Microbial Fertilizers: A Study on the Current Scenario of Brazilian Inoculants and Future Perspectives
Abstract
:1. Introduction
2. Plant Growth-Promoting Rhizobacteria (PGPR)
2.1. Biofertilization: A Sustainable Approach to Enhance Soil Fertility
2.2. Protection against Oxidative Stress in Adverse Environmental Conditions
2.3. Production of Phytohormones by Rhizobacteria
2.4. Production of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) Deaminase
2.5. Chemical Signals: Volatile Organic Compounds (VOCs)
2.6. Production of Siderophores
3. Plant Growth-Promoting Fungi (PGPF)
3.1. Trichoderma spp. as Biocontrol Agents and Fertilizers
3.2. Arbuscular Mycorrhizal Fungi: Extensions of Roots in Soil
4. Co-Inoculation of Beneficial Microorganisms
5. Scenario of Inoculants Registered in Brazil
5.1. Formulations: Single and Co-inoculation
5.2. Biofertilization
5.3. Abiotic Stress Mitigation
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baweja, P.; Kumar, S.; Kumar, G. Fertilizers and pesticides: Their impact on soil health and environment. In Soil Biology; Springer International Publishing: Cham, Switzerland, 2020; pp. 265–285. [Google Scholar]
- Olaetxea, M.; De Hita, D.; Garcia, C.A.; Fuentes, M.; Baigorri, R.; Mora, V.; Garnica, M.; Urrutia, O.; Erro, J.; Zamarreno, A.M.; et al. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot-growth. Appl. Soil. Ecol. 2018, 123, 521–537. [Google Scholar] [CrossRef]
- Etesami, H.; Adl, S.M. Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. In Environmental and Microbial Biotechnology; Springer Singapore: Singapore, 2020; pp. 147–203. [Google Scholar]
- CEPEA. PIB do Agronegócio Brasileiro—Centro de Estudos Avançados em Economia Aplicada—CEPEA-Esalq/USP. 2024. Available online: https://cepea.esalq.usp.br/upload/kceditor/files/CT-PIB-AGRO_26.MAR.24.pdf (accessed on 20 May 2024).
- Brasil. Plano Nacional de Fertilizantes 2050. 2022. Available online: https://www.gov.br/planalto/pt-br/assuntos-estrategicos/documentos/planos/plano-nacional-fertilizantes/view (accessed on 27 April 2024).
- ANPII. Painel Interno ANPII. 2022. Available online: https://www.anpii.org.br/estatisticas/ (accessed on 20 May 2024).
- Zeffa, D.M.; Perini, L.J.; Silva, M.B.; de Sousa, N.V.; Scapim, C.A.; de Oliveira, A.L.M.; Junior, A.T.A.; Gonçalves, L.S.A. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS ONE 2019, 14, e0215332. [Google Scholar] [CrossRef] [PubMed]
- Zilli, J.É.; Pacheco, R.S.; Gianluppi, V.; Smiderle, O.J.; Urquiaga, S.; Hungria, M. Biological N2 fixation and yield performance of soybean inoculated with Bradyrhizobium. Nutr. Cycling Agroecosyst 2021, 119, 323–336. [Google Scholar] [CrossRef]
- Oteino, N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 2015, 6, 745. [Google Scholar] [CrossRef] [PubMed]
- Sarikhani, M.R.; Aliasgharzad, N.; Khoshru, B. P solubilizing potential of some plant growth promoting bacteria used as ingredient in phosphatic biofertilizers with emphasis on growth promotion of Zea mays L. Geomicrobiol. J. 2020, 37, 327–335. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, J.; Shang, X.; Xue, L.; Ji, G.; Chang, S.; Niu, J.; Emaneghemi, B. Screening of siderophore-producing bacteria and their effects on promoting the growth of plants. Curr. Microbiol. 2022, 79, 150. [Google Scholar] [CrossRef] [PubMed]
- Uzma, M.; Iqbal, A.; Hasnain, S. Drought tolerance induction and growth promotion by indole acetic acid producing Pseudomonas aeruginosa in Vigna radiate. PLoS ONE 2022, 17, e0262932. [Google Scholar] [CrossRef] [PubMed]
- Sandhya, V.; Ali, S.Z.; Grover, M.; Reddy, G.; Venkateswarlu, B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul. 2010, 62, 21–30. [Google Scholar] [CrossRef]
- Afzal, A. Rock phosphate solubilization by plant growth-promoting Bacillus velezensis and its impact on wheat growth and yield. Geomicrobiol. J. 2023, 40, 131–142. [Google Scholar] [CrossRef]
- Mosela, M.; Andrade, G.; Massucato, L.R.; de Araújo Almeida, S.R.; Nogueira, A.F.; de Lima Filho, R.B.; Zeffa, D.M.; Mian, S.; Higashi, A.Y.; Shimizu, G.D.; et al. Bacillus velezensis strain Ag75 as a new multifunctional agent for biocontrol, phosphate solubilization and growth promotion in maize and soybean crops. Sci. Rep. 2022, 12, 15284. [Google Scholar] [CrossRef]
- Rath, M.; Mitchell, T.R.; Gold, S.E. Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiol. Res. 2018, 208, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Gowtham, H.G. Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol. Res. 2020, 234, 126422. [Google Scholar] [CrossRef] [PubMed]
