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Abstract: Fruit shape significantly impacts the quality and commercial value of tomatoes (Solanum
Iycopersicum L.). Precise grading is essential to elucidate the genetic basis of fruit shape in breeding
programs, cultivar descriptions, and variety registration. Despite this, fruit shape classification is
still primarily based on subjective visual inspection, leading to time-consuming and labor-intensive
processes prone to human error. This study presents a novel approach incorporating machine learning
techniques to establish a robust fruit shape classification system. We trained and evaluated seven
supervised machine learning algorithms by leveraging a public dataset derived from the Tomato
Analyzer tool and considering the current four classification systems as label variables. Subsequently,
based on class-specific metrics, we derived a novel classification framework comprising seven dis-
cernible shape classes. The results demonstrate the superiority of the Support Vector Machine model
in terms of its accuracy, surpassing human classifiers across all classification systems. The new
classification system achieved the highest accuracy, averaging 88%, and maintained a similar perfor-
mance when validated with an independent dataset. Positioned as a common standard, this system
contributes to standardizing tomato fruit shape classification, enhancing accuracy, and promoting
consensus among researchers. Its implementation will serve as a valuable tool for overcoming
bias in visual classification, thereby fostering a deeper understanding of consumer preferences and
facilitating genetic studies on fruit shape morphometry.

Keywords: morphology recognition; feature extraction; support vector machine

1. Introduction

Fruit shape emerges as a critical quality criterion in tomato (Solanum lycopersicum L.)
production, significantly influencing the preferences of distinct market segments and
defining the ultimate destination of the harvest [1,2]. In the fresh market, ellipsoid, round,
heart, flat, and large tomatoes are favored among consumers [3]. Conversely, rectangular and
blocky shapes dominate the processing tomato industry due to their practical advantages
in mechanical harvesting and canning [4]. These shapes are preferred for products like
tomato paste, sauce, and canned and diced tomatoes. Additionally, flat and large tomatoes
are used in fresh markets, as slicing varieties for sandwiches and hamburgers [3]. This
difference in market preferences underlines the economic importance of fruit morphology
in meeting consumer and industrial requirements.
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The cultivated tomato exhibits larger fruits with a much greater shape diversity than
its wild relative, which is characterized by round fruits weighing only a few grams. This
variation in fruit shape and size occurred in a two-step domestication process. Firstly the
tomato’s wild relative was domesticated in northern Peru and then moved to Mesoamerica,
where it was finally improved and transformed into the modern tomatoes we know [5,6]. It
is proposed that this variation arose early in the domestication process through the selection
of alleles with variable shapes and that these alleles accumulated over time, resulting in the
modern tomato [7].

Crop breeding is crucial to ensuring future food security, and applying various inte-
grated biological data tools is necessary to maintain continuous improvement. Among the
biological data tools currently employed by the scientific community, phenomics enables
an understanding of genetic, phenotypic, and environmental relationships. However, ob-
taining reliable and valuable high-throughput phenotypic information remains a complex
task. Currently, plant phenomics applications emphasize high-throughput, non-invasive
measurements to provide critical multidimensional data across different organizational
levels, developmental stages, and environmental conditions [8,9].

Recent advancements in computer vision methods have revolutionized the agricultural
sector, enabling the monitoring of healthy crop growth, control of diseases, pests, and weeds,
automatic harvesting, and yield estimation [10]. Additionally, machine vision facilitates
phenotyping, supporting downstream genomic selection efforts contributing to increased
genetic gains, and improving crop productivity [11,12]. The Tomato Analyzer (TA) is an
example of computer vision implementation in tomato crops. This program permits the
semi-automated and objective measurement of 47 fruit shape, size, and color descriptors
obtained from the longitudinal and latitudinal section of tomato [13,14]. The extensive
image datasets generated by TA would be suitable for automatic fruit shape classification.
However, the handling and processing of image data is still laborious and time-consuming,
which poses a significant obstacle to knowledge generation. Considering these outlined
challenges, the use of machine learning techniques appears to be crucial in enhancing the
robustness of plant phenotyping methodologies since they offer a promising alternative for
the objective and efficient evaluation of plant traits [12,15].

Machine-Learning Models and Classification Systems

The most prevalent traditional automatic classification algorithms currently encompass
both parametric such as Linear and Quadratic Discriminant Analysis (LDA/QDA) [16,17] and
Multiple Linear Regression (MLR) [18] and non-parametric models such as Support Vector
Machines (SVMs) [19], Artificial Neural Networks (ANNSs) [20], Random Forest (RF) [21],
and Decision Trees (DTs) [22]. LDA and QDA are probability-based classification methods
with high interpretability, especially LDA. Both methods allow for a deeper understanding
of the contribution of each phenotypic characteristic, with LDA being more robust to
noise and QDA tending to overfit noisy data. MLR, like LDA, assumes linear decision
boundaries, offers high interpretability, performs better than QDA in the presence of noise,
and provides coefficients that indicate the importance of each phenotypic characteristic.
DTs and RF are based on the recursive partitioning of data using information gain. A DT is
highly interpretable but prone to overfitting with noise; RF loses interpretability due to its
nature, and consensus of multiple trees, which makes it more robust to noise. SVMs and
ANN’s can capture complex relationships and are practically non-interpretable methods.
SVMs aim to find the optimal hyperplane that maximizes the margin among classes in a
high-dimensional feature space, effectively separating data points of different categories, is
practically non-interpretable, and is quite robust to noise with the appropriate choice of
kernel. ANNs process input data through layers of interconnected nodes, adjusting weights
and biases to map inputs to desired outputs, mimicking the human brain’s learning process,
and can be robust to noise with proper architecture and regularization, but can also overfit.

Although automation is widely adopted in agriculture, automatic fruit shape recog-
nition remains a challenging task. This challenge stems from the difficulty of describing
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shapes verbally in a detailed and standardized manner, and the variability of shapes under
different environmental conditions further complicates this process. Consequently, most
crops still rely on visual evaluation for the classification of product shapes. Traditionally,
fruit classification is performed by comparing sample patterns defined by agricultural
authorities with the actual fruit. However, the criteria for judgment are often not well-
defined, can vary among samples, and depend on the subjectivity of the agricultural experts
conducting the classification. To improve accuracy, technical expertise is required to un-
derstand the varying criteria among different samples [23]. Nonetheless, these subjective
evaluations introduce ambiguity and a lack of precision in phenotyping, making it difficult
to identify new genes and unravel the complex interactions that determine fruit shape.
Currently, four systems are available to classify the tomato varieties based on their
fruit shape which are detailed in Figure 1. The IPGRI (1996) [24] and UPOV (2001) [25]
systems initially established the guidelines using visual descriptors, proposing a total
of ten and eight shape classes, respectively. Subsequently, Rodriguez, Muifios et al. [26]
performed a visual classification of 368 tomato accessions, followed by a refined analysis of
a subset of 120 accessions. In this subset, they integrated variables obtained through TA
analysis and applied linear discriminant analysis. Through an iterative inclusion of vari-
ables, they identified seven principal parameters, yielding an accuracy rate of 83%. Later,
Visa et al. (2014) [27] used morphometric data from scanned tomato fruits and elliptic
Fourier shape modeling to define the fruit boundaries. They applied a Bayesian classi-
fication technique to identify the optimal number of shape categories, computationally
and visually identifying nine different tomato shapes. From now on these classification
systems will be named: UPOV, IPGRI, ROD2011, and VISA2014, respectively. However,
the current guidelines for tomato fruit shape classification seem to show discrepancies
among the named systems, leading to a lack of consensus among researchers on the most
appropriate approach. This observed discrepancy has become noticeable in recent years,
with researchers using classification systems proposed by IPGRI [28-31], UPOV [32,33],
ROD2011 [4], or their own adapted systems [34-37] without clearly defined criteria.

FEATURES FRUIT SHAPE CLASSES
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VISUAL

GUIDELINES ‘
VISUAL
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QUANTITATIVE
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(Tomato Analyzer

Features)

MORPHOMETRIC
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Figure 1. Tllustration of a representative fruit of each class for the different shape classification systems
available for tomato. Numbers indicate different classes for each shape classification system. (IPGRI)
1: flattened; 2: slightly flattened; 3: rounded; 4: high rounded; 5: ellipsoid; 6: heart-shaped; 7: pyriform;
8: cylindrical. (UPOV) 1: flattened; 2: slightly flattened; 3: circular; 4: rectangular; 5: elliptic; 6: obovate;
7: heart-shaped; 8: ovate; 9: pear-shaped; 10: cylindrical. (ROD2011) 1: flat; 2: round; 3: rectangular;
4: ellipsoid; 5: heart; 6: obovoid; 7: oxheart; 8: long. (VISA2014) 1: flat; 2: round; 3: rectangular; 4: long-
rectangular; 5: ellipsoid; 6: heart; 7: obovoid; 8: oxheart; 9: long.

The main objective of this study is to develop and validate a machine learning-based
system for the automatic classification of tomato fruit shapes, to improve accuracy and
reduce subjectivity in the visual characterization process. To achieve this, we evaluated
four existing classification systems and seven supervised machine learning algorithms
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using a public tomato dataset with features extracted from the Tomato Analyzer. We then
compared the performance of the automated system with expert visual classification to
validate our models. Our preliminary results indicate that the top models achieved over
85% accuracy, outperforming the visual classification. Additionally, we tested the system
on an independent dataset to confirm its robustness. This automated system streamlines
the classification process, reduces subjectivity, and enhances accuracy, offering a valuable
tool for researchers and practitioners in agriculture.

2. Materials and Methods

The present study analyzes seven widely used machine learning algorithms and
four available systems for tomato fruit shape classification. The workflow proposed is
represented in Figure 2.
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Figure 2. General workflow to define a standardized fruit shape classification system in tomato. Two
independent datasets were utilized: SoINet and Nankar. Four classification systems for fruit shape
were considered: IPGRI [24], UPOV [25], ROD2011 [26], and VISA2014 [27]. Seven machine-learning
models were analyzed. LDA: Linear Discriminant Analysis; QDA: Quadratic Discriminant Analysis;
MLR: Multinomial Logistic Regression; DT: Decision Trees; RF Random Forests; SVM: Support Vector
Machines; ANN: Artificial Neural Networks.

Datasets
Two independent datasets were utilized for the analysis.

®  SolNet dataset: This publicly available dataset from SolGenomics (https:/ /solgenomics.
net/, accessed on 8 August 2024) includes 1424 images representing 368 tomato
accessions, along with 41 morphological traits and 4 categorical shape features, corre-
sponding to each shape classification system.

*  Nankar dataset: This dataset contains 145 images of 60 tomato accessions. These
images are a subset of the original data from Nankar et al. (2020) [35].

Firstly, the SolNet dataset was implemented for algorithm configuration and param-
eter tuning to establish the machine-learning models and assess the performance of the
classification systems. An initial comparison between automatic and visual classification
accuracy revealed limitations in current methods, prompting the development of a novel
classification system. This new system was evaluated using the top-performing models
and the Nankar dataset.

2.1. Dataset Pre-Processing

In the first stage, the SolNet dataset, composed of images of longitudinal cuts of tomato
fruits, was employed. The original images containing multiple fruits were segmented
into individual fruit images, and morphological features were obtained from the original
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publication using Tomato Analyzer version 2.0 [26]. These images were visually classi-
fied into shape categories according to the four available classification systems, by two
independent researchers verifying the classifications to ensure accuracy and minimize
observational errors.

Descriptive statistics, including minimum, maximum, mean, and standard deviation,
were calculated for all attributes within the dataset. The relationship between morpholog-
ical classes and the fruit features was represented as a boxplot. Normality was assessed
using graphical methods, such as histograms and QQ plots[38], alongside the Shapiro-Wilk
normality test [39] adjusted by Bonferroni correction [40]. Multivariate normality was eval-
uated using the MVN package, applying Mardia [41], Henze-Zirkler [42], and Royston [43]
tests. Covariance matrix contrasts were further analyzed with the biotools package.

Phenotypic correlations between features were determined using the Spearman test
via the rcorr function from the Hmisc package [44]. Principal Component Analysis
(PCA) was performed to summarize and visualize the positioning of accessions based
on inter-correlated quantitative variables, employing the PCA function from the FactoMineR
package [45]. Eigenvalues were analyzed to determine the number of principal compo-
nents to retain, and the contribution of variables and their correlation with the principal
components were evaluated.

The attributes were clustered using the K-means algorithm, with the optimal num-
ber of clusters identified by Gap Statistics using the clusGap function from the cluster
package [46]. A biplot based on the first two principal components was generated, with
accessions colored according to their assigned shape classes and K-means clusters.

Numerical variables were normalized using a z-score approach, and highly correlated
variables (correlation coefficient greater than 0.95) were excluded. The dataset was split
into training (80%) and testing (20%) sets using the caret package [47]. This function
performs a stratified random split, preserving the distribution of the outcome variable
and maintaining the representativeness of classes. To enhance model accuracy, Recursive
Feature Elimination (RFE) was conducted using the mt package [48], implementing an
embedded Support Vector Machine Recursive Feature Elimination (SVM-RFE) procedure.
This feature selection process was applied independently for each classification system.

2.2. Algorithm Configuration and Parameter Tuning

To optimize the training hyperparameters of the algorithms, we used the mlr
package [49] to set up a parameter grid for iterative exploration. The parameter values
were selected based on the algorithms used, as summarized in Table 1.

Categorical outcomes were predicted in a test dataset to evaluate the performance
of models. This generated a prediction data frame, with numerical outputs replaced by
their corresponding categorical labels. A confusion matrix was constructed to calculate
the accuracy metric by quantifying the agreement between the predicted and true classes.
The overall performance of models was evaluated using standard multi-class classifica-
tion metrics, including accuracy (Acc), precision (Pr), recall or sensitivity (Rec), and F1
score [50]. Precision, recall, and F1 scores were also examined for each class, and a compre-
hensive evaluation was conducted. The best-performing models were selected based on
overall accuracy.

Hyperparameters were customized and metrics were assessed using the R program-
ming language. Packages such as caret [47], dplyr [51], nnet [52], rpart [53], random-
Forest [54], ranger [55], 1071 [56], and neuralnet [57] were employed.

2.3. Proposal of a New Classification System

To assess and compare the results of the automatic classification against the expert-based
classification, we conducted a study using 20 images from the SolNet dataset, which were
presented in an online survey (https://docs.google.com/forms/d/e/1FAIpQLScD_ PD_
yVm7stFfvp8_9m5QUpOsFPAvs3bailzae6qrmgakg /viewform, accessed on 5 June 2023).
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We selected 1 representative image per class and 12 challenging cases from a dataset

Table 1. Tuning parameters in different supervised classification models.

not previously encountered by the models, ensuring unbiased comparisons.

Algorithm Parameters IPGRI UPOV ROD2011 VISA2014
LDA Default Default Default Default
QDA Default Default Default Default
MLR Default Default Default Default

max_depth 1 5 18 9 10
DT cp 2 0.001 0.012 0.001 0.001
min_split 3 23 18 13 7
mtry 4 6 8 8 6
num_tree ° 300 300 300 300
RF node_size® 2 1 1 1
sample_size 0.80 0.63 0.70 0.80
Ccs8 5.34 2.16 5.34 2.63
Gamma ? 0.414 4.160 0.414 0.891
SVM
Degree 10 5 4 5 7
K 111 linear, radial, linear, radial, linear, radial, linear, radial,
erne polynomial polynomial polynomial polynomial
ANN n_hidden 12 3 2 3 3
n_neurons 13 22,18, 14 25,17 14,12,10 14,12, 10

LDA: Linear Discriminant Analysis; QDA: Quadratic Discriminant Analysis; MLR: Multinomial Logistic Regres-
sion; DT: Decision Trees; RF Random Forests; SVM: Support Vector Machines; ANN: Artificial Neural Networks.

! max_depth: maximum depth in decision trees; % cp: threshold determining the worthiness of splitting a node;

3 min_split: minimum split in a node for a split to be attempted; * mtry: number of variables considered for
splitting at each node; 5 num_tree: number of trees in the forest; ® node_size: minimum size of terminal nodes;
7 sample_size: proportion of the dataset used for training each tree; 8 C: cost parameter which indicates the
tolerance for violations of the margin and hyperplane; * Gamma: represents the inverse of the radius of influence
of support vectors; 19 Degree: controls the flexibility of the decision boundary used to separate different classes;

3

11 kernel: kernel type; 12 h_hidden: number of hidden layers; 13 _neurons: number of neurons in each layer.

For computational classification, we used the ROD2011 system and SVM algorithm,
which showed the highest accuracy. The survey images were treated as a test subset with
k-fold cross-validation (k = 5). Meanwhile, for visual classification, we polled 34 tomato
biology experts who classified the images of tomato shapes by comparing them with the
Rodriguez, Mufios et al. (2011) [26] guidelines. Images were randomized to minimize bias,
and performance metrics were computed using custom code.

We analyzed accuracy, precision, recall, and F1 score for both expert and automated
classifications. We used the Kruskal-Wallis test and Dunn test with Bonferroni adjust-
ment for statistical comparisons with the rstatix package [58]. Inter-rater reliability was
assessed with the Kappa metric using the irr package [59].

Based on survey feedback, we revised the ROD2011 classification system by merging
ellipsoid and rectangular classes into a single ellipsoid class. Data pre-processing, parameter
tuning, model training, and performance evaluation were carried out according to the
methods detailed in Sections 2.1 and 2.2.

2.4. Performance of New Classification Systems

To rigorously assess differences in model performance across classification systems, we
performed a 5-fold cross-validation and comparative analysis using the MLR, RF, and SVM
models, which showed the highest accuracy. We ensured consistency by retaining only the
common variables across classification systems identified by RFE. The machine-learning
models were trained and tested using the packages mentioned in Section 2.2.
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We calculated mean and standard deviation values and assessed homoscedasticity
using the Levene test. To evaluate differences in accuracy between automatic and visual
classifications, we performed the Wilcoxon-Mann-Whitney test, utilizing the car [60] and
dplyr [51] packages in R.

We applied the classification system to an independent dataset, the Nankar dataset, for
broader validation. This is a subset of the original data from Nankar et al. (2020) [35] which
was randomly selected to represent all shape classes while maintaining original frequencies.
The dataset underwent pre-processing similar to that in the previous steps, and fruits were
classified into the proposed seven shape classes by two independent experts. The MLR, SVM,
and RF algorithms were trained on the SolNet dataset and tested on the Nankar dataset. The
common set of variables obtained previously was used in the analysis. Performance was
evaluated using accuracy, precision, recall, and F1 score, as detailed in Section 2.2.

3. Results
3.1. Dataset Pre-Processing

The dataset exhibited considerable variability in most traits, with coefficients of vari-
ation ranging from 4.6% for “Distal Eccentricity” to 375% for “Shoulder Height”. High
values for the interquartile range and the range between minimum and maximum indicate
substantial diversity in traits (see Table S1). The SolNet dataset was representative of the
fruit shape classes across different classification systems. The most frequent categories
were ellipsoid (26.1% in ROD2011 and 26.2% in VISA2014), elliptic (20.3% in UPOV), and
high rounded (18.8% in IPGRI). Conversely, less common classes included oxheart (2.7% in
ROD2011 and VISA2014), obovate (1.4% in UPOV), and heart-shaped (8.1% in IPGRI).

Box plots were utilized to elucidate the relationship between morphological classes
and traits within each classification system. Notably, some features showed distinct pat-
terns between shape classes, such as lower values for “Fruit.Shape.Index.2” in flattened
shapes and higher values in elongated shapes like long, long-rectangular, obovoid, pyri-
form, and cylindrical (Figure 3A,D,G,]). However, class differentiation by traits like “Area”
(Figure 3C,ELL) was challenging due to significant overlap and dispersion. By contrast,
some traits, such as “Obovate” (Figure 3B,E,H,K), allowed distinguished specific morpho-
logical classes to be formed.

The analysis of distribution revealed that most traits did not follow a normal distri-
bution. Multivariate normality tests indicated significant deviations from multivariate
normality (see Table S3, Figure S1). The contrast analysis of covariance matrices showed
non-uniform covariance matrices among classes, with 91.22% of correlations being signifi-
cant. Within this group, 2.44% had correlations greater than 0.85, and 5.98% had moderate
correlations ranging from 0.60 to 0.85 (see Table S4, Figure S2).

The PCA demonstrated that the first two principal components explained 44.5% of
the variance. Visualization of fruit by shape classes along these components revealed
overlapping patterns among classes (see Figure S3). The traits were grouped into eight
clusters by k-means clustering, highlighting patterns and relationships that could contribute
to data variability (see Figure S4). This suggests the potential for dimensionality reduction
in subsequent analyses.

Four highly correlated variables were excluded from the analysis: “Width.Mid.height”,
“Height.Mid.width”, “Fruit.Shape.Index.1”, and “Perimeter”. The dataset was split into
training (1142 images) and test subsets (282 images). It is worth noting that the subsets,
like the overall dataset, exhibited class imbalances, particularly with minority classes such
as oxheart in ROD2011 and VISA2014 (2.7%), and obovate in UPOV (1.4%). In contrast, the
IPGRI subset had a balanced representation across classes. Detailed frequency information
for each category is provided in Table S2.

The RFE method performed distinctive variable feature selections across different classifi-
cation systems. However, a consensus emerged regarding the primary ranked variables, with
“Fruit.Shape.Index.2” consistently identified as the highest-ranked feature across all datasets
analyzed. The number of selected features varied by classification system, with ROD2011
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and VISA2014 selecting 18 traits each, UPOV selecting 28 traits, and IPGRI selecting 26 traits.
Information on ranked features and selected subsets is detailed in Table S5.
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Figure 3. Box plots representing the value of shape traits across morphological classes in each

classification system. The middle line of the box indicates the median of the data, while the top and
bottom ends of the box indicate the 25th and 75th percentiles. The length of the box is the difference
between these two percentiles and is known as the interquartile range (IQR). The whiskers represent
the expected variance of the data. The box plot displays whiskers that extend 1.5 times the IQR
from the top and bottom ends. (A-C) IPGRI classification system. (D-F) UPOVclassification system.
(G-I) ROD2011 classification system. (J-L) VISA2014 classification system. Different colors denote

different classes in each classification system. The color scale is located to the left of the plots.
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3.2. Algorithm Configuration and Parameter Tuning

Table 2 presents a summary of the accuracy, precision, recall, and F1 score results
obtained from evaluating the seven models across the different classification systems.

Table 2. Overall values for performance metrics across distinct classification systems. Accuracy (Acc),

precision (Pr), recall (Rec) and F1 score (F1).

IPGRI Urov ROD2011 VISA2014
Algorithm

Pr Rec F1 Acc Pr Rec F1 Acc Pr Rec F1 Acc Pr Rec F1 Acc

LDA 069 073 070 070 065 068 066 069 064 077 069 074 069 076 070 0.75
QDA 065 067 065 065 065 068 066 064 063 076 067 074 063 070 0.65 0.74
MLR 072 073 072 072 065 065 065 069 074 075 075 082 072 073 072 0.78
DT 064 067 064 066 054 062 060 065 067 070 068 076 055 054 070 0.72
RF 075 077 075 076 070 079 072 077 076 081 078 084 066 079 0.68 0.80
SVM 073 075 074 074 066 076 068 073 075 082 077 084 071 08 075 0.82
ANN 070 072 071 071 063 062 062 066 069 070 069 078 063 073 064 077

LDA: Linear Discriminant Analysis; QDA: Quadratic Discriminant Analysis; MLR: Multinomial Logis-
tic Regression; DT: Decision Trees; RF Random Forests; SVM: Support Vector Machines; ANN: Artificial
Neural Networks.

Considering the overall accuracy across all of the classification systems, the QDA
model consistently showed a lower accuracy compared to LDA and DT, with the lowest
performance observed particularly on the UPOV system. In contrast, the MLR, SVM, and
RF algorithms demonstrated higher accuracies, with RF achieving the highest accuracy of
84.40% on the ROD2011 dataset. The ANN models exhibited major differences between
training and testing, showing a strong performance in training but less effectiveness
in testing.

Furthermore, performance varied by the classification system. The UPOV system
generally had the lowest accuracy across most models, except for RE. In contrast, the IPGRI
and VISA2014 systems had intermediate accuracy values, while ROD2011 showed the
highest accuracy, except where VISA2014 outperformed ROD2011 in the LDA model.

The class-specific analysis underscored the challenges in classification across certain
classes for all models (see Table S6). This detailed analysis of class-specific performance
revealed both strengths and weaknesses in classification, with certain shapes posing consis-
tent challenges across models. Across the classification systems, the flattened and rounded
shapes generally demonstrated the best performances, achieving high accuracy and F1
scores. Conversely, the rectangular and heart- shapes exhibited poor performance across
most models.

The UPOV system faced significant difficulties with the obovate and ovate classes,
particularly with the DT model, and the rectangular shape also underperformed. The
IPGRI system showed better results for the rounded and pyriform shapes but struggled
with slightly flattened and ellipsoid shapes. The ROD2011 system encountered challenges in
accurately classifying the oxheart and rectangular shapes, meanwhile, the flat shape showed
strong performance. