Phytochelatin Synthase: An In Silico Comparative Analysis in Cyanobacteria and Eukaryotic Microalgae
Abstract
:1. Introduction
2. Results and Discussion
2.1. PCS Phylogenetic Analysis
2.2. PCS Sequence Analyses
2.2.1. Cyanobacteria
2.2.2. Diatoms
2.2.3. Ocrophyta
2.2.4. Archaeplastide
Red Algae
Green Algae
2.3. PCS Proteins in Selected Model Sequences
2.4. Structural Analysis
2.4.1. Active Site
2.4.2. Cysteine Arrangements
2.5. Domain Analysis
3. Conclusions
4. Materials and Methods
4.1. Phylogenetic Analysis
4.2. Sequence Analyses of PCSs
4.3. Structural Analysis
4.4. Motif Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danouche, M.; El Ghachtouli, N.; El Arroussi, H. Phycoremediation Mechanisms of Heavy Metals Using Living Green Microalgae: Physicochemical and Molecular Approaches for Enhancing Selectivity and Removal Capacity. Heliyon 2021, 7, e07609. [Google Scholar] [CrossRef] [PubMed]
- Chakravorty, M.; Nanda, M.; Bisht, B.; Sharma, R.; Kumar, S.; Mishra, A.; Vlaskin, M.S.; Chauhan, P.K.; Kumar, V. Heavy Metal Tolerance in Microalgae: Detoxification Mechanisms and Applications. Aquat. Toxicol. 2023, 260, 106555. [Google Scholar] [CrossRef] [PubMed]
- Cobbett, C.S. Phytochelatins and Their Roles in Heavy Metal Detoxification. Plant Physiol. 2000, 123, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Cobbett, C.; Goldsbrough, P. Phytochelatins and Metallothioneins: Roles in Heavy Metal Detoxification and Homeostasis. Annu. Rev. Plant Biol. 2002, 53, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Vivares, D.; Arnoux, P.; Pignol, D. A Papain-like Enzyme at Work: Native and Acyl-Enzyme Intermediate Structures in Phytochelatin Synthesis. Proc. Natl. Acad. Sci. USA 2005, 102, 18848–18853. [Google Scholar] [CrossRef] [PubMed]
- Kanaujia, S.P. Understanding Toxic Metal–Binding Proteins and Peptides. In Handbook of Metal-Microbe Interactions and Bioremediation; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-15335-3. [Google Scholar]
- Grill, E.; Löffler, S.; Winnacker, E.-L.; Zenk, M.H. Phytochelatins, the Heavy-Metal-Binding Peptides of Plants, Are Synthesized from Glutathione by a Specific γ-Glutamylcysteine Dipeptidyl Transpeptidase (Phytochelatin Synthase). Proc. Natl. Acad. Sci. USA 1989, 86, 6838–6842. [Google Scholar] [CrossRef] [PubMed]
- Vatamaniuk, O.K.; Mari, S.; Lang, A.; Chalasani, S.; Demkiv, L.O.; Rea, P.A. Phytochelatin Synthase, a Dipeptidyltransferase That Undergoes Multisite Acylation with γ-Glutamylcysteine during Catalysis. J. Biol. Chem. 2004, 279, 22449–22460. [Google Scholar] [CrossRef] [PubMed]
- Romanyuk, N.D.; Rigden, D.J.; Vatamaniuk, O.K.; Lang, A.; Cahoon, R.E.; Jez, J.M.; Rea, P.A. Mutagenic Definition of a Papain-like Catalytic Triad, Sufficiency of the N-Terminal Domain for Single-Site Core Catalytic Enzyme Acylation, and C-Terminal Domain for Augmentative Metal Activation of a Eukaryotic Phytochelatin Synthase. Plant Physiol. 2006, 141, 858–869. [Google Scholar] [CrossRef] [PubMed]