- Carlos, M.-H.J.; Stefani, P.-V.Y.; Janette, A.-M.; Melani, M.-S.S.; Gabriela, P.-O. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol. Res. 2016, 188, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Ding, X.; Wang, J.; Han, X.; Iqbal, H.M.N.; Bilal, M. Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria. Environ. Sci. Pollut. Res. Int. 2022, 29, 45089–45106. [Google Scholar] [CrossRef] [PubMed]
- Shamseldin, A. Future outlook of transferring biological nitrogen fixation (BNF) to cereals and challenges to retard achieving this dream. Curr. Microbiol. 2022, 79, 171. [Google Scholar] [CrossRef] [PubMed]
- Maitra, S.; Praharaj, S.; Brestic, M.; Sahoo, R.K.; Sagar, L.; Shankar, T.; Palai, J.B.; Sahoo, U.; Sairam, M.; Pramanick, B.; et al. Rhizobium as biotechnological tools for green solutions: An environment-friendly approach for sustainable crop production in the modern era of climate change. Curr. Microbiol. 2023, 80, 219. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Huang, K.; Wang, F.; Mei, Z. Molecular mechanism and agricultural application of the NifA-NifL system for nitrogen fixation. Int. J. Mol. Sci. 2023, 24, 907. [Google Scholar] [CrossRef]
- Aasfar, A.; Bargaz, A.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Meftah Kadmiri, I. Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front. Microbiol. 2021, 12, 628379. [Google Scholar] [CrossRef]
- Timofeeva, A.; Galyamova, M.; Sedykh, S. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants 2022, 11, 2119. [Google Scholar] [CrossRef]
- Sarmah, R.; Sarma, A.K. Phosphate solubilizing microorganisms: A review. Commun. Soil. Sci. Plant Anal. 2023, 54, 1306–1315. [Google Scholar] [CrossRef]
- Pandey, D.; Kehri, H.K.; Zoomi, I.; Singh, U.; Chaudhri, K.L.; Akhtar, O. Potassium solubilizing microbes: Diversity, ecological significances and biotechnological applications. In Sustainable Development and Biodiversity; Springer International Publishing: Cham, Switzerland, 2020; pp. 263–286. [Google Scholar]
- Wang, J.; Li, R.; Zhang, H.; Wei, G.; Li, Z. Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiol. 2020, 20, 38. [Google Scholar] [CrossRef] [PubMed]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kumar, S.; Sinha, T. Antioxidants in Plant–Microbe Interaction. In Antioxidants in Plant-Microbe Interaction; Singh, H.B., Vaishnav, A., Sayyed, R., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Das, S.; Mukherjee, A. Impact of Plant Growth-Promoting Microbes (PGPM) in Plant Disease Management by Inducing Non-enzymatic Antioxidants. In Antioxidants in Plant-Microbe Interaction; Singh, H.B., Vaishnav, A., Sayyed, R., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Gowtham, H.G.; Singh, S.B.; Shilpa, N.; Aiyaz, M.; Nataraj, K.; Udayashankar, A.C.; Amruthesh, K.N.; Murali, M.; Poczai, P.; Gafur, A.; et al. Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: A review. Antioxidants 2022, 11, 1763. [Google Scholar] [CrossRef] [PubMed]
- Devireddy, A.R.; Zandalinas, S.I.; Fichman, Y.; Mittler, R. Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant, J. 2021, 105, 459–476. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Mosqueda, M.D.C.; Santoyo, G.; Glick, B.R. Recent advances in the bacterial phytohormone modulation of plant growth. Plants 2023, 12, 606. [Google Scholar] [CrossRef] [PubMed]
- Pantoja-Guerra, M.; Valero-Valero, N.; Ramírez, C.A. Total auxin level in the soil–plant system as a modulating factor for the effectiveness of PGPR inocula: A review. Chem. Biol. Technol. Agric. 2023, 10, 1. [Google Scholar] [CrossRef]
- Zhang, P.; Jin, T.; Kumar Sahu, S.; Xu, J.; Shi, Q.; Liu, H.; Wang, Y. The distribution of tryptophan-dependent Indole-3-Acetic Acid synthesis pathways in bacteria unraveled by large-scale genomic analysis. Molecules 2019, 24, 1411. [Google Scholar] [CrossRef] [PubMed]
- Haitao, S.; Li, C.; Tiantian, Y.; Xiaodong, L.; Kejian, D.; Zhulong, C. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol. Biochem. 2014, 82, 209–217. [Google Scholar] [CrossRef]
- Großkinsky, D.; Tafner, R.; Moreno, M.V.; Stenglein, S.A.; García de Salamone, I.E.; Nelson, L.M.; Novák, O.; Strnad, M.; van der Graaff, E.; Roitsch, T. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci. Rep. 2016, 6, 23310. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Mekureyaw, M.F.; Pandey, C.; Roitsch, T. Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front. Plant Sci. 2020, 10, 1777. [Google Scholar] [CrossRef]
- Cortleven, A.; Leuendorf, J.E.; Frank, M.; Pezzetta, D.; Bolt, S.; Schmülling, T. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 2019, 42, 998–1018. [Google Scholar] [CrossRef] [PubMed]
