Enhancing Withanolide Production in the Withania Species: Advances in In Vitro Culture and Synthetic Biology Approaches
Abstract
:1. Introduction
2. Withanolide Production through In Vitro Culture
2.1. Cell Suspension Culture
2.2. Hairy Root Culture
3. Withanolide Production via Synthetic Biology: Innovations and Challenges
3.1. Withanolide Production through Heterologous and Cell-Free Systems
3.2. Withanolide Production through a Microbial Heterologous System
Biosynthesis Gene Clusters for Withanolides
4. Methods to Enhance the Production of Withanolides by Machine Learning (ML)
4.1. Application of ML in Metabolic Pathway and Enzyme Identification
4.2. Application of ML to Improve In Vitro Culture Efficiency
4.3. Use of CRISPR-Based Genome Editing
4.3.1. CRISPR/Cas Multiplex Gene Editing
4.3.2. Overexpression and Targeted Gene Knockout
5. Conclusions
6. Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dar, R.A.; Shahnawaz, M.; Qazi, P.H. General overview of medicinal plants: A review. J. Phytopharm. 2017, 6, 349–351. [Google Scholar] [CrossRef]
- Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed Pharmacol. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Parvin, S.; Reza, A.; Das, S.; Miah, M.U.; Karim, S. Potential Role and International Trade of Medicinal and Aromatic Plants in the World. Eur. J. Agric. Food Sci. 2023, 5, 89–99. [Google Scholar] [CrossRef]
- Srivastava, Y.; Sangwan, N.S. Improving medicinal crops through phytochemical perspective: Withania somnifera (Ashwagandha). In Advancement in Crop Improvement Techniques; Elsevier: Amsterdam, The Netherlands, 2020; pp. 275–295. [Google Scholar]
- Sangwan, N.S.; Sangwan, R.S. Secondary metabolites of traditional medical plants: A case study of Ashwagandha (Withania somnifera). In Applied Plant Cell Biology: Cellular Tools and Approaches for Plant Biotechnology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 325–367. [Google Scholar]
- Sivanandhan, G.; Selvaraj, N.; Ganapathi, A.; Lim, Y.P. Up-regulation of Squalene synthase in hairy root culture of Withania somnifera (L.) Dunal yields higher quantities of withanolides. Ind. Crops Prod. 2020, 154, 112706. [Google Scholar] [CrossRef]
- Ahmad, Z.; Shaheen, A.; Wasi, A.; Rehman, S.U.; Tahseen, S.; Ramakrishnan, M.; Upadhyay, A.; Ganie, I.B.; Shahzad, A.; Ding, Y. Biotechnological Intervention and Withanolide Production in Withania coagulans. Agronomy 2023, 13, 1997. [Google Scholar] [CrossRef]
- Younessi-Hamzekhanlu, M.; Ozturk, M.; Jafarpour, P.; Mahna, N. Exploitation of next generation sequencing technologies for unraveling metabolic pathways in medicinal plants: A concise review. Ind. Crops Prod. 2022, 178, 114669. [Google Scholar] [CrossRef]
- Helmy, M.; Smith, D.; Selvarajoo, K. Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metab. Eng. Commun. 2020, 11, e00149. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, T.; Dreger, M.; Wielgus, K.; Słomski, R. The application of plant in vitro cultures in cannabinoid production. Biotechnol. Lett. 2018, 40, 445–454. [Google Scholar] [CrossRef]
- Guo, M.; Lv, H.; Chen, H.; Dong, S.; Zhang, J.; Liu, W.; He, L.; Ma, Y.; Yu, H.; Chen, S.; et al. Strategies on biosynthesis and production of bioactive compounds in medicinal plants. Chin. Herb. Med. 2024, 16, 13–26. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Georgiev, V.; Slavov, A.; Vasileva, I.; Pavlov, A. Plant cell culture as emerging technology for production of active cosmetic ingredients. Eng. Life Sci. 2018, 18, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [PubMed]