- Rea, P.A. Phytochelatin Synthase: Of a Protease a Peptide Polymerase Made. Physiol. Plant 2012, 145, 154–164. [Google Scholar] [CrossRef]
- Gekeler, W.; Grill, E.; Winnacker, E.-L.; Zenk, M.H. Algae Sequester Heavy Metals via Synthesis of Phytochelatin Complexes. Arch. Microbiol. 1988, 150, 197–202. [Google Scholar] [CrossRef]
- Gekeler, W.; Grill, E.; Winnacker, E.-L.; Zenk, M.H. Survey of the Plant Kingdom for the Ability to Bind Heavy Metals through Phytochelatins. Z. Naturforsch. C 1989, 44, 361–369. [Google Scholar] [CrossRef]
- Kneer, R.; Kutchan, T.M.; Hochberger, A.; Zenk, M.H. Saccharomyces cerevisiae and Neurospora crassa Contain Heavy Metal Sequestering Phytochelatin. Arch. Microbiol. 1992, 157, 305–310. [Google Scholar] [CrossRef]
- Clemens, S.; Schroeder, J.I.; Degenkolb, T. Caenorhabditis elegans Expresses a Functional Phytochelatin Synthase. Eur. J. Biochem. 2001, 268, 3640–3643. [Google Scholar] [CrossRef]
- Vatamaniuk, O.K.; Bucher, E.A.; Ward, J.T.; Rea, P.A. A New Pathway for Heavy Metal Detoxification in Animals. Phytochelatin Synthase Is Required for Cadmium Tolerance in Caenorhabditis elegans. J. Biol. Chem. 2001, 276, 20817–20820. [Google Scholar] [CrossRef] [PubMed]
- Pawlik-Skowrońska, B.; Di Toppi, L.S.; Favali, M.A.; Fossati, F.; Pirszel, J.; Skowroński, T. Lichens Respond to Heavy Metals by Phytochelatin Synthesis. New Phytol. 2002, 156, 95–102. [Google Scholar] [CrossRef]
- Pawlik-Skowrońska, B.; Pirszel, J.; Brown, M.T. Concentrations of Phytochelatins and Glutathione Found in Natural Assemblages of Seaweeds Depend on Species and Metal Concentrations of the Habitat. Aquat. Toxicol. 2007, 83, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Bolchi, A.; Ruotolo, R.; Marchini, G.; Vurro, E.; di Toppi, L.S.; Kohler, A.; Tisserant, E.; Martin, F.; Ottonello, S. Genome-Wide Inventory of Metal Homeostasis-Related Gene Products Including a Functional Phytochelatin Synthase in the Hypogeous Mycorrhizal Fungus Tuber melanosporum. Fungal Genet. Biol. 2011, 48, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Petraglia, A.; De Benedictis, M.; Degola, F.; Pastore, G.; Calcagno, M.; Ruotolo, R.; Mengoni, A.; Sanità di Toppi, L. The Capability to Synthesize Phytochelatins and the Presence of Constitutive and Functional Phytochelatin Synthases Are Ancestral (Plesiomorphic) Characters for Basal Land Plants. J. Exp. Bot. 2014, 65, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Harada, E.; von Roepenack-Lahaye, E.; Clemens, S. A Cyanobacterial Protein with Similarity to Phytochelatin Synthases Catalyzes the Conversion of Glutathione to Gamma-Glutamylcysteine and Lacks Phytochelatin Synthase Activity. Phytochemistry 2004, 65, 3179–3185. [Google Scholar] [CrossRef]