- Keswani, C.; Singh, S.P.; García-Estrada, C.; Mezaache-Aichour, S.; Glare, T.R.; Borriss, R.; Rajput, V.D.; Minkina, T.M.; Ortiz, A.; Sansinenea, E. Biosynthesis and beneficial effects of microbial gibberellins on crops for sustainable agriculture. J. Appl. Microbiol. 2022, 132, 1597–1615. [Google Scholar] [CrossRef]
- Khan, N.; Bano, A.; Ali, S.; Babar, M.A. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul. 2020, 90, 189–203. [Google Scholar] [CrossRef]
- Lim, C.W.; Baek, W.; Jung, J.; Kim, J.H.; Lee, S.C. Function of ABA in stomatal defense against biotic and drought stresses. Int. J. Mol. Sci. 2015, 16, 15251–15270. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Wang, X.; Wang, Y.; Song, X.; Wang, J.; Guo, J.; Zhao, H. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway. Biochem. Biophys. Res. Commun. 2016, 469, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Meena, M.; Swapnil, P.; Divyanshu, K.; Kumar, S.; Harish; Tripathi, Y.N.; Zehra, A.; Marwal, A.; Upadhyay, R.S. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J. Basic. Microbiol. 2020, 60, 828–861. [Google Scholar] [CrossRef] [PubMed]
- Rabari, A.; Ruparelia, J.; Jha, C.K.; Sayyed, R.Z.; Mitra, D.; Priyadarshini, A.; Senapati, A.; Panneerselvam, P.; Das Mohapatra, P.K. Articulating beneficial rhizobacteria-mediated plant defenses through induced systemic resistance: A review. Pedosphere 2023, 33, 556–566. [Google Scholar] [CrossRef]
- Rashid, M.D.; Harun, O.R.; Chung, Y.R. Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front. Plant Sci. 2017, 8, 1816. [Google Scholar] [CrossRef] [PubMed]
- Jasrotia, S.; Jasrotia, R. Role of ethylene in combating biotic stress. Ethyl. Plant Biol. 2022, 388–397. [Google Scholar] [CrossRef]
- Chen, H.; Bullock, D.A., Jr.; Alonso, J.M.; Stepanova, A.N. To fight or to grow: The balancing role of ethylene in plant abiotic stress responses. Plants 2021, 11, 33. [Google Scholar] [CrossRef]
- Choudhury, A.R.; Trivedi, P.; Madhaiyan, M.; Choi, J.; Choi, W.; Park, J.-H.; Walitang, D.I.; Sa, T. ACC deaminase producing endophytic bacteria enhances cell viability of rice (Oryza sativa L.) under salt stress by regulating ethylene emission pathway. Environ. Exp. Bot. 2023, 213, 105411. [Google Scholar] [CrossRef]
- Andy, A.K.; Rajput, V.D.; Burachevskaya, M.; Gour, V.S. Exploring the identity and properties of two bacilli strains and their potential to alleviate drought and heavy metal stress. Horticulturae 2023, 9, 46. [Google Scholar] [CrossRef]
- Ojuederie, O.B.; Babalola, O.O. Growth enhancement and extenuation of drought stress in maize inoculated with multifaceted ACC deaminase producing rhizobacteria. Front. Sustain. Food Syst. 2023, 6, 1076844. [Google Scholar] [CrossRef]
- Weisskopf, L.; Schulz, S.; Garbeva, P. Microbial Volatile Organic Compounds in Intra-Kingdom and Inter-Kingdom Interactions. Nat. Rev. Microbiol. 2021, 19, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Schulz-Bohm, K.; Martín-Sánchez, L.; Garbeva, P. Microbial Volatiles: Small Molecules with an Important Role in Intra- and Inter-Kingdom Interactions. Front. Microbiol. 2017, 8, 2484. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Pollastri, S.; Ruocco, M.; Monti, M.M.; Loreto, F. Volatile organic compounds in the interaction between plants and beneficial microorganisms. J. Plant Interact. 2022, 17, 840–852. [Google Scholar] [CrossRef]
- Raza, W.; Ling, N.; Liu, D.; Wei, Z.; Huang, Q.; Shen, Q. Volatile Organic Compounds Produced by Pseudomonas fluorescens WR-1 Restrict the Growth and Virulence Traits of Ralstonia solanacearum. Microbiol. Res. 2016, 192, 103–113. [Google Scholar] [CrossRef]
- Raio, A. Diverse Roles Played by “Pseudomonas fluorescens Complex” Volatile Compounds in Their Interaction with Phytopathogenic Microrganims, Pests and Plants. World J. Microbiol. Biotechnol. 2024, 40, 80. [Google Scholar] [CrossRef]
- Bononi, L.; Chiaramonte, J.B.; Pansa, C.C.; Moitinho, M.A.; Melo, I.S. Phosphorus-solubilizing Trichoderma spp. from Amazon. soils improve soybean plant growth. Sci. Rep. 2020, 10, 2858. [Google Scholar] [CrossRef]
- Nieto-Jacobo, M.F. Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front. Plant Sci. 2017, 8, 102. [Google Scholar] [CrossRef]
- You, J.; Li, G.; Li, C.; Zhu, L.; Yang, H.; Song, R.; Gu, W. Biological control and plant growth promotion by volatile organic compounds of Trichoderma koningiopsis T-51. J. Fungi. 2022, 8, 131. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yap, M.; Behringer, G.; Hung, R.; Bennett, J.W. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 2016, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, Y. Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J. Integr. Agric. 2015, 14, 1588–1597. [Google Scholar] [CrossRef]
