference Tests (LSDTs). The
protoplasts’ yield (E) of P.aegyptiaca (C) after enzymatic hydrolysis (D) under optimal combinations.
The protoplasts’ viability under treatment 20 (F–H), treatment 18 (I–K) and optimal combinations
(L–N) was examined by Calcein-AM (G,J) and PI (H,K) double staining. Green denotes living cells.
Red denotes dead cells. (C) bar = 1000 µm; (D,E) bars = 200 µm; (F–N) bars = 100 µm.

3.4. Optimization of the Transient Transformation System of P. aegyptiaca Haustorium Protoplasts

Genetic factors can be transferred into protoplasts mediated by PEG, and this method
has been widely used for transient expression in many plants [19]. In order to find an
efficient transformation method of haustorium protoplasts, four factors affecting PEG-
mediated haustorium protoplasts’ transformation, including temperature, incubation time,
PEG concentration and plasmid content, were studied in this experiment.
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As shown in Figure 7, temperature and incubation time are important factors affecting
transformation. The optimal temperature and time for the transformation of the hausto-
rium protoplasts are 24 ◦C and 20 min, with transformation efficiencies of 58.26% and
64.4%, respectively. The concentration of PEG4000 is also a key factor in PEG-mediated
protoplasts’ transformation. In this study, when the concentration of PEG4000 is 40%, the
transformation efficiency of haustorium protoplasts is highest at 63%. This concentration is
consistent with the one used by Shao et al. for the transformation of Uncaria rhynchophylla
protoplasts [19]. In addition, the ratio of plasmids to protoplasts also greatly affects the
transformation efficiency of protoplasts. When adding 5 µg of plasmids to 200 µL of proto-
plasts’ suspension, the transformation rate is only 49.58%, while adding 30 µg of plasmids
increases the transformation rate to 78.49%.
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indicates mean ± SE, and different letters indicate significant differences, p < 0.05. PEG-mediated
transient gene expression in P. aegyptiaca haustorium protoplasts (E–M). The green fluorescent protein
(GFP) gene expressed by 35S-eGFP vector can be observed in the transformed protoplasts under
fluorescence microscope. (E–G) bars = 25 µm; (H–M) bars = 100 µm.

In summary, the optimal scheme for protoplasts’ transformation is to add 200 mL 40%
PEG4000 and 30 µg plasmid into 200 µL protoplasts’ suspension at 24 ◦C and incubate for
20 min. The transformation effect is shown in Figure 7H–J, with a transformation rate of
78.49%.

3.5. Assessment of the Optimized Protocol in Terms of Transfection Effect in Protoplasts of P.
aegyptiaca Haustorium

We detected pCAMBIA3301, NPTII and eGFP genes in protoplasts transfected with
pCAMBIA3301 plasmid by PCR and 1% agarose gel electrophoresis, while its absence
was observed in nontransfected protoplasts (Figure 8), indicating that under the action
of PEG4000, pCAMBIA3301 plasmid successfully integrated into the protoplasts of the
haustorium from P. aegyptiaca.
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4. Discussion

Plant protoplasts are living cells without cell walls surrounded only by cell mem-
branes, which can directly absorb foreign DNA and are ideal receptors for transient gene
expression [20]. Compared to stable gene expression, transient gene expression does not
involve a regeneration process. After gene transformation, fluorescence signals can be
directly observed, with a short period and high transformation efficiency [21]. Therefore,
transient gene expression in protoplasts is particularly suitable for studies on subcellular
localization, cell fusion, protein–protein interaction, promoter activity, and gene function
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analysis [9,22–26]. In this paper, we proposed a highly efficient method of protoplasts’
isolation and transient transformation of the haustorium from P. aegyptiaca. The protoplasts’
yield of the haustorium from P. aegyptiaca (6.2 × 106 P/g FW) is much higher than that of
mangoes (6.5 × 105 P/g FW) isolated by Adjei [27]. The transformation efficiency (78.5%)
in this paper was significantly improved compared to the transfection efficiency of citrus’
(68.4%) protoplasts reported recently [28].