- Tsuji, N.; Nishikori, S.; Iwabe, O.; Matsumoto, S.; Shiraki, K.; Miyasaka, H.; Takagi, M.; Miyamoto, K.; Hirata, K. Comparative Analysis of the Two-Step Reaction Catalyzed by Prokaryotic and Eukaryotic Phytochelatin Synthase by an Ion-Pair Liquid Chromatography Assay. Planta 2005, 222, 181–191. [Google Scholar] [CrossRef]
- Clemens, S. Toxic Metal Accumulation, Responses to Exposure and Mechanisms of Tolerance in Plants. Biochimie 2006, 88, 1707–1719. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, N.; Mishra, Y.; Rai, L.C. Cloning Expression and Analysis of Phytochelatin Synthase (Pcs) Gene from Anabaena sp. PCC 7120 Offering Multiple Stress Tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 2008, 376, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Tsuji, N.; Miyamoto, K. Biosynthetic Regulation of Phytochelatins, Heavy Metal-Binding Peptides. J. Biosci. Bioeng. 2005, 100, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Rea, P.A.; Vatamaniuk, O.K.; Rigden, D.J. Weeds, Worms, and More. Papain’s Long-Lost Cousin, Phytochelatin Synthase. Plant Physiol. 2004, 136, 2463–2474. [Google Scholar] [CrossRef] [PubMed]
- Olsson, S.; Penacho, V.; Puente-Sánchez, F.; Díaz, S.; Gonzalez-Pastor, J.E.; Aguilera, A. Horizontal Gene Transfer of Phytochelatin Synthases from Bacteria to Extremophilic Green Algae. Microb. Ecol. 2017, 73, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-C.; Wu, J.-S.; Chia, J.-C.; Yang, C.-C.; Wu, Y.-J.; Juang, R.-H. Phytochelatin Synthase Is Regulated by Protein Phosphorylation at a Threonine Residue near Its Catalytic Site. J. Agric. Food Chem. 2009, 57, 7348–7355. [Google Scholar] [CrossRef]
- Ogawa, S.; Yoshidomi, T.; Yoshimura, E. Cadmium(II)-Stimulated Enzyme Activation of Arabidopsis thaliana Phytochelatin Synthase 1. J. Inorg. Biochem. 2011, 105, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Chia, J.-C.; Yang, C.-C.; Sui, Y.-T.; Lin, S.-Y.; Juang, R.-H. Tentative Identification of the Second Substrate Binding Site in Arabidopsis Phytochelatin Synthase. PLoS ONE 2013, 8, e82675. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.B.; Smith, A.P.; Howden, R.; Dietrich, W.M.; Bugg, S.; O’Connell, M.J.; Goldsbrough, P.B.; Cobbett, C.S. Phytochelatin Synthase Genes from Arabidopsis and the Yeast Schizosaccharomyces pombe. Plant Cell 1999, 11, 1153–1164. [Google Scholar] [CrossRef]
- Ruotolo, R.; Peracchi, A.; Bolchi, A.; Infusini, G.; Amoresano, A.; Ottonello, S. Domain Organization of Phytochelatin Synthase: Functional Properties of Truncated Enzyme Species Identified by Limited Proteolysis. J. Biol. Chem. 2004, 279, 14686–14693. [Google Scholar] [CrossRef]