- Cely, M.V.T.; de Oliveira, A.G.; de Freitas, V.F.; de Luca, M.B.; Barazetti, A.R.; Dos Santos, I.M.O.; Gionco, B.; Garcia, G.V.; Prete, C.E.C.; Andrade, G. Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Front. Microbiol. 2016, 7, 720. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, F.; Zahedi, M. Beneficial effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) nutritional status and tolerance indices under soil salinity stress. J. Plant Nutr. 2021, 45, 185–201. [Google Scholar] [CrossRef]
- Hu, Y.; Xie, W.; Chen, B. Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. Chem. Biol. Technol. Agric. 2020, 7, 20. [Google Scholar] [CrossRef]
- Al-Karaki, G.N.; Williams, M. Mycorrhizal mixtures affect the growth, nutrition, and physiological responses of soybean to water deficit. Acta Physiol. Plant. 2021, 43, 75. [Google Scholar] [CrossRef]
- Jumrani, K.; Bhatia, V.S.; Kataria, S.; Alamri, S.A.; Siddiqui, M.H.; Rastogi, A. Inoculation with arbuscular mycorrhizal fungi alleviates the adverse effects of high temperature in soybean. Plants 2022, 11, 2210. [Google Scholar] [CrossRef] [PubMed]
- Hyder, S.; Rizvi, Z.F.; los Santos-Villalobos, S.; de Santoyo, G.; Gondal, A.; Khalid, N.; Fatima, S.N.; Nadeem, M.; Rafique, K.; Rani, A. Applications of plant growth-promoting rhizobacteria for increasing crop production and resilience. J. Plant Nutr. 2023, 46, 2551–2580. [Google Scholar] [CrossRef]
- Saha, M.; Sarkar, S.; Sarkar, B.; Sharma, B.K.; Bhattacharjee, S.; Tribedi, P. Microbial siderophores and their potential applications: A review. Environ. Sci. Pollut. Res. Int. 2016, 23, 3984–3999. [Google Scholar] [CrossRef]
- Ahmed, E.; Holmström, S.J.M. Siderophores in environmental research: Roles and applications: Siderophores in environmental research. Microb. Biotechnol. 2014, 7, 196–208. [Google Scholar] [CrossRef]
- Deb, C.R.; Tatung, M. Siderophore producing bacteria as biocontrol agent against phytopathogens for a better environment: A review. South African Journal of Botany. 2024, 62, 153–162. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sultana, F.; Islam, S. Plant growth-promoting fungi (PGPF): Phytostimulation and induced systemic resistance. In Plant-Microbe Interactions in Agro-Ecological Perspectives; Springer Singapore: Singapore, 2017; pp. 135–191. [Google Scholar]
- Igiehon, N.O.; Babalola, O.O. Biofertilizers and sustainable agriculture: Exploring arbuscular mycorrhizal fungi. Appl. Microbiol. Biotechnol. 2017, 101, 4871–4881. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Guzmán, P.; Kumar, A.; de Los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.D.C.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma species: Our best fungal allies in the biocontrol of plant diseases—A review. Plants 2023, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Naher, L.; Yusuf, U.K.; Ismail, A.; Hossain, K. Trichoderma spp.: A biocontrol agent for sustainable management of plant diseases. Pak. J. Bot. 2014, 46, 1489–1493. [Google Scholar]
- Asad, S.A. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases—A review. Ecol. Complex. 2022, 49, 100978. [Google Scholar] [CrossRef]
- Cumagun, C.J.R. Advances in Formulation of Trichoderma for Biocontrol. In Biotechnology and Biology of Trichoderma; Elsevier: Amsterdam, The Netherlands, 2014; pp. 527–531. [Google Scholar]
- Mukhopadhyay, R.; Kumar, D. Trichoderma: A beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt. J. Biol. Pest. Contr 2020, 30, 133. [Google Scholar] [CrossRef]
- Hermosa, R.; Cardoza, R.E.; Rubio, M.B.; Gutiérrez, S.; Monte, E. Secondary metabolism and antimicrobial metabolites of Trichoderma. In Biotechnology and Biology of Trichoderma; Elsevier: Amsterdam, The Netherlands, 2014; pp. 125–137. [Google Scholar]
- Stewart, A.; Hill, R. Applications of Trichoderma in Plant Growth Promotion. In Biotechnology and Biology of Trichoderma; Elsevier: Amsterdam, The Netherlands, 2014; pp. 415–428. [Google Scholar]
- Zeilinger, S.; Gruber, S.; Bansal, R.; Mukherjee, P.K. Secondary metabolism in Trichoderma–chemistry meets genomics. Fungal Biol. Rev. 2016, 30, 74–90. [Google Scholar] [CrossRef]
- Junior, A.F.C.; Chagas, L.F.B.; Colonia, B.S.O.; Miller, L.D.O.; De Oliveira, J.C. Trichoderma asperellum (UFT201) functions as a growth promoter for soybean plant. Afr. J. Agric. Res. 2019, 14, 1772–1777. [Google Scholar]