- Nagella, P.; Murthy, H.N. Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A. Bioresour. Technol. 2010, 101, 6735–6739. [Google Scholar] [CrossRef] [PubMed]
- Sivanandhan, G.; Dev, G.K.; Jeyaraj, M.; Rajesh, M.; Muthuselvam, M.; Selvaraj, N.; Manickavasagam, M.; Ganapathi, A. A promising approach on biomass accumulation and withanolides production in cell suspension culture of Withania somnifera (L.) Dunal. Protoplasma 2013, 250, 885–898. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, M.H.; Esmaeili, H. Callus induction and withanolides production through cell suspension culture of Withania coagulans (Stocks) Dunal. J. Med. Plants 2022, 21, 79–91. [Google Scholar] [CrossRef]
- Wu, T.; Kerbler, S.M.; Fernie, A.R.; Zhang, Y. Plant cell cultures as heterologous bio-factories for secondary metabolite production. Plant Commun. 2021, 2, 100235. [Google Scholar] [CrossRef] [PubMed]
- Sivanandhan, G.; Selvaraj, N.; Ganapathi, A.; Manickavasagam, M. Enhanced biosynthesis of withanolides by elicitation and precursor feeding in cell suspension culture of Withania somnifera (L.) Dunal in shake-flask culture and bioreactor. PLoS ONE 2014, 9, e104005. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Estrada, K.; Vidal-Limon, H.; Hidalgo, D.; Moyano, E.; Golenioswki, M.; Cusidó, R.M.; Palazon, J. Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories. Molecules 2016, 21, 182. [Google Scholar] [CrossRef]
- Dorrazehi, M.; Allahdou, M.; Fakheri, B.A.; Mehravaran, L. Elicitation Improves the Production of Bioactive Compounds and Antioxidant Activity in Cell Suspension Culture of Withania coagulans (Stocks) Dunal. Russ. J. Plant Physiol. 2024, 71, 37. [Google Scholar] [CrossRef]
- Ahlawat, S.; Saxena, P.; Ali, A.; Khan, S.; Abdin, M.Z. Comparative study of withanolide production and the related transcriptional responses of biosynthetic genes in fungi elicited cell suspension culture of Withania somnifera in shake flask and bioreactor. Plant Physiol. Biochem. 2017, 114, 19–28. [Google Scholar] [CrossRef]
- Selwal, N.; Goutam, U.; Akhtar, N.; Sood, M. Elicitation: “A Trump Card” for Enhancing Secondary Metabolites in Plants. J. Plant Growth Regul. 2024, 1–21. [Google Scholar] [CrossRef]
- Tripathi, D.; Meena, R.P.; Pandey-Rai, S. Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition. Physiol. Mol. Biol. Plants 2021, 27, 1823–1835. [Google Scholar] [CrossRef] [PubMed]
- Şahin, G.; Tellİ, M.; ÜnlÜ, E.S.; KarakaŞ, F.P. Effects of moderate high temperature and UV-B on accumulation of withanolides and relative expression of the squalene synthase gene in Physalis peruviana. Turk. J. Biol. 2020, 44, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Thorat, S.A.; Poojari, P.; Kaniyassery, A.; Kiran, K.R.; Satyamoorthy, K.; Mahato, K.K.; Muthusamy, A. Red laser-mediated alterations in seed germination, growth, pigments and withanolide content of Ashwagandha [Withania somnifera (L.) Dunal]. J. Photochem. Photobiol. B Biol. 2021, 216, 112144. [Google Scholar] [CrossRef] [PubMed]
- Thorat, S.A.; Srivaishnavi, M.; Kaniyassery, A.; Padikkal, S.; Rai, P.S.; Botha, A.-M.; Muthusamy, A. Physiological and biochemical traits positively modulate tissue-specific withanolides and untargeted metabolites in Withania somnifera (L.) dunal under salinity stress. Plant Physiol. Biochem. 2023, 203, 108011. [Google Scholar] [CrossRef] [PubMed]