- Vatamaniuk, O.K.; Mari, S.; Lu, Y.P.; Rea, P.A. Mechanism of Heavy Metal Ion Activation of Phytochelatin (PC) Synthase: Blocked Thiols Are Sufficient for PC Synthase-Catalyzed Transpeptidation of Glutathione and Related Thiol Peptides. J. Biol. Chem. 2000, 275, 31451–31459. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.; Clemente, M.R.; Naya, L.; Loscos, J.; Pérez-Rontomé, C.; Sato, S.; Tabata, S.; Becana, M. Phytochelatin Synthases of the Model Legume Lotus japonicus. A Small Multigene Family with Differential Response to Cadmium and Alternatively Spliced Variants. Plant Physiol. 2007, 143, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Li, A.-M.; Yu, B.-Y.; Chen, F.-H.; Gan, H.-Y.; Yuan, J.-G.; Qiu, R.; Huang, J.-C.; Yang, Z.-Y.; Xu, Z.-F. Characterization of the Sesbania rostrata Phytochelatin Synthase Gene: Alternative Splicing and Function of Four Isoforms. Int. J. Mol. Sci. 2009, 10, 3269–3282. [Google Scholar] [CrossRef]
- Das, N.; Bhattacharya, S.; Bhattacharyya, S.; Maiti, M.K. Identification of Alternatively Spliced Transcripts of Rice Phytochelatin Synthase 2 Gene OsPCS2 Involved in Mitigation of Cadmium and Arsenic Stresses. Plant Mol. Biol. 2017, 94, 167–183. [Google Scholar] [CrossRef]
- Maier, T.; Yu, C.; Küllertz, G.; Clemens, S. Localization and Functional Characterization of Metal-Binding Sites in Phytochelatin Synthases. Planta 2003, 218, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Tennstedt, P.; Peisker, D.; Böttcher, C.; Trampczynska, A.; Clemens, S. Phytochelatin Synthesis Is Essential for the Detoxification of Excess Zinc and Contributes Significantly to the Accumulation of Zinc. Plant Physiol. 2009, 149, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Cózatl, D.G.; Butko, E.; Springer, F.; Torpey, J.W.; Komives, E.A.; Kehr, J.; Schroeder, J.I. Identification of High Levels of Phytochelatins, Glutathione and Cadmium in the Phloem Sap of Brassica Napus. A Role for Thiol-Peptides in the Long-Distance Transport of Cadmium and the Effect of Cadmium on Iron Translocation. Plant J. 2008, 54, 249–259. [Google Scholar] [CrossRef]
- Meyer, C.-L.; Peisker, D.; Courbot, M.; Craciun, A.R.; Cazalé, A.-C.; Desgain, D.; Schat, H.; Clemens, S.; Verbruggen, N. Isolation and Characterization of Arabidopsis halleri and Thlaspi caerulescens Phytochelatin Synthases. Planta 2011, 234, 83–95. [Google Scholar] [CrossRef]
- Blum, R.; Meyer, K.C.; Wünschmann, J.; Lendzian, K.J.; Grill, E. Cytosolic Action of Phytochelatin Synthase. Plant Physiol. 2010, 153, 159–169. [Google Scholar] [CrossRef]
- Vurro, E.; Ruotolo, R.; Ottonello, S.; Elviri, L.; Maffini, M.; Falasca, G.; Zanella, L.; Altamura, M.M.; Sanità di Toppi, L. Phytochelatins Govern Zinc/Copper Homeostasis and Cadmium Detoxification in Cuscuta campestris Parasitizing Daucus carota. Environ. Exp. Bot. 2011, 72, 26–33. [Google Scholar] [CrossRef]
- Beck, A.; Lendzian, K.; Oven, M.; Christmann, A.; Grill, E. Phytochelatin Synthase Catalyzes Key Step in Turnover of Glutathione Conjugates. Phytochemistry 2003, 62, 423–431. [Google Scholar] [CrossRef] [PubMed]