It is worth noting that high-quality protoplasts are a prerequisite for the transient
expression of protoplasts. However, haustorium is the main parasitic organ in P. aegyptiaca;
to date, there is still no method to isolate its protoplasts. Although the haustorium of P.
aegyptiaca is derived from the embryonic root, its structure is very different from that of the
embryonic root. The epidermis of the haustorium contains Papillae cells and intrusive cells,
and the interior contains a unique xylem bridge structure. The quality of protoplasts of the
haustorium obtained by enzyme desorption of plant root protoplasts is poor. Therefore,
although many methods for isolating protoplasts from plant roots have been reported,
there is no effective method for isolating haustorium protoplasts. Moreover, there are
many factors that affect the isolation of protoplasts, such as the type and concentration
of enzymes, osmotic pressure of the enzyme solution, enzyme digestion time, enzyme
digestion temperature, and even the magnitude of centrifugal force, all of which can
influence the yield and activity of protoplasts. Ester’s research shows that a combination
of 0.5% Cellulase R-10 concentration and 0.1% Macerozyme R-10 is sufficient to isolate
high-yield and high-activity cabbage protoplasts [29], while Du’s research showed that
the optimal concentrations of Cellulase R-10 and Macerozyme R-10 for digesting Apium
graveolens protoplasts are 2.0% and 0.1%, respectively. Furthermore, it was found that
once the yield and activity of Apium graveolens reached their highest values, increasing
the enzyme concentrations actually resulted in a decrease in both the yield and activity of
protoplasts [30]. These results indicate that, apart from the varying enzyme concentrations
required for the digestion of different plant cell walls, the production and activity of
protoplasts are not directly proportional to enzyme concentration, instead increasing
with an increase in enzyme concentration and then declining. Our study found that
the isolation of the haustorium of P. aegyptiaca protoplasts follows the same pattern. The
optimal concentrations for isolating haustorium protoplasts are 2.5% cellulase R-10 and 0.8%
Macerozyme R-10. However, when the cellulase R-10 concentration exceeds 2.5% or the
Macerozyme R-10 concentration exceeds 0.8%, the protoplasts’ yield and activity decrease
with the increasing enzyme concentration. Furthermore, although mannitol is a commonly
used osmotic stabilizer in the isolation of protoplasts, its concentration is not fixed. A
0.4 mol/L mannitol concentration is the optimal concentration for isolating protoplasts
from various plant species, including conifer callus, poplar, oak, and tea plant [31,32].
However, this study shows that when isolating haustorium protoplasts, the protoplasts’
activity and yield are highest when the mannitol concentration is 5 mol/L, which is
the same as the optimal mannitol concentration for isolating carnation protoplasts [33].
Simultaneously, temperature affects the enzyme activity during protoplasts’ enzymatic
digestion, thus influencing the rate of enzymatic reactions. A digestion time that is too
short may not fully generate protoplasts, while a digestion time that is too long can damage
the protoplasts’ cell membrane. Excessive centrifugal force can also lead to protoplasts’
rupture. Therefore, this study also investigated the effects of temperature, digestion time,
and centrifugal force on the yield and activity of haustorium protoplasts. It was found
that 24 ◦C and 4 h was the optimal enzymatic digestion temperature and time for isolation
of haustorium protoplasts, and the quality of the protoplasts was not affected when the
centrifugal force was lower than 100× g.