- Junior, A.F.C.; Chagas, L.F.B.; Colonia, B.S.O.; Miller, L.D.O.; De Oliveira, J.C. Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. Afr. J. Agric. Res. 2019, 14, 263–271. [Google Scholar] [CrossRef]
- Bader, A.N.; Salerno, G.L.; Covacevich, F.; Consolo, V.F. Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.). J. King Saud Univ. Sci. 2020, 32, 867–873. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Fang, Y.; Wang, Q.; Cao, H.; Yang, G.; Deng, L.; Wang, Y.; Zhou, Y.; Anastopoulos, I.; et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J. Hazard. Mater. 2021, 402, 123919. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Contribution of arbuscular mycorrhizal fungi, phosphate-solubilizing bacteria, and silicon to P uptake by plant. Front. Plant Sci. 2021, 12, 699618. [Google Scholar] [CrossRef] [PubMed]
- Chitarra, W.; Maserti, B.; Gambino, G.; Guerrieri, E.; Balestrini, R. Arbuscular mycorrhizal symbiosis-mediated tomato tolerance to drought. Plant Signal Behav. 2016, 11, e1197468. [Google Scholar] [CrossRef] [PubMed]
- Ouledali, S.; Ennajeh, M.; Ferrandino, A.; Khemira, H.; Schubert, A.; Secchi, F. Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants. S. Afr. J. Bot. 2019, 121, 152–158. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, Q.; Yang, Z.; Hu, Z.; Tam, N.F.-Y.; Xin, G. Arbuscular mycorrhizal fungi in two mangroves in South China. Plant Soil. 2010, 331, 181–191. [Google Scholar] [CrossRef]
- Diagne, N.; Ngom, M.; Djighaly, P.I.; Fall, D.; Hocher, V.; Svistoonoff, S. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity 2020, 12, 370. [Google Scholar] [CrossRef]
- Djighaly, P.I.; Diagne, N.; Ngom, M.; Ngom, D.; Hocher, V.; Fall, D.; Diouf, D.; Laplaze, L.; Svistoonoff, S.; Champion, A. Selection of arbuscular mycorrhizal fungal strains to improve Casuarina equisetifolia L. and Casuarina glauca Sieb. tolerance to salinity. Ann. For. Sci. 2018, 75, 72. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, W.; Feng, Z.; Feng, G.; Zhu, H.; Yao, Q. Arbuscular mycorrhizal fungus differentially regulates P mobilizing bacterial community and abundance in rhizosphere and hyphosphere. Appl. Soil. Ecol. 2022, 170, 104294. [Google Scholar] [CrossRef]
- Kobae, Y. Dynamic phosphate uptake in arbuscular mycorrhizal roots under field conditions. Front. Environ. Sci. 2019, 6, 159. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, L.; Zhou, J.; Rengel, Z.; George, T.S.; Feng, G. Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: Processes and ecological functions. Plant Soil. 2022, 481, 1–22. [Google Scholar] [CrossRef]
- He, J.-D.; Chi, G.-G.; Zou, Y.-N.; Shu, B.; Wu, Q.-S.; Srivastava, A.K.; Kuča, K. Contribution of glomalin-related soil proteins to soil organic carbon in trifoliate orange. Appl. Soil. Ecol. 2020, 154, 103592. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Wang, Y.-H.; Song, Y.-B.; Dong, M. Formation and functions of arbuscular mycorrhizae in coastal wetland ecosystems: A review. Ecosyst. Health Sustain. 2022, 8, 2144465. [Google Scholar] [CrossRef]
- Haq, I.U.; Zwahlen, R.D.; Yang, P.; van Elsas, J.D. The response of Paraburkholderia terrae strains to two soil fungi and the potential role of oxalate. Front. Microbiol. 2018, 9, 989. [Google Scholar] [CrossRef] [PubMed]
- Jansa, J.; Hodge, A. Swimming, gliding, or hyphal riding? On microbial migration along the arbuscular mycorrhizal hyphal highway and functional consequences thereof. New Phytol. 2021, 230, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Bakker, P.A.H.M.; Berendsen, R.L.; Doornbos, R.F.; Wintermans, P.C.A.; Pieterse, C.M.J. The rhizosphere revisited: Root microbiomics. Front. Plant Sci. 2013, 4, 165. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, E.; Sheldrake, M.; Bainard, L.D.; Chen, B.; Ceulemans, T.; De Gruyter, J.; Van Geel, M. Mycorrhizal fungi show regular community compositions in natural ecosystems. ISME J. 2018, 12, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Faghihinia, M.; Jansa, J.; Halverson, L.J.; Staddon, P.L. Hyphosphere microbiome of arbuscular mycorrhizal fungi: A realm of unknowns. Biol. Fertil. Soils 2023, 59, 17–34. [Google Scholar] [CrossRef]
- Spescha, A.; Weibel, J.; Wyser, L.; Brunner, M.; Hess Hermida, M.; Moix, A.; Scheibler, F.; Guyer, A.; Campos-Herrera, R.; Grabenweger, G.; et al. Combining entomopathogenic Pseudomonas bacteria, nematodes and fungi for biological control of a below-ground insect pest. Agric. Ecosyst. Environ. 2023, 348, 108414. [Google Scholar] [CrossRef]