- De Benedictis, M.; Brunetti, C.; Brauer, E.K.; Andreucci, A.; Popescu, S.C.; Commisso, M.; Guzzo, F.; Sofo, A.; Ruffini Castiglione, M.; Vatamaniuk, O.K.; et al. The Arabidopsis Thaliana Knockout Mutant for Phytochelatin Synthase1 (Cad1-3) Is Defective in Callose Deposition, Bacterial Pathogen Defense and Auxin Content, But Shows an Increased Stem Lignification. Front. Plant Sci. 2018, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Hématy, K.; Lim, M.; Cherk, C.; Piślewska-Bednarek, M.; Sanchez-Rodriguez, C.; Stein, M.; Fuchs, R.; Klapprodt, C.; Lipka, V.; Molina, A.; et al. Moonlighting Function of Phytochelatin Synthase1 in Extracellular Defense against Fungal Pathogens. Plant Physiol. 2020, 182, 1920–1932. [Google Scholar] [CrossRef] [PubMed]
- Filiz, E.; Saracoglu, I.A.; Ozyigit, I.I.; Yalcin, B. Comparative Analyses of Phytochelatin Synthase (PCS) Genes in Higher Plants. Biotechnol. Biotechnol. Equip. 2019, 33, 178–194. [Google Scholar] [CrossRef]
- Merchant, S.S.; Prochnik, S.E.; Vallon, O.; Harris, E.H.; Karpowicz, S.J.; Witman, G.B.; Terry, A.; Salamov, A.; Fritz-Laylin, L.K.; Maréchal-Drouard, L.; et al. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science 2007, 318, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Gotsmann, V.L.; Ting, M.K.Y.; Haase, N.; Rudorf, S.; Zoschke, R.; Willmund, F. Utilizing High-Resolution Ribosome Profiling for the Global Investigation of Gene Expression in Chlamydomonas. Plant J. 2024, 117, 1614–1634. [Google Scholar] [CrossRef] [PubMed]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A Comparative Platform for Green Plant Genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef] [PubMed]
- Biondi, T.C.; Kruse, C.P.S.; Koehler, S.I.; Kwon, T.; Davis, A.K.; Eng, W.; Kunde, Y.; Gleasner, C.D.; You Mak, K.T.; Polle, J.; et al. The Telomere-to-Telomere, Gapless, Phased Diploid Genome and Methylome of the Green Alga Scenedesmus obliquus UTEX 3031 Reveals Significant Heterozygosity and Genetic Divergence of the Haplotypes. Algal. Res. 2024, 79, 103431. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. ISBN 978-1-59259-890-8. [Google Scholar]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M. The Rapid Generation of Mutation Data Matrices from Protein Sequences. Comput. Appl. Biosci. 1992, 8, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, K.B.; Nicholas, H.B.; Deerfield, D.W. GeneDoc: Analysis and Visualization of Genetic Variation. EMBnet News 1997, 4, 1–4. [Google Scholar]
- Crooks, G.E.; Hon, G.; Chandonia, J.-M.; Brenner, S.E. WebLogo: A Sequence Logo Generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef]
- Schneider, T.D.; Stephens, R.M. Sequence Logos: A New Way to Display Consensus Sequences. Nucleic Acids Res. 1990, 18, 6097–6100. [Google Scholar] [CrossRef]
Order | Species | Accession No. | Exon No. | PCS Form ° | Length (aa) | MW (kDa) | C-H Distance (aa) | H-D Distance (aa) | Cys Residues | Isoelectric Point | % Neg of Residues | % Pos of Residues | Instability Index * | Aliphatic Index | Habitat |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cyanobacteria | |||||||||||||||
