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Abstract: Soil salinity is a major abiotic stress limiting crop production globally. Oat (Avena sativa) is
an annual cereal with a strong salt tolerance, a high yield, and nutritional quality, although the mech-
anisms underlying its salt stress response remain largely unknown. We examined the physiological
and transcriptomic responses of A. sativa seedlings to salt stress in tolerant cultivar Qingyongjiu 195
and sensitive cultivar 709. Under salt stress, Qingyongjiu 195 maintained a higher photosynthetic
efficiency, antioxidant enzymes activity, and leaf K+ accumulation but a lower Na+ uptake than 709.
RNA-seq revealed 6616 differentially expressed genes (DEGs), including 4265 up- and 2351 down-
regulated. These were enriched in pathways like plant–pathogen interaction, phenylpropanoid
biosynthesis, and MAPK signaling. We specifically highlight DEGs involved in photosynthesis (chlG,
CP47 psbB, COX2, LHCB) and antioxidants (trxA, GroES). Qingyongjiu 195 also appeared to enhance
K+ uptake via KAT1 and AKT2 and sequester Na+ in vacuoles via NHX2. Additionally, HKT restricted
Na+ while promoting K+ transport to shoots, maintaining K+/Na+. The expression levels of CAX,
ACA, CML, CaM, and CDPK in Qingyongjiu 195 were higher than those in 709. Oats regulated Ca2+

concentration through CAX and ACA after salt stress, decoded Ca2+ signals through CML, and
then transferred Ca2+ signals to downstream receptors through the Ca2+ sensors CaM and CDPK,
thereby activating K+/Na+ transporters, such as SOS1 and NHX, etc. Our results shed light on plant
salt stress response mechanisms and provide transcriptomic resources for molecular breeding in
improving salt tolerance in oats.

Keywords: oat; salt stress; transcriptome; molecular mechanism; DEGs

1. Introduction

Soil salinity is a major abiotic stress limiting worldwide crop production [1]. Approx-
imately 7% of the total land area (1 billion hectares) and 20% of the irrigated farmland
in arid and semi-arid regions have been affected by salt, and this number continues to
rise [2]. High salinity inhibits plant growth and development. Excessive Na+ absorption
disrupts the cellular ionic balance, increasing reactive oxygen species (ROS) and secondary
toxicity [3]. Salt stress also indirectly inhibits leaf photosynthesis, damages cell membranes
and antioxidant defenses, and leads to the accumulation of organic osmolytes like proline
and soluble sugars that mitigate stress [4]. Over time, plants have developed strategies for
resisting salt damage. Exploiting saline-alkaline grasslands to screen for salt-tolerant forage
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varieties and elucidating their physiological and molecular stress resistance mechanisms
can provide germplasm resources for breeding programs [5].

Oat (Avena sativa) is an annual cereal crop in the Poaceae family and an important food
source in fragile ecological areas [6]. Oat production is concentrated in cold, high-altitude
regions of North and Northwest China [7]. Oat possesses some saline-alkali tolerance,
enabling cultivation across diverse soil types in semi-arid zones [8]. Recent studies on oat
salt tolerance have focused on physiological and molecular responses during germination,
seedling growth, and development. With increasing salt stress, the oat seed germination
rate, germination potential, and vigor declined [9,10]. Leaf photosynthetic pigments,
net photosynthesis, intercellular CO2, transpiration, stomatal conductance, and other
photosynthetic indicators generally decreased, with greater declines in salt-sensitive versus
tolerant cultivars [11]. Numerous studies found that antioxidant enzymes and osmolytes
were higher in tolerant cultivars, and low salinity had little effect on antioxidants [12–14].
Under salt stress, oat seedlings selectively absorbed and transported K+ and Na+, with
roots storing more Na+ and stems accumulating K+ [15]. The calcium signaling pathway is
linked to the activation of K+/Na+ transporters, such as SOS1 and NHX. Due to the large
number of Ca2+ transport and binding proteins involved in calcium signal transduction
and the complex interaction between these proteins, there are many unsolved mysteries in
the calcium signal network [16]. The first step in solving these problems is to identify the
genes involved.

High-throughput transcriptome sequencing now enables the identification and screen-
ing of key transcripts and the correlation of physiological processes underlying plant salt
stress responses. For example, RNA-seq revealed differentially expressed genes involved
in oxidative stress and redox reactions in rice [17] and bluegrass [18], calcium signaling,
oxidative phosphorylation, secondary metabolite synthesis, ROS clearance, and ion home-
ostasis in wheat [19], Leymus mollis [20], and maize [21] under salt stress, but there may
be relatively little research specific to oats. With recent advances in oat genome sequenc-
ing [22], RNA-seq has become a valuable tool for elucidating the molecular mechanisms of
salt tolerance in this crop.

Therefore, in this study, we aimed to elucidate the mechanisms underlying oat re-
sponses to salt stress using transcriptomic approaches. The results revealed physiological
and molecular responses of different salt-resistant oat varieties to salt stress, with a focus on
DEGs related to photosynthesis, antioxidant systems, and ion transport. The transcriptome
expression profiles of oat under salt stress obtained in this study provide important clues
for further research on the mechanism of salt tolerance in oat. Moreover, the differentially
expressed genes under salt stress identified in this study may be highly beneficial for
identifying suitable genes for biotechnological manipulation to improve salt tolerance
in oat.

2. Results and Analysis
2.1. Physiological Changes under Salt Stress

The salt-tolerant Qingyongjiu 195 exhibited a significantly higher net photosynthetic
rate than the salt-sensitive 709 under normal conditions (Figure 1A). Salt stress reduced
the net photosynthetic rate in both cultivars, but the decline was greater in 709 than in
Qingyongjiu 195, especially at 24 h (Figure 1A). After 24 and 72 h of salt stress, the net
photosynthetic rate in Qingyongjiu 195 decreased by 5.34% and 40.74%, while that in
709 decreased by 31.03% and 47.58%, respectively (Figure 1A). Salt stress also decreased
the leaf chlorophyll content in both cultivars, but the decline was less pronounced in
Qingyongjiu 195 than in 709 (Figure 1B). At 24 and 72 h of stress, the respective leaf
chlorophyll content of Qingyongjiu 195 was still 15.8% and 12.1% higher than that of 709
(Figure 1B).
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Figure 1. Physiological changes in oat seedlings treated with 0.9% NaCl at different times. (A) Net 
photosynthesis rate; (B) Chlorophyll content; (C) POD activity; (D) SOD activity; (E) CAT activity; 
(F) Leaf K+ content; (G) Root K+ content; (H) Leaf Na+ content; (I) Root Na+ content. Note: Different 
lowercase letters indicate significant differences among different times and between two varieties at 
p < 0.05. This applies to all subsequent figures. 
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a >84% Q30 ratio and 48.32–49.68% GC content, indicating high-quality sequencing 
suitable for downstream analysis. 
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Figure 1. Physiological changes in oat seedlings treated with 0.9% NaCl at different times. (A) Net
photosynthesis rate; (B) Chlorophyll content; (C) POD activity; (D) SOD activity; (E) CAT activity;
(F) Leaf K+ content; (G) Root K+ content; (H) Leaf Na+ content; (I) Root Na+ content. Note: Different
lowercase letters indicate significant differences among different times and between two varieties at
p < 0.05. This applies to all subsequent figures.
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Prolonged salt stress increased the activities of antioxidant enzymes, which were
generally more significant in Qingyongjiu 195 than in 709. Peroxidase (POD) activity first
increased then decreased over time, peaking at 6 h after stress with 23.11% and 16.76%
increases over 0 h in Qingyongjiu 195 and 709, respectively. No significant differences
occurred among 0, 24, and 72 h (Figure 1C). The superoxide dismutase (SOD) activity
peaked at 24 h after stress, increasing by 62.43% in Qingyongjiu 195 and by 44.92% in 709
over 0 h (Figure 1D). The catalase (CAT) activity increased over time and was higher in
Qingyongjiu 195 than in 709. At 6, 24, and 72 h of salt stress, the CAT activity increased
by 45.10%, 161.52%, and 207.67%, respectively, over 0 h in Qingyongjiu 195 and by 5.19%,
107.58%, and 111.31% in 709 (Figure 1E).

The leaf and root K+ content decreased while the Na+ content increased over time
in both cultivars under salt stress. The leaf K+ was higher in Qingyongjiu 195 than in
709 at 0, 6, 24, and 72 h, by 23.3%, 12.9%, 54.2%, and 38%, respectively (Figure 1F). No
significant difference occurred in the root K+ between the cultivars (Figure 1G). The leaf
Na+ was lower in Qingyongjiu 195 than in 709 at 6, 24, and 72 h, by 53.0%, 24.2%, and
37.7%, respectively (Figure 1H). The root Na+ was also lower in Qingyongjiu 195 than in
709, by 48.6% and 11.2% at 24 and 72 h, respectively (Figure 1I).

2.2. Quality Analysis of De Novo Assembly and Sequencing

Transcriptomic sequencing generated 251.57 Gb of data across salt-tolerant Qingy-
ongjiu 195 and salt-sensitive 709 after 0, 6, 24, and 72 h of salt treatment (Table S2). The total
raw reads per sample ranged between 64.27 and 9101 Mb. After filtering, 55.67–76.04 Mb
clean reads were obtained per sample. All samples had >8.35 Gb clean bases with a >84%
Q30 ratio and 48.32–49.68% GC content, indicating high-quality sequencing suitable for
downstream analysis.

2.3. Unigene Functional Annotation and Classification

Unigenes were compared against NR (Non-Redundant Protein Sequence Database),
NT (Nucleotide Sequence Database), SwissProt, KEGG (Kyoto Encyclopedia of Genes
and Genomes), KOG (clusters of euKaryotic Orthologous Groups), Pfam (Protein fam-
ily database), and GO (Gene Ontology) databases for annotation (Table S3). In total,
209,226 unigenes were annotated, with 142,095 (67.91%) in NR, 126,868 (60.64%) in NT,
102,633 (49.05%) in SwissProt, 104,683 (50.03%) in KEGG, 111,240 (53.17%) in KOG, 105,715
(50.53%) in Pfam, and 74,687 (35.70%) in GO. Of these, 46,305 unigenes (22.13%) were co-
annotated in all databases, while 154,328 (73.76%) were annotated in at least one database.
NR annotation showed the highest homology to Aegilops tauschii subsp. tauschii (32.71%),
followed by Brachypodium distachyon (23.03%), Hordeum vulgare (11.69%), Aegilops tauschii
(6.32%), and Triticum urartu (5.79%) (Figure S1).

2.4. Analysis of Differentially Expressed Genes (DEGs)

Figure S2 showed that salt stress altered the expression of many genes in both cultivars,
with more upregulated genes in Qingyongjiu 195 than in 709 at 6 and 72 h. The number
of up-regulated DEGs was 23,858 in 195_0 vs. 709_0, 16,834 in 195_6 vs. 709_6, 24,980 in
195_24 vs. 709_24, and 15,259 in 195_72 vs. 709_72. The downregulated genes numbered
13,012 in 195_0 vs. 709_0, 17,479 in 195_6 vs. 709_6, 21,423 in 195_24 vs. 709_24, and 12,946
in 195_72 vs. 709_72.

We compared the gene expression profiles of the two cultivars at four time points:
195_0 vs. 709_0, 195_6 vs. 709_6, 195_24 vs. 709_24, and 195_72 vs. 709_72. We identified
4265 overlapping upregulated genes (Figure 2A) and 2351 overlapping downregulated
genes (Figure 2B) among the four comparison groups.
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to stimuli, with 996, 872, 342, and 410 enriched genes, respectively. In the cellular 
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function category, the genes were mostly enriched in binding, catalytic activity, and trans-
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Figure 2. Venn diagram of DEGs between Qingyongjiu 195 and 709 at different salt stress times:
(A) overlapping upregulated DEGs in four comparison groups: 195_0 vs. 709_0 (blue), 195_6 vs. 709_6
(yellow), 195_24 vs. 709_24 (green), and 195_72 vs. 709_72 (pink); (B) overlapping downregulated
DEGs in these four comparison groups. 195_0, 195_6, 195_24, and 195_72 represent the salt-tolerant
variety Qingyongjiu 195 treated with 0.9% NaCl at 0, 6, 24, and 72 h, respectively. 709_0, 709_6,
709_24, and 709_72 represent the salt-sensitive variety 709 treated with 0.9% NaCl at 0, 6, 24, and 72 h,
respectively. For example, 195_6-vs-709_6 represents the comparison of the number of DEGs between
Qingyongjiu 195 and 709 treated with 0.9% NaCl for 6 h. This labeling applies to subsequent figures.

2.5. GO Analysis of DEGs

We analyzed the overlapping differentially expressed genes between Qingyongjiu 195
and 709 under the same salt stress duration. Figure 3 shows that 6616 genes from the four
comparison groups (i.e., 195_0 vs. 709_0, 195_6 vs. 709_6, 195_24 vs. 709_24, and 195_72 vs.
709_72) were enriched in 50 GO secondary categories. These genes were mainly involved
in cellular processes, metabolic processes, biological regulation, and responses to stimuli,
with 996, 872, 342, and 410 enriched genes, respectively. In the cellular component category,
the genes were predominantly enriched in the cell, cell part, and membrane, with 1089,
1081, and 788 enriched genes, respectively. In the molecular function category, the genes
were mostly enriched in binding, catalytic activity, and transporter activity, with 1187, 1127,
and 122 enriched genes, respectively.

2.6. KEGG Enrichment of DEGs

KEGG enrichment analysis was performed on the differentially expressed genes
(DEGs) of two oat varieties subjected to salt stress for the same duration. Four compari-
son groups, 195_0 vs. 709_0 (Figure 4A), 195_6 vs. 709_6 (Figure 4B), 195_24 vs. 709_24
(Figure 4C), and 195_72 vs. 709_72 (Figure 4D), were all enriched in 132 metabolic pathways.
Plant–pathogen interaction, phenylpropanoid biosynthesis, cyanoamino acid metabolism,
and starch and sucrose metabolism were significantly enriched in each comparison group.
In addition, we observed that linoleic acid metabolism pathways, MAPK signaling path-
ways, and plant hormone signal transduction pathways were significantly enriched at 0 h
(Figure 4A). At 6 h, linoleic acid metabolism pathways, the MAPK signaling pathway, and
photosynthesis–antenna proteins were enriched. At 24 h, the MAPK signaling pathway,
plant hormone signal transduction pathways, and photosynthesis–antenna proteins were
significantly enriched. At 72 h, linoleic acid metabolism was enriched.
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three main GO categories: biological process, cellular component, and molecular function.

2.7. Analysis of DEGs in Oat under Salt Stress
2.7.1. Analysis of DEGs Related to Photosynthesis

Since the photosynthesis of higher plants is a photosynthetic electron transport system
composed of chlorophyll, photosystem II (PS II), photosystem I (PS I), cytochrome, ATP
synthase, and carbon fixation, the expression of differentially expressed genes (DEGs)
related to these components in Oat treated with 0.9% NaCl was analyzed. A total of
84 DEGs were identified in Qingyongjiu 195 at the three time points of stress, among which
43, 12, 1, 4, 1, and 3 genes related to chlorophyll, PS II, PS I, cytochrome, ATP synthase, and
carbon fixation were upregulated, respectively; at the same time, there were eight, seven,
two, and three downregulated genes related to chlorophyll, PS II, PS I, and cytochrome,
respectively (Figure 5A). Most of the DEGs related to chlorophyll, PS II, and cytochrome,
as well as all the DEGs related to ATP synthase and carbon fixation, were upregulated,
indicating that these genes were responsible for the normal photosynthesis in Qingyongjiu
195 under salt stress.
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Figure 4. Summary statistics for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment of differential expression genes. The vertical axis shows the pathway, and the horizontal
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Figure 5. Number of DEGs related to photosynthesis in Qingyongjiu 195 (A) and 709 (B), Venn
diagrams of DEGs in Qingyongjiu 195 and 709 (C), and cluster heat map of DEGs (D). The chloro-
phyll biosynthesis gene chlG (CL11933.Contig1_All), photosynthetic electron transport-associated
gene in PS I (CL2455.Contig15_All), chloroplast-associated gene (CL4322.Contig2_All), photosys-
tem II CP47 psbB chlorophyll protein gene (CL9474.Contig44_All), COX2 cytochrome c oxidase
gene (Unigene25470_All), and chlorophyll a-b binding protein LHCB genes (CL73.Contig27_All,
Unigene33971_All, Unigene39942_All).