- Dehvari-Nagan, P.; Abbaspour, H.; Asare, M.H.; Saadatmand, S. Melatonin Confers NaCl Tolerance in Withania coagulans L. by Maintaining Na+/K+ Homeostasis, Strengthening the Antioxidant Defense System and Modulating Withanolides Synthesis-Related Genes. Russ. J. Plant Physiol. 2023, 70, 52. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Bansal, S.; Tripathi, S.; Mishra, S.; Yadav, R.K.; Sangwan, N.S. Differential regulation of key triterpene synthase gene under abiotic stress in Withania somnifera L. Dunal and its co-relation to sterols and withanolides. Plant Physiol. Biochem. 2024, 208, 108419. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Shahsavar, A.R. Sodium nitroprusside: Its beneficial role in drought stress tolerance of “Mexican lime” (Citrus aurantifolia (Christ.) Swingle) under in vitro conditions. Vitr. Cell. Dev. Biol.-Plant 2022, 58, 155–168. [Google Scholar] [CrossRef]
- Sanchita, S.R.; Mishra, A.; Dhawan, S.S.; Shirke, P.A.; Gupta, M.M.; Sharma, A. Physiological performance, secondary metabolite and expression profiling of genes associated with drought tolerance in Withania somnifera. Protoplasma 2015, 252, 1439–1450. [Google Scholar] [CrossRef]
- Mishra, B.; Bose, S.K.; Sangwan, N.S. Comparative investigation of therapeutic plant Withania somnifera for yield, productivity, withanolide content, and expression of pathway genes during contrasting seasons. Ind. Crops Prod. 2020, 154, 112508. [Google Scholar] [CrossRef]
- Abed, A.S.; Taha, A.J. Biotic and Abiotic Elicitors Induce Biosynthesis and Accumulation of Some Withanolide Compounds in the Callus Culture of Withania somnifera L. Egypt. J. Bot. 2024, 64, 245–256. [Google Scholar] [CrossRef]
- Kushwaha, R.K.; Singh, S.; Pandey, S.S.; Kalra, A.; Babu, C.S.V. Innate endophytic fungus, Aspergillus terreus as biotic elicitor of withanolide A in root cell suspension cultures of Withania somnifera. Mol. Biol. Rep. 2019, 46, 1895–1908. [Google Scholar] [CrossRef] [PubMed]
- Sivanandhan, G.; Arun, M.; Mayavan, S.; Rajesh, M.; Mariashibu, T.; Manickavasagam, M.; Selvaraj, N.; Ganapathi, A. Chitosan enhances withanolides production in adventitious root cultures of Withania somnifera (L.) Dunal. Ind. Crops Prod. 2012, 37, 124–129. [Google Scholar] [CrossRef]
- Praveen, N.; Murthy, H. Production of withanolide-A from adventitious root cultures of Withania somnifera. Acta Physiol. Plant. 2010, 32, 1017–1022. [Google Scholar] [CrossRef]
- Sivanandhan, G.; Mariashibu, T.S.; Arun, M.; Rajesh, M.; Kasthurirengan, S.; Selvaraj, N.; Ganapathi, A. The effect of polyamines on the efficiency of multiplication and rooting of Withania somnifera (L.) Dunal and content of some withanolides in obtained plants. Acta Physiol. Plant. 2011, 33, 2279–2288. [Google Scholar] [CrossRef]
- Li, C.; Wang, M. Application of hairy root culture for bioactive compounds production in medicinal plants. Curr. Pharm. Biotechnol. 2021, 22, 592–608. [Google Scholar] [CrossRef] [PubMed]
- Bagal, D.; Chowdhary, A.A.; Mehrotra, S.; Mishra, S.; Rathore, S.; Srivastava, V. Metabolic engineering in hairy roots: An outlook on production of plant secondary metabolites. Plant Physiol. Biochem. 2023, 201, 107847. [Google Scholar] [CrossRef]