Nostocales | N. punctiforme NIES-2108 | RCJ37125.1 | 1 | QNNQAYC | 243 | 27.37 | 112 | 17 | 2 | 9.18 | 9.05 | 11.52 | 31.78 | 82.59 | S |
N. punctiforme | WP_190951078.1 | 1 | QSEPAFC | 397 | 45.30 | 106 | 17 | 11 | 5.55 | 9.57 | 7.55 | 49.11 | 97.2 | S | |
Scytonema sp. HK-05 | WP_073628507.1 | 1 | QNNQAYC | 245 | 27.48 | 112 | 17 | 2 | 9.47 | 7.34 | 10.61 | 38.87 | 89.1 | S | |
Scytonema sp. UIC_10036 | WP_155743291.1 | 1 | QSEPAYC | 243 | 27.43 | 106 | 17 | 6 | 6.59 | 10.69 | 10.28 | 53.02 | 83.91 | FW | |
Oscillatoriales | Microcoleus sp. FACHB-SPT15 | WP_192218665.1 | 1 | QKNQAYC | 251 | 27.66 | 111 | 17 | 1 | 5.25 | 9.96 | 7.17 | 44.67 | 102.91 | S |
Microcoleus sp. FACHB-84 | MBD1883635.1 | 1 | QAEPAFC | 400 | 45.08 | 106 | 17 | 8 | 5.56 | 11.5 | 8.5 | 54.38 | 96.5 | S | |
Phormidium sp. FACHB-1136 | WP_190499716.1 | 1 | QINQAFC | 246 | 27.05 | 110 | 17 | 2 | 4.61 | 10.97 | 6.09 | 38.82 | 105.53 | FW/M | |
P. ambiguum | WP_073594115.1 | 1 | QAEPAFC | 394 | 45.12 | 106 | 17 | 10 | 5.59 | 10.65 | 8.12 | 54.85 | 103.43 | FW/M | |
Coleofasciculales | Symploca sp. SIO2B6 | NET09551.1 | 1 | QQNPAFC | 245 | 26.77 | 110 | 17 | 1 | 4.78 | 9.79 | 5.71 | 41.47 | 106.78 | M |
Symploca sp. SIO2C1 | NEP14048.1 | 1 | QRNGAYC | 248 | 27.96 | 111 | 17 | 2 | 6.34 | 9.67 | 9.27 | 42.83 | 101.37 | M | |
Synechococcales | Synechococcus sp. CS-1329 | WP_259737590.1 | 1 | QANLAYC | 244 | 26.27 | 112 | 17 | 2 | 9.55 | 6.55 | 8.61 | 43.23 | 109.63 | FW/S |
Synechococcus sp. CS-1329 | MCT0219986.1 | 1 | QANLAYC | 271 | 29.26 | 112 | 17 | 3 | 9.86 | 6.27 | 9.22 | 44.05 | 108.08 | FW/S | |
Algae | |||||||||||||||
Cyanidiales | C. merolae | XP_005536287.1 | 1 | QSEPAFC | 560 | 61.53 | 118 | 17 | 18 | 8.52 | 10.18 | 11.25 | 52.40 | 85.64 | FW |
Stylonematales | R. marinus | KAJ8903032.1 | 2 | QVNQAFC | 306 | 33.45 | 119 | 17 | 5 | 5.78 | 10.78 | 9.47 | 31.04 | 90.42 | M |
R. marinus | KAJ8907455.1 | 5 | QSEPAYC | 495 | 55.36 | 103 | 17 | 13 | 5.12 | 15.55 | 11.92 | 54.53 | 77.76 | M | |
Bacillariales | P. tricornutum | XP_002184892.1 | 2 | QINQAYC | 735 | 82.10 | 136 | 17 | 5 | 5.72 | 11.84 | 8.71 | 41 | 70.82 | M |
P. tricornutum | Phatr_24704 | 1 | QSEPAYC | 447 | 50.56 | 114 | 17 | 11 | 5.75 | 11.85 | 10.74 | 43.64 | 82.91 | M | |
P. tricornutum | XP_002182531.1 | 3 | QSDPAYC | 604 | 67.08 | 140 | 17 | 14 | 9.74 | 7.95 | 11.59 | 51.76 | 75.38 | M | |
T. pseudonana | AGE13359.1 | 2 | QINQAYC | 340 | 37.51 | 127 | 17 | 5 | 5.41 | 11.18 | 9.41 | 38.34 | 77.74 | M | |
T. pseudonana | AGE13358.1 | 2 | QSDPAYC | 354 | 39.88 | 155 | 17 | 10 | 7.15 | 11.3 | 11.3 | 52.39 | 68.5 | M | |
T. pseudonana | Thaps_257216 | 2 | QPEPAYC | 444 | 49.85 | 112 | 17 | 10 | 5.62 | 11.94 | 10.81 | 47.65 | 83.2 | M | |
Mamiellales | M. pusilla | A0A7R9XUU1 | 2 | QRNQAFC | 375 | 40.34 | 128 | 17 | 5 | 5.47 | 13.07 | 10.13 | 38.64 | 88.29 | M |
Chlamydomonadales | D. salina | KAF5828933.1 | 9 | QINSAFC | 389 | 42.32 | 118 | 17 | 2 | 4.95 | 10.03 | 6.17 | 38.18 | 86.74 | M/FW |
D. salina | KAF5828256.1 | 12 | QDEPAFC | 793 | 83.83 | 105 | 17 | 16 | 6.34 | 8.45 | 7.06 | 53.1 | 61.02 | M/FW | |
C. reinhardtii v5.6 | Cre14.g629960.t1.1 | 8 | QDEPAFC | 994 | 96.73 | 94 | 17 | 32 | 5.78 | 7.75 | 6.34 | 56.1 | 75.77 | FW | |
C. reinhardtii v5.6 | Cre07.g319500.t1.1 | 11 | QEEPQYC | 776 | 78.70 | 107 | 17 | 17 | 6.66 | 8.25 | 7.86 | 41.71 | 78.04 | FW | |
C. eustigma | GAX77974.1 | 6 | QVNDAYC | 381 | 42.28 | 118 | 17 | 7 | 5.14 | 11.02 | 7.87 | 33.59 | 90.6 | Acidic FW | |
C. eustigma | GAX75692.1 | 10 | QDEPAFC | 582 | 63.97 | 105 | 17 | 18 | 6.76 | 9.45 | 9.11 | 54.87 | 79.3 | Acidic FW | |
C. acidophila | UTN00421.1 | 5 | QVNDAYC | 381 | 42.22 | 118 | 17 | 7 | 5.15 | 11.28 | 8.13 | 34.14 | 90.08 | Acidic FW | |
Chlamydomonas sp. UWO241 | KAG1663029.1 | 8 | QVNGAFC | 326 | 34.02 | 117 | 17 | 1 | 5.13 | 9.20 | 6.44 | 29.83 | 90.71 | M | |
Chlamydomonas sp. UWO241 | KAG1678305.1 | 15 | QAEPAFC | 1236 | 126.85 | 112 | 17 | 28 | 8.34 | 9.39 | 9.95 | 49.89 | 70.91 | M | |
Chlamydomonas sp. UWO241 | KAG1678204.1 | 8 | QDEPAFC | 586 | 60.78 | 106 | 17 | 10 | 6.4 | 8.87 | 7.85 | 44.85 | 77.53 | M | |
V. reticuliferus | GIL86496.1 | 9 | QEEPQYC | 873 | 92.36 | 105 | 17 | 33 | 5.55 | 10.65 | 8.82 | 52.53 | 78.03 | FW | |
V. reticuliferus | GIL75769.1 | 10 | QDEPAFC | 679 | 72.85 | 105 | 17 | 15 | 6.56 | 9.13 | 8.54 | 53.03 | 79.87 | FW | |
Chlorellales | A. protothecoides | RMZ52137.1 | 4 | QDEPAFC | 381 | 41.40 | 105 | 17 | 9 | 5.44 | 12.6 | 9.45 | 53.9 | 83.07 | Acidic FW |
M. condutrix | PSC73990.1 | 10 | QDEPAYC | 689 | 74.73 | 105 | 17 | 13 | 6.25 | 10.45 | 9.58 | 64.51 | 68.4 | FW | |
Sphaeropleales | R. subcapitata | GBF98758.1 | 6 | QDEPAFC | 594 | 61.77 | 105 | 17 | 15 | 6.68 | 8.92 | 8.42 | 45.04 | 79.04 | FW |
C. zofingiensis | Cz01g22010.t1 | 7 | QDEPAFC | 500 | 54.77 | 105 | 17 | 17 | 6.21 | 10 | 8.2 | 49.95 | 78.92 | FW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari, M.; Marieschi, M.; Cozza, R.; Torelli, A. Phytochelatin Synthase: An In Silico Comparative Analysis in Cyanobacteria and Eukaryotic Microalgae. Plants 2024, 13, 2165. https://doi.org/10.3390/plants13152165
Ferrari M, Marieschi M, Cozza R, Torelli A. Phytochelatin Synthase: An In Silico Comparative Analysis in Cyanobacteria and Eukaryotic Microalgae. Plants. 2024; 13(15):2165. https://doi.org/10.3390/plants13152165
Chicago/Turabian StyleFerrari, Michele, Matteo Marieschi, Radiana Cozza, and Anna Torelli. 2024. "Phytochelatin Synthase: An In Silico Comparative Analysis in Cyanobacteria and Eukaryotic Microalgae" Plants 13, no. 15: 2165. https://doi.org/10.3390/plants13152165
APA StyleFerrari, M., Marieschi, M., Cozza, R., & Torelli, A. (2024). Phytochelatin Synthase: An In Silico Comparative Analysis in Cyanobacteria and Eukaryotic Microalgae. Plants, 13(15), 2165. https://doi.org/10.3390/plants13152165