- El-Sharkawy, E.E.S.; Abdelrazik, E. Biocontrol of Fusarium root rot in squash using mycorrhizal fungi and antagonistic microorganisms. Egypt. J. Biol. Pest. Contr 2022, 32, 13. [Google Scholar] [CrossRef]
- Meena, R.S.; Vijayakumar, V.; Yadav, G.S.; Mitran, T. Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere. Plant Growth Regul. 2018, 84, 207–223. [Google Scholar] [CrossRef]
- Anuar, M.S.K.; Hashim, A.M.; Ho, C.L.; Wong, M.-Y.; Sundram, S.; Saidi, N.B.; Yusof, M.T. Synergism: Biocontrol agents and biostimulants in reducing abiotic and biotic stresses in crop. World J. Microbiol. Biotechnol. 2023, 39, 123. [Google Scholar] [CrossRef]
- Musyoka, D.M.; Njeru, E.M.; Nyamwange, M.M.; Maingi, J.M. Arbuscular mycorrhizal fungi and Bradyrhizobium co-inoculation enhances nitrogen fixation and growth of green grams (Vigna radiata L.) under water stress. J. Plant Nutr. 2020, 43, 1036–1047. [Google Scholar] [CrossRef]
- Kavadia, A.; Omirou, M.; Fasoula, D.A.; Louka, F.; Ehaliotis, C.; Ioannides, I.M. Co-inoculations with rhizobia and arbuscular mycorrhizal fungi alters mycorrhizal composition and lead to synergistic growth effects in cowpea that are fungal combination-dependent. Appl. Soil. Ecol. 2021, 167, 104013. [Google Scholar] [CrossRef]
- De Almeida Leite, R.; Martins, L.C.; Ferreira, L.V.D.S.F.; Barbosa, E.S.; Alves, B.J.R.; Zilli, J.E.; Araújo, A.P.; Jesus, E.C. Co-inoculation of Rhizobium and Bradyrhizobium promotes growth and yield of common beans. Appl. Soil. Ecol. 2022, 172, 104356. [Google Scholar] [CrossRef]
- Queiroz Rego, C.H. Co-inoculation with Bradyrhizobium and Azospirillum increases yield and quality of soybean seeds. Agron. J. 2018, 110, 2302–2309. [Google Scholar] [CrossRef]
- Pérez-Rodriguez, M.M.; Pontin, M.; Lipinski, V.; Bottini, R.; Piccoli, P.; Cohen, A.C. Pseudomonas fluorescens and Azospirillum brasilense Increase Yield and Fruit Quality of Tomato Under Field Conditions. J. Soil. Sci. Plant Nutr. 2020, 20, 1614–1624. [Google Scholar] [CrossRef]
- Mendes, J.B.S.; da Costa Neto, V.P.; de Sousa, C.D.A.; de Carvalho Filho, M.R.; Rodrigues, A.C.; Bonifacio, A. Trichoderma and bradyrhizobia act synergistically and enhance the growth rate, biomass and photosynthetic pigments of cowpea (Vigna unguiculata) grown in controlled conditions. Symbiosis 2020, 80, 133–143. [Google Scholar] [CrossRef]
- Qi, R.; Lin, W.; Gong, K.; Han, Z.; Ma, H.; Zhang, M.; Zhang, Q.; Gao, Y.; Li, J.; Zhang, X. Bacillus co-inoculation alleviated salt stress in seedlings cucumber. Agronomy 2021, 11, 966. [Google Scholar] [CrossRef]
- Leite, R.D.C.; Pereira, Y.C.; de Oliveira-Paiva, C.A.; de Moraes, A.J.G.; da Silva, G.B. Increase in yield, leaf nutrient, and profitability of soybean co-inoculated with Bacillus strains and Arbuscular mycorrhizal fungi. Rev. Bras. Cienc. Solo 2022, 46, e0220007. [Google Scholar] [CrossRef]
- Brasil. Inoculantes. 2024. Available online: https://www.atermaisdigital.cnptia.embrapa.br/web/inoculantes (accessed on 27 April 2024).
- Conab. Boletim de Safra de Grãos—7o Levantamento—Safra 2023/24 2024. Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (accessed on 20 May 2024).
- Jones, F. Os Primeiros Inoculantes. Revistapesquisa.Fapesp.br 2019. Available online: https://revistapesquisa.fapesp.br/os-primeiros-inoculantes/ (accessed on 24 September 2023).
- Telles, T.S.; Nogueira, M.A.; Hungria, M. Economic value of biological nitrogen fixation in soybean crops in Brazil. Environ. Technol. Innov. 2023, 31, 103158. [Google Scholar] [CrossRef]
- de Oliveira-Paiva, C.A.; Bini, D.; de Sousa, S.M.; Ribeiro, V.P.; dos Santos, F.C.; de Paula Lana, U.G.; de Souza, F.F.; Gomes, E.A.; Marriel, I.E. Inoculation with Bacillus megaterium CNPMS B119 and Bacillus subtilis CNPMS B2084 improve P-acquisition and maize yield in Brazil. Front. Microbiol. 2024, 15, 1426166. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Q.; Guan, G.; Chen, S. Phosphate solubilizing bacteria stimulate wheat rhizosphere and endosphere biological nitrogen fixation by improving phosphorus content. PeerJ. 2020, 8, e9062. [Google Scholar] [CrossRef] [PubMed]
- Paulitsch, F.; dos Reis, F.B., Jr.; Hungria, M. Twenty years of paradigm-breaking studies of taxonomy and symbiotic nitrogen fixation by beta-rhizobia, and indication of Brazil as a hotspot of Paraburkholderia diversity. Arch. Microbiol. 2021, 203, 4785–4803. [Google Scholar] [CrossRef] [PubMed]
- Pavinato, P.S.; Cherubin, M.R.; Soltangheisi, A.; Rocha, G.C.; Chadwick, D.R.; Jones, D.L. Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil. Sci. Rep. 2020, 10, 15615. [Google Scholar] [CrossRef] [PubMed]
- Kalayu, G. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. Int. J. Agron. 2019, 2019, 4917256. [Google Scholar] [CrossRef]
- Sipert, S.; Cohim, E.; do Nascimento, F.R.A. Identification and quantification of main anthropogenic stocks and flows of potassium in Brazil. Environ. Sci. Pollut. Res. Int. 2020, 27, 32579–32593. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.D.; dos Santos, S.R.; Pereira, G.L.; Santos, W.O. Glauconite as a potential source of potassium in Brazilian agriculture—A review. Cienc. Agron. 2024, 55, e20238828. [Google Scholar] [CrossRef]
- Schueler, T.A.; Dourado, M.L.; Videira, S.S.; da Cunha, C.D.; Rizzo, A.C.L. Biosolubilization of verdete: An alternative potassium source for agriculture fertilizer. Biocatal. Agric. Biotechnol. 2021, 34, 102031. [Google Scholar] [CrossRef]
- Matias, P.C.; Mattiello, E.M.; Santos, W.O.; Badel, J.L.; Alvarez, V.V.H. Solubilization of a K-silicate rock by Acidithiobacillus thiooxidans. Miner. Eng. 2019, 132, 69–75. [Google Scholar] [CrossRef]
- Zilli, M.; Scarabello, M.; Soterroni, A.C.; Valin, H.; Mosnier, A.; Leclère, D.; Havlík, P.; Kraxner, F.; Lopes, M.A.; Ramos, F.M. The impact of climate change on Brazil’s agriculture. Sci. Total Environ. 2020, 740, 139384. [Google Scholar] [CrossRef] [PubMed]
- Kavamura, V.N.; Santos, S.N.; da Silva, J.L.; Parma, M.M.; Avila, L.A.; Visconti, A.; Zucchi, T.D.; Taketani, R.G.; Andreote, F.D.; Melo, I.S.; et al. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol. Res. 2013, 168, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Fuga, G.A.C.; Caixeta, G.A.N.; Caixeta, C.F.; de Melo, I.S. Growth promotion in maize (Zea mays L.) by Bacillus aryabhattai strain CMAA 1363. Braz. J. Agric. Sci./Rev. Bras. De Ciências Agrárias 2023, 18, e3340. [Google Scholar]
- Sousa, H.C.; de Sousa, G.G.; Viana, T.V.A.; Pereira, A.P.A.; Lessa, C.I.N.; de Souza, M.V.P.; Guilherme, J.M.S.; Goes, G.F.; Alves, F.G.S.; Gomes, S.P.; et al. Bacillus aryabhattai mitigates the effects of salt and water stress on the agronomic performance of maize under an agroecological system. Agriculture 2023, 13, 1150. [Google Scholar] [CrossRef]
- de Carvalho Neta, S.J.; Araújo, V.L.V.P.; Fracetto, F.J.C.; da Silva, C.C.G.; de Souza, E.R.; Silva, W.R.; Lumini, E.; Fracetto, G.G.M. Growth-promoting bacteria and arbuscular mycorrhizal fungus enhance maize tolerance to saline stress. Microbiol. Res. 2024, 284, 127708. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.C.; Cabral, J.S.R.; Santana, L.R.; Tavares, G.G.; Santos, L.D.S.; Paim, T.P.; Müller, C.; Silva, F.G.; Costa, A.C.; Souchie, E.L.; et al. The arbuscular mycorrhizal fungus Rhizophagus clarus improves physiological tolerance to drought stress in soybean plants. Sci. Rep. 2022, 12, 9044. [Google Scholar] [CrossRef]
- Organização das Nações Unidas—ONU. Objetivos de Desenvolvimento sustentável. Available online: https://brasil.un.org/pt-br/sdgs (accessed on 11 July 2024).
- Bhattacharjee, A.; Dubey, S.; Sharma, S. “Next-generation bioformulations” for plant growth promotion and stress mitigation: A promising approach for sustainable agriculture. J. Plant Growth Regul. 2023, 42, 6741–6759. [Google Scholar] [CrossRef]
Specie | Mechanism of Growth Promotion | Culture | Reference |
---|---|---|---|
Azospirillum brasilense | Nitrogen fixation | Maize (Zea mays) | [7] |
Bradyrhizobium sp. | Nitrogen fixation | Soybean (Glycine max) | [8] |
Pseudomonas sp. | Phosphate solubilization | Pea (Pisum sativum) | [9] |
Pseudomonas sp. | Phosphate solubilization | Maize (Z. mays) | [10] |
Pseudomonasbrassicae | Siderophore production | Mung bean (Vigna radiata) | [11] |
Pseudomonas aeruginosa | Phytohormone production | Mung bean (V. radiata) | [12] |
Pseudomonas putida | Antioxidant activity | Maize (Z. mays) | [13] |
Bacillus velezensis | Phosphate solubilization and phytohormone production | Wheat (Triticum aestivum) | [14] |
B. velezensis | Phosphate solubilization | Soybean (G. max) and Maize (Z. mays) | [15] |
Bacillus mojavensis | Volatile organic compounds (VOCs)’ production | Arabidopsis thaliana | [16] |
Bacillus subtilis | 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity | Tomato (Solanum lycopersicum) | [17] |
Serratia sp. | ACC deaminase activity and phytohormone production | Sunflower (Helianthus annuus) | [18] |
Specie | Mechanism of Growth Promotion | Culture | Reference |
---|---|---|---|
Trichoderma sp. | Phosphate solubilization | Soybean (Glycine max) | [57] |
Trichoderma sp. | VOCs production | Arabidopsis thaliana | [58] |
Trichoderma koningiopsis | VOCs production | A. thaliana | [59] |
Trichoderma viride | VOCs production | Tomato (Solanum lycopersicum) | [60] |
Trichoderma asperellum | Phosphate solubilization and phytohormone production | Cucumber (Cucumber sativus) | [61] |
Rhizophagus clarus | Increase in P and N content | Soybean (G. max) and Cotton (Gossypium hirsutum) | [62] |
Glomus intraradices | Salt tolerance | Wheat (Triticum aestivum) | [63] |
Rhizophagus irregularis | Drought tolerance | Maize (Zea mays) | [64] |
Mix of R. clarus, R. intraradices, Septoglomus deserticola, Funneliformis mosseae | Water deficit tolerance | Soybean (G. max) | [65] |
Rhizophagus irregularis, F. mosseae, and Funneliformis geosporum | High temperature tolerance | Soybean (G. max) | [66] |
Species | Culture | Benefits | References |
---|---|---|---|
Bradyrhizobium diazoefficiens and Rhizobium tropici | Common beans (Phaseolus vulgaris) | Growth promotion and grain yield | [108] |
Bradyrhizobium japonicum and Azospirillum brasilense | Soybean (Glycine max) | Increased yield components, grain yield, and seed quality | [109] |
Pseudomonas fluorescens and A. brasilense | Tomato (Solanum lycopersicum) | Increased yield and fruit quality | [110] |
Bradyrhizobium sp. and Trichoderma sp. | Cowpea (Vigna unguiculata) | Increased the growth rate, biomass, and photosynthetic pigments | [111] |
Bacillus licheniformis and Bacillus subtilis | Cucumber (Cucumber sativus) | Alleviated salt stress | [112] |
B. subitilis, Bacillus megaterium and Rhizophagus intraradices | Soybean (G. max) | Increase leaf nutrient and in yield | [113] |
Rhizophagus irregulares and Bradyrhizobium sp. | Mung bean (Vigna radiata) | Growth promotion and alleviated water stress | [106] |
Culture | Genus | Single Inoculation | Co-Inoculation |
---|---|---|---|
Soybean (Glycine max) | Bradyrhizobium sp. | 246 | Bradyrhizobium Japonicum + Bradyrhizobium Elkani (52) B. Japonicum + Azospirillum brasilense (4) A. brasilense + Pseudomonas fluorescense (2) Bacillus megaterium + Bacillus subtilis (2) B. subtilis + B. elkani (3) Rhizoglomus intraradices + Claroideoglomus claroideum (2) B. subtilis + B. elkani +Parabhurkodelia nodosa (3) B. subtilis + Bacillus amyloliquefacens +Bacillus pumilus (1) P. fluorescense + B. amyloliquefacens + Priestia megaterium (1) |
Azospirillum sp. | 28 | ||
Bacillus sp. | 8 | ||
Pseudomonas sp. | 6 | ||
Trichoderma sp. | 5 | ||
Rhizophagus sp. (Rhizoglomus) | 5 | ||
Common beans (Phaseolus vulgaris) | Rhizobium sp. | 65 | B. megaterium + B. subtillis (1) |
Azospirilum sp. | 6 | ||
Bacillus sp. | 1 | ||
Maize (Zea mays) | Azospirillum sp. | 41 | B. megaterium + B. subtilis (2) A. brasilense + P. fluorescense (2) B. megaterium + Lysinobacillus sp. (1) B. licheniformis + Bacillus aryabhattai (2) B. Japonicum + A. brasilense (2) R. intraradices + C. claroideum (2) B. subtilis + B. amyloliquefacens +B. pumilus (1) |
Bacillus sp. | 8 | ||
Rhizophagus sp. (Rhizoglomus) | 5 | ||
Pseudomonas sp. | 3 | ||
Methylobacterium sp. | 1 | ||
Peanut (Arachis hypogaea) | Bradyrhizobium sp. | 36 | - |
Jack bean (Canavalia ensiformis) | Bradyrhizobium sp. | 35 | - |
Wheat (Triticum aestivum) | Azospirilum sp. | 23 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreata, M.F.L.; Afonso, L.; Niekawa, E.T.G.; Salomão, J.M.; Basso, K.R.; Silva, M.C.D.; Alves, L.C.; Alarcon, S.F.; Parra, M.E.A.; Grzegorczyk, K.G.; et al. Microbial Fertilizers: A Study on the Current Scenario of Brazilian Inoculants and Future Perspectives. Plants 2024, 13, 2246. https://doi.org/10.3390/plants13162246
Andreata MFL, Afonso L, Niekawa ETG, Salomão JM, Basso KR, Silva MCD, Alves LC, Alarcon SF, Parra MEA, Grzegorczyk KG, et al. Microbial Fertilizers: A Study on the Current Scenario of Brazilian Inoculants and Future Perspectives. Plants. 2024; 13(16):2246. https://doi.org/10.3390/plants13162246
Chicago/Turabian StyleAndreata, Matheus F. L., Leandro Afonso, Erika T. G. Niekawa, Julio M. Salomão, Kawany Roque Basso, Maria Clara D. Silva, Leonardo Cruz Alves, Stefani F. Alarcon, Maria Eugenia A. Parra, Kathlen Giovana Grzegorczyk, and et al. 2024. "Microbial Fertilizers: A Study on the Current Scenario of Brazilian Inoculants and Future Perspectives" Plants 13, no. 16: 2246. https://doi.org/10.3390/plants13162246
APA StyleAndreata, M. F. L., Afonso, L., Niekawa, E. T. G., Salomão, J. M., Basso, K. R., Silva, M. C. D., Alves, L. C., Alarcon, S. F., Parra, M. E. A., Grzegorczyk, K. G., Chryssafidis, A. L., & Andrade, G. (2024). Microbial Fertilizers: A Study on the Current Scenario of Brazilian Inoculants and Future Perspectives. Plants, 13(16), 2246. https://doi.org/10.3390/plants13162246