- Murthy, H.N.; Dijkstra, C.; Anthony, P.; White, D.A.; Davey, M.R.; Power, J.B.; Hahn, E.J.; Paek, K.Y. Establishment of Withania somnifera hairy root cultures for the production of withanolide A. J. Integr. Plant Biol. 2008, 50, 975–981. [Google Scholar] [CrossRef]
- Halder, T.; Ghosh, B. Withania somnifera (L.) Dunal: Enhanced production of withanolides and phenolic acids from hairy root culture after application of elicitors. J. Biotechnol. 2024, 388, 59–71. [Google Scholar]
- Saxena, P.; Ahlawat, S.; Ali, A.; Khan, S.; Abdin, M.Z. Gene expression analysis of the withanolide biosynthetic pathway in hairy root cultures of Withania somnifera elicited with methyl jasmonate and the fungus Piriformospora indica. Symbiosis 2017, 71, 143–154. [Google Scholar] [CrossRef]
- Varghese, S.; Keshavachandran, R.; Baby, B.; Nazeem, P.A. Genetic transformation in ashwagandha (Withania somnifera (L.) Dunal) for hairy root induction and enhancement of secondary metabolites. J. Trop. Agric. 2014, 52, 47–53. [Google Scholar]
- Murthy, H.; Praveen, N. Carbon sources and medium pH affects the growth of Withania somnifera (L.) Dunal adventitious roots and withanolide A production. Nat. Prod. Res. 2013, 27, 185–189. [Google Scholar] [PubMed]
- Sivanandhan, G.; Arun, M.; Mayavan, S.; Rajesh, M.; Jeyaraj, M.; Dev, G.K.; Manickavasagam, M.; Selvaraj, N.; Ganapathi, A. Optimization of elicitation conditions with methyl jasmonate and salicylic acid to improve the productivity of withanolides in the adventitious root culture of Withania somnifera (L.) Dunal. Appl. Biochem. Biotechnol. 2012, 168, 681–696. [Google Scholar] [CrossRef] [PubMed]
- Sivanandhan, G.; Arun, M.; Mayavan, S.; Rajesh, M.; Jeyaraj, M.; Dev, G.K.; Manickavasagam, M.; Selvaraj, N.; Ganapathi, A. Hairy root cultures—A versatile tool with multiple applications. Front. Plant Sci. 2020, 11, 33. [Google Scholar]
- Srivastava, S.; Srivastava, A.K. Hairy root culture for mass-production of high-value secondary metabolites. Crit. Rev. Biotechnol. 2007, 27, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Ghazal, B.; Fareed, A.; Ahmad, N.; Azra; Salmen, S.H.; Ansari, M.J.; Zeng, Y.; Farid, A.; Jenks, M.A.; Qayyum, A. Elicitors directed in vitro growth and production of stevioside and other secondary metabolites in Stevia rebaudiana (Bertoni) Bertoni. Sci. Rep. 2024, 14, 14714. [Google Scholar] [CrossRef] [PubMed]
- Valluri, J.V. Bioreactor production of secondary metabolites from cell cultures of periwinkle and sandalwood. Protoc. Vitr. Cult. Second. Metab. Anal. Aromat. Med. Plants 2009, 547, 325–335. [Google Scholar]
- Halder, M.; Sarkar, S.; Jha, S. Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng. Life Sci. 2019, 19, 880–895. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Liu, X.; Baldwin, I.T. Using Synthetic Biology to Understand the Function of Plant Specialized Metabolites. Annu. Rev. Plant Biol. 2024, 75, 629–653. [Google Scholar] [CrossRef]
- García Martín, H.; Mazurenko, S.; Zhao, H. Special Issue on Artificial Intelligence for Synthetic Biology. ACS Synth. Biol. 2024, 13, 408–410. [Google Scholar] [CrossRef]
- Smit, S.J.; Lichman, B.R. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat. Prod. Rep. 2022, 39, 1465–1482. [Google Scholar] [CrossRef] [PubMed]
- Polturak, G.; Liu, Z.; Osbourn, A. New and emerging concepts in the evolution and function of plant biosynthetic gene clusters. Curr. Opin. Green Sustain. Chem. 2022, 33, 100568. [Google Scholar] [CrossRef]
- Siddiqui, M.S.; Thodey, K.; Trenchard, I.; Smolke, C.D. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res. 2012, 12, 144–170. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Hwang, S.; Kim, W.; Kim, J.H.; Palsson, B.O.; Cho, B.-K. CRISPR-aided genome engineering for secondary metabolite biosynthesis in Streptomyces. J. Ind. Microbiol. Biotechnol. 2024, 51, kuae009. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Pal, S.; Shanker, K.; Chanotiya, C.S.; Gupta, M.M.; Dwivedi, U.N.; Shasany, A.K. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis. Physiol. Plant. 2014, 152, 617–633. [Google Scholar] [CrossRef] [PubMed]
- Shilpashree, H.B.; Narayanan, A.K.; Kumar, S.R.; Barvkar, V.; Nagegowda, D.A. The cytochrome P450 enzyme WsCYP71B35 from Withania somnifera has a role in withanolides biosynthesis and defence against bacteria. Physiol. Plant. 2024, 176, e14180. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, S.R.; Dwivedi, V.; Rai, A.; Pal, S.; Shasany, A.K.; Nagegowda, D.A. A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways. New Phytol. 2017, 215, 1115–1131. [Google Scholar] [CrossRef]
- Sharma, A.; Rather, G.A.; Misra, P.; Dhar, M.K.; Lattoo, S.K. Jasmonate responsive transcription factor WsMYC2 regulates the biosynthesis of triterpenoid withanolides and phytosterol via key pathway genes in Withania somnifera (L.) Dunal. Plant Mol. Biol. 2019, 100, 543–560. [Google Scholar] [CrossRef] [PubMed]
- Shilpashree, H.B.; Sudharshan, S.J.; Shasany, A.K.; Nagegowda, D.A. Molecular characterization of three CYP450 genes reveals their role in withanolides formation and defense in Withania somnifera, the Indian Ginseng. Sci. Rep. 2022, 12, 1602. [Google Scholar] [CrossRef]
- Pal, S.; Rastogi, S.; Nagegowda, D.A.; Gupta, M.M.; Shasany, A.K.; Chanotiya, C.S. RNAi of sterol methyl transferase1 reveals its direct role in diverting intermediates towards withanolide/phytosterol biosynthesis in Withania somnifera. Plant Cell Physiol. 2019, 60, 672–686. [Google Scholar] [CrossRef]
- Nazeri, A.; Niazi, A.; Afsharifar, A.; Taghavi, S.M.; Moghadam, A.; Aram, F. Heterologous production of hyaluronic acid in Nicotiana tabacum hairy roots expressing a human hyaluronan synthase 2. Sci. Rep. 2021, 11, 17966. [Google Scholar] [CrossRef] [PubMed]
- Dudley, Q.M.; Karim, A.S.; Jewett, M.C. Cell-free metabolic engineering: Biomanufacturing beyond the cell. Biotechnol. J. 2015, 10, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Hodgman, C.E.; Jewett, M.C. Cell-free synthetic biology: Thinking outside the cell. Metab. Eng. 2012, 14, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Valliere, M.A.; Korman, T.P.; Woodall, N.B.; Khitrov, G.A.; Taylor, R.E.; Baker, D.; Bowie, J.U. A cell-free platform for the prenylation of natural products and application to cannabinoid production. Nat. Commun. 2019, 10, 565. [Google Scholar] [CrossRef] [PubMed]
- Cravens, A.; Payne, J.; Smolke, C.D. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat. Commun. 2019, 10, 2142. [Google Scholar] [CrossRef]
- Bhat, W.W.; Lattoo, S.K.; Razdan, S.; Dhar, N.; Rana, S.; Dhar, R.S.; Khan, S.; Vishwakarma, R.A. Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene 2012, 499, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, C.; Zhang, Y. Engineering of Saccharomyces cerevisiae for 24-methylene-cholesterol production. Biomolecules 2021, 11, 1710. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Bharadvaja, N. Treasuring the computational approach in medicinal plant research. Prog. Biophys. Mol. Biol. 2021, 164, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Lawson, C.E.; Martí, J.M.; Radivojevic, T.; Jonnalagadda, S.V.R.; Gentz, R.; Hillson, N.J.; Peisert, S.; Kim, J.; Simmons, B.A.; Petzold, C.J.; et al. Machine learning for metabolic engineering: A review. Metab. Eng. 2021, 63, 34–60. [Google Scholar] [CrossRef]
- Selwal, N.; Rahayu, F.; Herwati, A.; Latifah, E.; Supriyono; Suhara, C.; Suastika, I.B.K.; Mahayu, W.M.; Wani, A.K. Enhancing secondary metabolite production in plants: Exploring traditional and modern strategies. J. Agric. Food Res. 2023, 14, 100702. [Google Scholar] [CrossRef]
- Oyetunde, T.; Bao, F.S.; Chen, J.-W.; Martin, H.G.; Tang, Y.J. Leveraging knowledge engineering and machine learning for microbial bio-manufacturing. Biotechnol. Adv. 2018, 36, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Hesami, M.; Jones, A.M.P. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Appl. Microbiol. Biotechnol. 2020, 104, 9449–9485. [Google Scholar] [CrossRef]
- Kim, G.B.; Kim, W.J.; Kim, H.U.; Lee, S.Y. Machine learning applications in systems metabolic engineering. Curr. Opin. Biotechnol. 2020, 64, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2022, 23, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; King, R.D.; Altmann, T.; Fiehn, O. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics 2002, 18, S241–S248. [Google Scholar] [CrossRef] [PubMed]
- García-Granados, R.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. Metabolic engineering and synthetic biology: Synergies, future, and challenges. Front. Bioeng. Biotechnol. 2019, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- Cuperlovic-Culf, M. Machine learning methods for analysis of metabolic data and metabolic pathway modeling. Metabolites 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.M.; Wang, P.; Fan, P.; Leong, B.; Schenck, C.A.; Lloyd, J.P.; Lehti-Shiu, M.D.; Last, R.L.; Pichersky, E.; Shiu, S.-H. Robust predictions of specialized metabolism genes through machine learning. Proc. Natl. Acad. Sci. USA 2019, 116, 2344–2353. [Google Scholar] [CrossRef]
- Shah, H.A.; Liu, J.; Yang, Z.; Zhang, X.; Feng, J. DeepRF: A deep learning method for predicting metabolic pathways in organisms based on annotated genomes. Comput. Biol. Med. 2022, 47, 105756. [Google Scholar] [CrossRef]
- Costello, Z.; Martin, H.G. A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data. NPJ Syst. Biol. Appl. 2018, 4, 19. [Google Scholar] [CrossRef]
- Pepe, M.; Hesami, M.; Small, F.; Jones, A.M.P. Comparative analysis of machine learning and evolutionary optimization algorithms for precision micropropagation of Cannabis sativa: Prediction and validation of in vitro shoot growth and development based on the optimization of light and carbohydrate sources. Front. Plant Sci. 2021, 12, 757869. [Google Scholar]
- Jafari, M.; Daneshvar, M.H. Prediction and optimization of indirect shoot regeneration of Passiflora caerulea using machine learning and optimization algorithms. BMC Biotechnol. 2023, 23, 27. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Kwon, M.; Kim, J.-Y. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. Front. Plant Sci. 2024, 15, 1279738. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.A.; Roberts, S.C. Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Curr. Opin. Biotechnol. 2014, 26, 174–182. [Google Scholar] [CrossRef]
- Permyakova, N.V.; Sidorchuk, Y.V.; Marenkova, T.V.; Khozeeva, S.A.; Kuznetsov, V.V.; Zagorskaya, A.A.; Rozov, S.M.; Deineko, E.V. CRISPR/Cas9-mediated gfp gene inactivation in Arabidopsis suspension cells. Mol. Biol. Rep. 2019, 46, 5735–5743. [Google Scholar] [CrossRef] [PubMed]
- Mercx, S.; Smargiasso, N.; Chaumont, F.; De Pauw, E.; Boutry, M.; Navarre, C. Inactivation of the β (1, 2)-xylosyltransferase and the α (1, 3)-fucosyltransferase genes in Nicotiana tabacum BY-2 cells by a multiplex CRISPR/Cas9 strategy results in glycoproteins without plant-specific glycans. Front. Plant Sci. 2017, 8, 403. [Google Scholar] [CrossRef]
- Gao, C. Genome engineering for crop improvement and future agriculture. Cell 2021, 184, 1621–1635. [Google Scholar] [CrossRef]
- Ordon, J.; Gantner, J.; Kemna, J.; Schwalgun, L.; Reschke, M.; Streubel, J.; Boch, J.; Stuttmann, J. Generation of chromosomal deletions in dicotyledonous plants employing a user-friendly genome editing toolkit. Plant J. 2017, 89, 155–168. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Q.; Xiao, L.; Wang, Y.; Feng, J.; Bu, Q.; Xiao, Y.; Hao, K.; Guo, M.; Chen, W.; et al. Multiplexed CRISPR/Cas9-mediated knockout of laccase genes in Salvia miltiorrhiza revealed their roles in growth, development, and metabolism. Front. Plant Sci. 2021, 12, 647768. [Google Scholar] [CrossRef]
- Singh, N.; Singh, D.; Dwivedi, S.; Prasad, V.; Pandey, N.; Trivedi, P.K. Involvement of MYB family transcription factors, WsMYBL1 and WsMYBL2, in withanolide biosynthesis in Withania somnifera, a medicinal plant. Plant Cell Tissue Organ Cult. (PCTOC) 2024, 156, 60. [Google Scholar] [CrossRef]
- Yu, N.; Nützmann, H.-W.; MacDonald, J.T.; Moore, B.; Field, B.; Berriri, S.; Trick, M.; Rosser, S.J.; Kumar, S.V.; Freemont, P.S.; et al. Delineation of metabolic gene clusters in plant genomes by chromatin signatures. Nucleic Acids Res. 2016, 44, 2255–2265. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Zhang, Q.; Jiang, C.; Zheng, Y.; Zuo, Y.; Qin, J.; Liao, Z.; Deng, H. Development of Atropa belladonna L. plants with high-yield hyoscyamine and without its derivatives using the CRISPR/Cas9 system. Int. J. Mol. Sci. 2021, 22, 1731. [Google Scholar] [CrossRef] [PubMed]
Explant | Culture Type | Type of Elicitor | Metabolite Content | Reference |
---|---|---|---|---|
Leaf | Callus culture | Chitosan at 100 mg/L | 27-OH-withanolide-A (52.0 µg/mL, 160%) | [33] |
Leaf | Callus culture | UV rays for 60 and 90 min | Withanolide-A (241.1 µg/mL, 99% increase) and 27-OH-withanolide-B (124.8 µg/mL, 40% increase) | [33] |
Root | Cell suspension culture | Mycelial extract (1% w/v) and culture filtrate (5% v/v) of the endophytic fungus Aspergillus terreus 2aWF | Withanolide A (12.20 ± 0.52 µg/g FCB) at 6 h. Withanolide A (10.29 µg/g FCB withanolide A) at 24 h. | [34] |
Shoot | In vitro shoot culture | MS basal medium supplemented with BAP (4.44 µM), 3% sucrose, and 0.8% agar | Withanolide A (129.18 ± 0.33) and withaferin A (968.6 ± 0.45) | [34] |
Leaf | Cell suspension culture | Organic additive, seaweed extracts (Gracilaria edulis) | Withanolide A (7.21 mg/g), Withaferin A (4.23 mg/g) | [16] |
Leaf | Adventitious root cultures | Salicylic acid at 150 μM | 64.65 mg g−l DW withanolide A (48-fold), 33.74 mg g−l DW withanolide B (29-fold), 17.47 mg g−l DW withaferin A (20-fold), 42.88 mg g−l DW withanone (37-fold), | [35] |
Leaf | Hairy root cultures | 4% sucrose | Withanolide A production (13.28 mg/g DW) | [36] |
Nodal explant | In vitro shoot culture | Polyamine at 20 mg/L | 6.5 times (leaf), 3.3 times (root) | [37] |
Technique Utilized | Gene/Enzyme Involved | Purpose of Modification | Experimental Details | Outcomes/Benefits | References |
---|---|---|---|---|---|
Heterologous | CYP749B1; CYP76; CYP71B10 | Enhance withanolide production | Enhanced expression upon MeJ treatment and VIGS-based overexpression/silencing were conducted in W. somnifera and transgenic tobacco. | WsHMGR2 overexpression increased cycloartenol, sitosterol, stigmasterol, and campesterol, while WsDXR2 transgenic lines reduced cholesterol, indicating the MVA pathway’s preference for withanolide production. | [57] |
Heterologous | CYP71B35 | Enhance withanolide production | WsCYP71B35, induced by MeJ, catalyzes withaferin A, withanolide A, withanolide B, and withanoside IV in yeast microsomes. | Overexpression of WsCYP71B35 in W. somnifera and transgenic tobacco increased withanolide levels and resistance to P. syringae, confirming its role in metabolite production and plant defense. | [58] |
Microbial heterologous (E. coli) | Squalene Synthase (WsSQS) | Enhance withanolide biosynthesis | Recombinant WsSQS produced in E. coli; highest expression in leaves; promoter analysis revealed cis-acting elements; upregulation by SA, MeJ, and 2,4-D | High expression in leaves; insights into regulatory elements and spatial/temporal regulation of withanolide biosynthesis | [59] |
Microbial heterologous (Yeast) | ERG4 and ERG5 enzymes replaced with DHCR7 | Production of 24-methylene-cholesterol, a precursor for physalin and withanolide | Flask-shake culture; evaluated three DHCR7 versions from various organisms; XlDHCR7 showed the best efficiency | Efficient methylene-cholesterol production; viable platform for further research into downstream enzymes | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, Z.; Shareen; Ganie, I.B.; Firdaus, F.; Ramakrishnan, M.; Shahzad, A.; Ding, Y. Enhancing Withanolide Production in the Withania Species: Advances in In Vitro Culture and Synthetic Biology Approaches. Plants 2024, 13, 2171. https://doi.org/10.3390/plants13152171
Ahmad Z, Shareen, Ganie IB, Firdaus F, Ramakrishnan M, Shahzad A, Ding Y. Enhancing Withanolide Production in the Withania Species: Advances in In Vitro Culture and Synthetic Biology Approaches. Plants. 2024; 13(15):2171. https://doi.org/10.3390/plants13152171
Chicago/Turabian StyleAhmad, Zishan, Shareen, Irfan Bashir Ganie, Fatima Firdaus, Muthusamy Ramakrishnan, Anwar Shahzad, and Yulong Ding. 2024. "Enhancing Withanolide Production in the Withania Species: Advances in In Vitro Culture and Synthetic Biology Approaches" Plants 13, no. 15: 2171. https://doi.org/10.3390/plants13152171
APA StyleAhmad, Z., Shareen, Ganie, I. B., Firdaus, F., Ramakrishnan, M., Shahzad, A., & Ding, Y. (2024). Enhancing Withanolide Production in the Withania Species: Advances in In Vitro Culture and Synthetic Biology Approaches. Plants, 13(15), 2171. https://doi.org/10.3390/plants13152171