In contrast, 709 had 58 DEGs at the three time points of stress, among which eight, four,
two, and one genes related to chlorophyll, PS II, PS I, and cytochrome were upregulated,
respectively; at the same time, there were 14, 12, 1, 12, and 4 downregulated genes related to
chlorophyll, PS II, PS I, cytochrome, and ATP synthase, respectively (Figure 5B). Most of the
DEGs related to chlorophyll, PS II, PS I, and cytochrome and all of the DEGs related to ATP
synthase were downregulated, indicating that the expression of the photosynthesis-related
genes was inhibited in 709 under salt stress.

The Venn diagram of DEGs at the three time points of salt stress in Qingyongjiu 195 and
709 revealed that eight genes were differentially expressed between the two varieties (Figure 5C).
These genes included the chlorophyll biosynthesis gene chlG (CL11933.Contig1_All), a pho-
tosynthetic electron transport-associated gene in PS I (CL2455.Contig15_All), a chloroplast-
associated gene (CL4322.Contig2_All), the photosystem II CP47 psbB chlorophyll protein
gene (CL9474.Contig44_All), the COX2 cytochrome c oxidase gene (Unigene25470_All), and
the chlorophyll a-b binding protein LHCB genes (CL73.Contig27_All, Unigene33971_All,
and Unigene39942_All).

Theifferrential gene cluster heat map (Figure 5D) showed that the expression lev-
els of these genes varied at different periods under salt stress, but the expression trend
was similar. It is noteworthy that the expression of the cytochrome c oxidase COX2
gene (Unigene25470_All) was completely different between the two varieties. COX2 was
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upregulated at the three time points in Qingyongjiu 195 but downregulated in 709. Ad-
ditionally, the expression of the photosynthetic electron transport-associated gene in PS I,
CL2455.Contig15_All, was much higher in Qingyongjiu 195 than in 709 6 h, 24 h, and 72 h
after salt treatment.

2.7.2. Analysis of DEGs Associated with Reactive Oxygen Species (ROS) Scavenging Systems

The reactive oxygen species (ROS) clearance system in higher plants is primarily
composed of the ascorbate-glutathione (AsA-GSH) cycle, glutathione peroxidase (GPX)
pathway, catalase (CAT) pathway, and peroxidase/thioredoxin (PrxR/Trx) pathway. The
differentially expressed genes (DEGs) related to these pathways were analyzed in Qingy-
ongjiu 195 and 709 after salt stress. As shown in Figure 6A,B, a total of 69 DEGs related
to the ROS clearance system were identified in Qingyongjiu 195 after salt stress for 6, 24,
and 72 h, with 8 thioredoxin (trxA) genes upregulated and 2 downregulated, 22 peroxidase
coding genes (POD) upregulated and 15 downregulated, 3 superoxide dismutase (SOD)
genes downregulated, and ascorbate peroxidase (APX), glutathione S-transferase (GST),
GPX, and CAT genes upregulated. These findings suggest that these genes play a crucial
role in the salt tolerance of Qingyongjiu 195. In contrast, a total of 42 DEGs related to the
ROS clearance system were identified in 709 after 6, 24, and 72 h of salt stress. With the
exception of a greater number of upregulated genes in POD compared to downregulated
genes, most DEGs related to the ROS clearance system pathway were downregulated
(Figure 6B), attributed to the sensitivity of 709 to salt stress.
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Figure 6. Number of DEGs related to the reactive oxygen species (ROS) scavenging system in
Qingyongjiu 195 (A) and 709 (B), Venn diagrams of DEGs in Qingyongjiu 195 and 709 (C), and
cluster heat map of DEGs (D). The chaperone GroES gene (CL13559.Contig2_All), which regulates
SOD activity, and the POD genes (Unigene37715_All, CL4944.Contig1_All, CL16560.Contig4_All,
CL17382.Contig10_All, CL4965.Contig4_All, Unigene71700_All).
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As can be observed from the Venn diagram (Figure 6C), there are seven DEGs in Qingy-
ongjiu 195 and 709. These genes comprise the chaperone GroES gene (CL13559.Contig2_All),
which regulates SOD activity, and the POD genes (CL16560.Contig4_All, CL17382.Contig10_All,
CL4944.Contig1_All, CL4965.Contig4_All, Unigene37715_All, and Unigene71700_All). Ac-
cording to the cluster heat map (Figure 6D), the expression of these seven genes was
upregulated after salt stress in both varieties, and the expression pattern was similar. Al-
though Unigene71700_All was upregulated in 709 and downregulated in Qingyongjiu 195,
the expression ratio of other POD genes in Qingyongjiu 195 was higher than that in 709,
indicating the importance of the POD genes in the salt-resistant material Qingyongjiu 195.

2.7.3. Analysis of Differentially Expressed Genes Related to Na+ and K+ Transport

Maintaining Na+/K+ homeostasis is critical for plant salt tolerance. We thus analyzed
the expression profiles of major Na+ and K+ transporter genes in Qingyongjiu 195 and 709
after 0.9% NaCl treatment for 6, 24, and 72 h.

As shown in Table 1, a total of eight oat genes related to Na+/K+ transport were differ-
entially expressed under salt stress. These included genes encoding the vacuolar membrane
Na+/H+ antiporters NHX2 (CL6997.Contig13_All) and NHX6 (CL4133.Contig1_All), potas-
sium channels AKT2 (CL17722.Contig19_All) and KAT1 (CL3919.Contig1_All), potassium
ion transporter HAK18 (CL18436.Contig3_All), plasma membrane Na+/H+ antiporter SOS1
(CL4014.Contig17_All), and high-affinity potassium transporters HKT (CL2008.Contig3_All)
and HKT3 (CL6904.Contig3_All).