The currently common transient expression methods include particle biolistic bombard-
ment, Agrobacterium-mediated transformation, and polyethylene glycol (PEG)-mediated
protoplasts’ transformation [34–36]. Among them, the PEG-mediated protoplast transient
gene transformation has become a rapid and effective tool for transient expression due
to its ease of operation, high transformation efficiency, low cost, and no requirement for
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special equipment [12]. However, the difficulty of PEG-mediated protoplasts’ transient
transformation in the haustorium of P. aegyptiaca lies in the lack of reference, and the
parameters for PEG-mediated protoplasts’ transformation vary among different plants,
and even among different organs of the same plant. Existing studies suggest that the
main factors affecting PEG-mediated protoplasts’ transformation efficiency are incubation
temperature, incubation time, PEG concentration, and plasmid content. Research by Zhang
et al. demonstrated that the highest transfection efficiency (80%) for cotton root protoplasts
was achieved when using 20 µg of plasmid in a 40% PEG4000 solution for 20 min [13].
Shao’s study suggests that for the Uncaria rhynchophylla protoplasts under conditions of
40% PEG4000 concentration, a plasmid concentration of 40 µg, and an incubation time of
40 min are required to achieve the maximum transformation efficiency [19]. Hyunhee’s
study suggests that the optimal PEG4000 concentration for the transfection of Camellia
oleifera petal protoplasts is 20%. Meanwhile, excessively high concentrations of PEG4000
can lead to protoplasts’ rupture [20]. Therefore, we investigated four factors affecting
PEG-mediated protoplasts’ transformation and revealed the optimal parameters for PEG-
mediated protoplasts’ transformation in the haustorium of P. aegyptiaca. We found that
under 24 ◦C conditions, by adding 200 mL of 40% PEG4000 and 30 µg of plasmid to 200 µL
of protoplasts’ suspension, and incubating for 20 min, the transformation efficiency of
protoplasts in the haustorium from P. aegyptiaca could reach 78.49%.

Recently, some studies have proposed that protoplasts’ fusion can be used to prevent
and control Orobanche. For example, Afshin enhances the ability of Fusarium oxysporum to
inhibit Orobanche growth by fusing the protoplasts of Fusarium oxysporum and Fusarium
equina [37]. However, there have been no reports on the prevention and treatment of
Orobanche by using Orobanche’s own protoplasts. The method for high-yield and high-
activity P. aegyptiaca haustorium protoplasts’ isolation proposed in this study, along with
an efficient protoplasts’ transformation method, makes transient expression in P. aegyp-
tiaca feasible. Transient expression in P. aegyptiaca provides a pathway for the study of
haustorium functional genes. Studying the functional genes of haustorium can provide
new avenues for the control of P. aegyptiaca. Therefore, the high-yield and high-activity
P. aegyptiaca haustorium protoplasts’ isolation method and efficient protoplasts’ transfor-
mation method proposed in this study will contribute to advances in P. aegyptiaca disease
control. Although extensive research on protoplasts has led to reported root, stem, and
leaf protoplasts’ isolation and transformation methods for various model plants and major
staple crops such as Arabidopsis, rice, and maize, the isolation and transformation of P.
aegyptiaca haustorium protoplasts is first reported in this study. Moreover, the isolation and
transformation of protoplasts from haustoria, a specific organ in parasitic plants, is also
reported for the first time in this study, which can provide a reference for protoplasts’ isola-
tion and transformation of haustorium in other parasitic plants. In recent years, single-cell
sequencing in plants has become popular. The basis of plant single-cell sequencing relies
on a large quantity of highly active plant protoplasts. The yield and activity of the P. ae-
gyptiaca haustorium protoplasts isolated in this study meet the requirements for single-cell
sequencing. Therefore, the protoplasts’ isolation method provided by this study will, to
some extent, contribute to the development of single-cell sequencing in parasitic plants.

5. Conclusions

In summary, a reliable and efficient system for the isolation and transient gene expres-
sion of P. aegyptiaca haustorium protoplasts was developed. To the best of our knowledge,
this is the first report of protoplasts’ isolation and PEG-mediated protoplasts’ transfection
in P. aegyptiaca haustorium. This protocol provides technical support for studying func-
tional genes and specific signal regulatory mechanisms in the haustorium of P. aegyptiaca.
Additionally, since the haustorium is the key organ for parasitism, this protocol not only
provides a new material for the study of P. aegyptiaca, but also provides a reference for the
isolation and transformation of haustorium protoplasts in other parasitic plants.
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