Table 1. Genes related to Na+, K+ transport under salt stress.

Gene ID
Log2(Fold Change) Qingyongjiu 195 Log2(Fold Change) 709

Gene
6 h/0 h 24 h/0 h 72 h/0 h 6 h/0 h 24 h/0 h 72 h/0 h

CL6997.Contig13_All 6.43 5.08 3.92 1.86 2.26 −1.48 NHX2
CL17722.Contig19_All 7.12 - 6.04 1.07 1.69 −0.04 AKT2

CL4133.Contig1_All 2.14 2.24 0.97 1.08 1.15 0.23 NHX6
CL18436.Contig3_All 1.14 0.02 −0.32 0.81 −0.46 −0.70 HAK18
CL4014.Contig17_All −1.32 −0.55 −0.25 −2.05 −2.01 −1.06 SOS1
CL2008.Contig3_All −2.03 0.63 0.51 −2.76 −0.44 −1.14 HKT6
CL3919.Contig1_All −1.24 −0.52 0.89 −0.71 −1.02 0.18 KAT1
CL6904.Contig3_All −2.24 1.44 0.15 −0.92 0.16 −0.21 HKT3

As shown in Figure 7, NHX6 and SOS1 were differentially upregulated or down-
regulated, respectively, across all time points in both varieties. KAT1 displayed opposite
regulation at 6, 24, and 72 h. AKT2 expression increased at 6 h in Qingyongjiu 195 but varied
over time in 709. The expression pattern of NHX2 diverged between the two varieties
after 72 h of stress. HKT6 was upregulated later in Qingyongjiu 195 but downregulated in
709, whereas HKT3 upregulation occurred later in Qingyongjiu 195 only. These findings
indicate the variety-specific tuning of Na+/K+ transporter expression conferring improved
salt tolerance.

2.7.4. Analysis of Expressed Genes Related to Ca2+ Transport

Ca2+ has long been recognized as a conserved second messenger and plays a vital role
in plant responses to various environmental stimuli, including salinity and drought stress.
Therefore, we found some calcium transport-related genes (Ca2+-transporting ATPase
ACA, Ca2+-binding protein CML, Ca2+/H+ antiporter CAX, Ca2+-dependent protein kinase
CDPK, Calmodulin CaM) from the transcriptome database and analyzed their expression
in the two varieties. As shown in Figure 8, the expression levels of these five genes in
Qingyongjiu 195 were higher than those in 709. The expression of ACA in Qingyongjiu 195
decreased with the increase in time; however, the expression levels of CML, CAX, CDPK,
and CaM in Qingyongjiu 195 reached the highest at 24 h, 6 h, 72 h, and 24 h, respectively. In
addition, these five genes were divided into two groups according to function: ACA, CML,
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and CAX as one group and CDPK and CaM as one group. The expressions of CDPK and
CaM were higher than those of ACA, CML, and CAX. These findings suggest that calcium
plays an important role in the salt tolerance of oat.
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2.8. Fluorescence Quantitative PCR Analysis

To validate the reliability of RNA-Seq results, 22 differentially expressed genes related
to photosynthesis, antioxidant activity, and Na+/K+ transport from Qingyongjiu 195 and
709 under 6, 24, and 72 h salt stress were selected for qRT-PCR experiments.

For Qingyongjiu 195, the expression trends of the 22 DEGs showed strong consistency
with RNA-seq data, with correlation coefficients of 0.99625, 0.88519, and 0.88683 at 6, 24,
and 72 h, respectively (Figure S3A,C,E). Similarly, the expression patterns of the 22 DEGs
in 709 were highly concordant with the RNA-seq results, exhibiting correlation coefficients
of 0.8128, 0.8735, and 0.8802 at the corresponding timepoints (Figure S3B,D,F).

These results demonstrate that qRT-PCR analysis validated the differential expression
observed via RNA-Seq, corroborating the reliability of the transcriptome profiling for
investigating gene regulation under salt stress in the two oat varieties.

3. Discussion

Plant responses to salt stress are highly complex, involving interactions between
physiological processes, metabolic pathways, and molecular and cellular regulation [23].
While oat salt tolerance has been studied at different levels, the underlying mechanisms
remain poorly understood.

RNA-seq represents a valuable tool for obtaining a nearly complete characterization
of transcriptomic events occurring at a specific stage. Gene annotation is an important step
in data analysis in which biological information is attached to predicted genes or unigenes.
The presence of a high proportion of unigenes with a high similarity to protein sequences
from other plant species helps confirm the integrity of transcript sequences assembled
from sequencing data [24]. In the current study, 67.91% of unigenes matched at least
one homolog in the NR database, as determined by BLAST and functional bioinformatics
analyses, which helps confirm the reliability of the assembled oat unigenes and suggests
that these sequences can be used for further investigations.

In this study, differentially expressed genes (DEGs) in Qingyongjiu 195 and 709
increased rapidly after 0, 6, 24, and 72 h of 0.9% NaCl treatment and then decreased,
indicating that oat induces many genes early under short-term stress. Over time, fewer
DEGs occurred in Qingyongjiu 195 versus 709. Qingyongjiu 195 also exhibited more
upregulated DEGs at 6 and 72 h, reflecting its complexity in salt responses.

The statistics of common DEGs at each timepoint identified 4268 shared upregulated
genes in Qingyongjiu 195 but only 2724 in 709. This suggests that a greater ability to
activate protective genes under stress contributes to salt tolerance in Qingyongjiu 195.
Previous studies have reported that salt stress is associated with metabolic processes,
cellular processes, stimulus responses, cellular components, and binding and catalytic
activities in plants [25,26]. Relevant pathways include photosynthesis, hormone signaling,
phenylpropane biosynthesis, and MAPK signaling [27].

Our KEGG analysis revealed enriched pathways in Qingyongjiu 195 alone, such as
photosynthesis–antenna proteins, photosynthesis, carbon fixation, porphyrin/chlorophyll
metabolism, and amino acid metabolism. These differences in signaling, transcription, and
secondary metabolism likely underlie variations in salt tolerance between oat varieties.
Collectively, our results provide new insights into oat salt tolerance mechanisms warranting
further exploration.

Photosynthesis is vital for plant growth and development, as it converts light energy
to chemical energy through electron transport, providing ATP for carbon assimilation [28].
Key genes regulate chlorophyll synthesis, photosystem II (PSII) and I (PSI), cytochromes,
ATP synthase, and carbon fixation pathways under salt stress [29].

In this study, salt treatment decreased the photosynthetic rate and chlorophyll con-
tent over time for both oats, albeit less severely in Qingyongjiu 195 versus 709. This
suggests salt induces photosynthetic genes, enhancing efficiency and reducing damage in
Qingyongjiu 195.
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RNA-seq identified 84 and 58 salt-responsive photosynthetic genes in Qingyongjiu
195 and 709, respectively. In Qingyongjiu 195, most DEGs related to chlorophyll, PSII,
cytochromes and ATP synthase/carbon fixation DEGs were upregulated. However, in
709, most DEGs for these functions were downregulated. Among them, 43 genes related
to chlorophyll were upregulated and 8 were downregulated in Qingyongjiu 195, while 8
were upregulated and 14 were downregulated in 709. This may be the reason why the
chlorophyll content of Qingyongjiu 195 is higher than that of 709; it matched the chlorophyll
measurement results.

Potentially enhancing light energy conversion and ATP production, DEGs in Qingy-
ongjiu 195’s electron transport chain may confer stronger salt tolerance through maintained
photosynthesis. Co-expression analysis identified eight variably expressed genes between
varieties. Cytochrome c oxidase COX2 (Unigene25470_All) upregulation persisted in Qingy-
ongjiu 195 but not in 709. The photosynthetic electron transport-associated gene in PS I
(CL2455.Contig15_All) was upregulated in both, albeit more strongly in Qingyongjiu 195
due to possible inhibition in 709.

In summary, oat appears to be able to regulate photosynthetic efficiency under salt
stress by promoting chlorophyll synthesis, electron transport, and cytochrome transcription.

Salt stress causes metabolic imbalances and increased reactive oxygen species (ROS)
production, leading to oxidative stress that damages lipids, DNA, and proteins [30]. This
study found that under prolonged salt treatment, peroxide (POD) activity peaked at 6 h,
superoxide dismutase (SOD) peaked at 24 h, and catalase (CAT) increased over time in
both oats. However, antioxidant enzyme activities were consistently higher in Qingyongjiu
195 versus 709, indicating an ability to maintain defenses early in stress. Prolonged stress
may cause higher ROS in oats, inhibiting SOD and POD synthesis but increasing CAT to
alleviate damage, consistent with the observation in Wu et al. [31]. Lu and Li [32] found
that many peroxisome, ascorbate, and glutathione pathway genes were upregulated in
salt-tolerant Elytrigia repens. Here, 69 and 42 ROS-scavenging differentially expressed genes
(DEGs) were detected in Qingyongjiu 195 and 709 after stress, respectively, with most
upregulated only in Qingyongjiu 195. This stronger ROS-clearance system likely confers its
greater salt tolerance. Key plant pathways remove ROS/H2O2 via ascorbate-glutathione,
glutathione peroxidase, catalase, and peroxiredoxin/thioredoxin systems [33]. In oat,
stress induces ascorbate peroxidase, glutathione S-transferase, glutathione peroxidase, and
catalase upregulation. A total of 8 thioredoxin trxA genes and 22 peroxidase genes were
also upregulated strongly in Qingyongjiu 195. In addition, this study also found that a
total of seven genes were differentially expressed in Qingyongjiu 195 and 709, including
one GroES gene, which regulate SOD activity, and six POD genes, and their expressions
were upregulated after salt stress, but the upregulation factor of most genes in Qingyongjiu
195 was greater than that of 709. The expression or activation of these genes or pathways
may be the main factor for the difference in antioxidant enzyme activity between the
two varieties.

Collectively, these genes stress-induced antioxidant cooperation, with higher upregu-
lation in Qingyongjiu 195, suggesting critical roles in ROS scavenging and oat salt tolerance.
In addition, some studies have shown that the sensing of salinity stress at the plasma
membrane activates RBOH genes and generates reactive Oxygen Species (ROS) at the
apoplast. ROS generated from the organelles chloroplast, peroxisome, and mitochondria
trigger cellular oxidative burst [34,35]. ROS and calcium activate MAPK genes and the
downstream transcription factors NAC and bZIP in bread wheat. MAPK signaling induces
cellular antioxidant and compatible osmolyte biosynthesis and imparts tissue tolerance to
salinity [36]. Therefore, the relationship between the MAPK pathway, calcium signal, and
antioxidant properties, as well as the identification and functional analysis of related genes,
will be an important part of the study of oat salt tolerance mechanisms.

Maintaining K+/Na+ homeostasis is critical for plant survival under salt stress. ROS
bursts mediate the triggering of putative RCDs and calcium signaling improves sodium ex-
clusion and vacuolar sodium compartmentation by activating SOS1, VP1, and NHX1 [37,38].
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This study found higher K+ content but lower Na+ in Qingyongjiu 195 leaves versus 709,
indicating an ability to preferentially retain K+ aboveground during stress. Ion transporters
regulate ion distributions. Vacuolar NHX antiporters sequester excess cytoplasmic Na+ into
vacuoles [39], as seen by NHX6 upregulation across stresses in both oats. SOS1 downregu-
lation likely enhanced Na+ efflux [37]. NHX2’s divergent expression at 72 h, upregulated
only in Qingyongjiu 195, suggests a key role in its stronger tolerance [40]. KAT1 expression
followed similar time-dependent patterns as stress progressed but was induced to a greater
degree in Qingyongjiu 195 versus 709. AKT2 upregulation under prolonged stress also
occurred exclusively in Qingyongjiu 195. Preferential K+ absorption and transport via
these transporters likely contributed to ion balance in Qingyongjiu 195. As high-affinity
Na+ transporters or co-transporters with K+, differential HKT upregulation in Qingyongjiu
195 indicates the better maintenance of intracellular K+/Na+ homeostasis through the
preferential transport of K+ aboveground and the restriction of Na+ accumulation [41].

Many external signals including changes in K+/Na+ status in the soil are sensed
by plants through calcium signaling mechanisms [42]. It has long been proposed that
Ca2+/H+ exchangers (CAXs, antiporter) and Ca2+-ATPases (ACAs) are responsible for
transferring Ca2+ from the cytosol to either external space or intracellular stores [43]. In
parallel, the Ca2+- binding proteins (CML) constitute an integral part of the toolkit for
Ca2+ sensing and decoding processes [44]. To translate immune receptor-induced Ca2+

elevations into immunity programs, Ca2+-binding proteins are first in line to decode the
Ca2+ signals. These proteins exhibit varying affinity to Ca2+, which allows them to turn
on and off in response to changing Ca2+ concentrations [45,46]. Ca2+-binding causes
conformational changes in these Ca2+ sensors, which often initiate functional interactions
with downstream effectors [47]. Previous studies have primarily centered on two types
of Ca2+ sensors, calmodulin (CaM) and Ca2+-dependent protein kinases (CDPKs), which
serve as decoders that bridge Ca2+ elevations to immune responses [48,49]. CDPKs are the
best-characterized calcium sensors and have a unique structure which can transfer Ca2+

signals via phosphorylation events [50] and participate in plant development and responses
to environmental stress [51,52]. In this study, we identified these genes respectively and
found that their expression in the salt-tolerant variety Qingyongjiu 195 was significantly
higher than that of the salt-sensitive variety 709, and the expression levels of CaM and
CDPK were higher than those of other genes. These results revealed that oats regulated the
Ca2+ concentration through CAX and ACA after salt stress, decoded Ca2+ signals through
CML, and then transferred Ca2+ signals to downstream receptors through the Ca2+ sensors
CaM and CDPK, thereby activating K+/Na+ transporters, such as SOS1 and NHX, etc.
However, gene families such as CML, CDPK, and CAX have many members, and the
specific function of each member is not the same, which needs to be further studied.

4. Materials and Methods
4.1. Experimental Materials

The experimental materials were two husked oat cultivars, salt-tolerant Qingyongjiu
195 and salt-sensitive 709. Qingyongjiu 195 was previously identified as salt-tolerant based
on comprehensive early-stage evaluation [53]. Salt-sensitive 709 was identified through the
salinity screening of oat germplasm by our research group. The experiments were conducted
in 2021 at the College of Grassland Science laboratory, Gansu Agricultural University.

4.2. Experimental Treatments

Full, healthy seeds were selected, soaked in 75% ethanol for 1 min to disinfect, rinsed
with distilled water, and sown in 9 cm diameter × 13 cm height seedling cups filled
with sand. The cups were placed in trays in a growth chamber with a 16 h photoperiod,
day/night temperatures of 25 ± 1 ◦C/18 ± 1 ◦C, and 55% relative humidity. The seedlings
were watered daily with distilled water before germination. At the two true leaf stage, 1 L
Hoagland nutrient solution was applied every 2 days. Based on the germination pre-trials,
0.9% NaCl was selected for salt treatment [54] and added to the nutrient solution after
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3 weeks of growth. Leaves were collected at 0, 6, 24, and 72 h after the salt treatment
onset, frozen in liquid nitrogen, and stored at −80 ◦C for physiological and transcriptomic
analyses. Each treatment was replicated three times.

4.3. Physiological Parameters Determination

Catalase (CAT) activity was determined by the ultraviolet absorption method; su-
peroxide dismutase (SOD) activity was determined by the nitro blue tetrazolium col-
orimetry method; peroxidase (POD) activity was determined by the guaiacol colorimetry
method [55].

From 9:00 to 11:00 am, the net photosynthesis rate (Pn) of leaves in oat was measured
by an automatic photosynthetic measuring apparatus (GFS-3000, Heinz Walz GmbH,
Effeltrich, Germany). The chlorophyll content was determined by the acetone extraction
method [56].

The contents of K+ and Na+ of leaves and roots in oat were determined by a flame
photometer [57].

4.4. Transcriptomic Analysis
4.4.1. RNA Extraction, cDNA Library Construction, and RNA-Seq

The total RNA from oat leaves was extracted by Trizol reagent (Invitrogen, Carlsbad,
CA, USA). The quality and integrity of the RNA samples were determined via Agarose
gel electrophoresis in the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA). The extracted RNA samples were reverse-transcribed using the first strand cDNA
synthesis kit (TIANGEN, Beijing, China) in a 20 µL volume. The specific components and
volumes of the system are as follows: 4 µL 5 × FastKing-RT SuperMix, 5 µL Total RNA,
11 µL RNase-free ddH2O. The reverse transcription reaction was performed at 42 ◦C for
15 min and at 95 ◦C for 3 min. Sequencing adaptors were linked to the purified cDNA, and
24 double-strand libraries were obtained by PCR amplification. Transcriptome sequencing
was completed using the BGISEQ-500 platform by Beijing Genomics Institution (BGI, Bei-
jing, China). The raw sequence data have been deposited in the Genome Sequence Archive
(CRA004020) at the Beijing Institute of Genomics (BIG) Data Center, Chinese Academy of
Sciences. Available online: http://bigd.big.ac.cn/gsa (accessed on 5 January 2023).

4.4.2. De Novo Transcriptome Assembly and Unigene Functional Annotation

The raw image data obtained by sequencing were converted into raw data (raw data
or raw reads) by base calling, and then the raw reads were filtered. That is, reads containing
joints (joint contamination), low-quality reads, and reads with unknown base information
of more than 5% were removed, and then clean reads were obtained. Trinity was used for
the de novo assembly of clean reads, Tgicl was used to cluster the assembled transcripts
to remove redundancy, and the final Unigenes were obtained. Clean reads were aligned
to reference gene sequences using Bowtie2. The assembled Unigenes were used as query
sequences against the KEGG; GO; NR; NT; Swiss-Prot; Pfam; KOG; and TF databases.

4.4.3. Identification and Analysis of Differentially Expressed Genes (DEGs)

The expression level of each unigene was calculated and normalized as Fragments Per
Kilobase Million (FPKM) values using RSEM (v1.2.8) software. The identification of DEGs
was based on the negative binomial distribution of the DEseq2 package. The cut-off for
DEGs was a fold change ≥1 and an adjusted p value ≤ 0.001.

4.5. qRT-PCR Analysis

A total of 22 candidate DEGs involved in photosynthesis, antioxidant properties, and
K+/Na+ transport were selected for qRT-PCR validation. Specific primer pairs for the
selected genes were designed and are listed in Table S1. The cDNA was transcribed from
5 µg total RNA using the SuperScript II system (Invitrogen, Shanghai, China) according
to the manufacturer’s instructions. The qRT-PCR was carried out with SYBR Premix Ex-

http://bigd.big.ac.cn/gsa
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Taq (TaKaRa, Dalian, China) on an ABI QuantStudio 7 Flex RT-PCR instrument (Applied
Biosystems, Waltham, MA, USA), with reaction volumes of 20 µL that contained 10 µL
2 × SuperRealPreMix Plus, 1 µL Forward primer, 1 µL Reverse primer, 5 µL cDNA, and
3 µL RNase-free ddH2O. The relative expression level of the selected genes was presented
as the fold-change calculated using the 2−∆∆Ct method.

4.6. Statistical Analysis

The data of the physiological parameters were collected by Microsoft Excel 2016. The
mean value and standard error were calculated to conduct variance analysis for each
processing character of the tested oat varieties. Statistical analyses were performed using a
one-way ANOVA followed by Duncan’s Multiple Range Tests (DMRT) in SPSS version 25.0.

5. Conclusions

This study elucidated that the salt-tolerant variety Qingyongjiu 195 possesses stronger
salt tolerance than the sensitive variety 709. This is primarily due to Qingyongjiu 195’s
elevated photosynthetic characteristics (chlorophyll content and net photosynthetic rate) and
antioxidant enzyme activity (SOD and POD during initial stress stages, and CAT during later
stages) combined with a high K+ maintenance while limiting Na+ transport aboveground.

RNA-seq identified 6616 differentially expressed genes (DEGs; 4265 upregulated,
2351 downregulated) mainly involved in plant–pathogen interaction, phenylpropanoid
biosynthesis, linoleic acid metabolism, MAPK signaling pathways, cyanoamino acid
metabolism, and starch and sucrose metabolism.

Expression profiles elucidated potential salt tolerance regulatory mechanisms in Qingy-
ongjiu 195. Compared with the salt-sensitive variety 709, more chlorophyll-related genes
and antioxidase-related genes were upregulated in the salt-tolerant variety Qingyongjiu
195. This is the main factor that causes Qingyongjiu 195 to have higher photosynthetic
efficiency and antioxidant enzyme activity. Its ability to enhance photosynthetic efficiency
involves regulating the chlorophyll biosynthesis genes chlG and CP47 psbB, as well as the
cytochrome c oxidase COX2 and light-harvesting complex LHCB. Stronger antioxidant
defense may stem from regulating thioredoxin trxA and GroES. Additionally, Qingyongjiu
195 can regulate cellular K+ uptake via KAT1 and AKT2 transporters and sequester excess
Na+ into vacuoles using NHX2. HKT transporters likely restrict Na+ influx while promoting
K+ transport aboveground to maintain ion balance. Oats regulated the Ca2+ concentration
through CAX and ACA after salt stress, decoded Ca2+ signals through CML, and then
transferred Ca2+ signals to downstream receptors through the Ca2+ sensors CaM and CDPK,
thereby activating K+/Na+ transporters, such as the SOS pathway and NHX, etc.

This study provides novel insights into oat salt stress mechanisms, shedding light on
salt-responsive genes amenable to future molecular breeding efforts aimed at developing
more salt-tolerant crops.
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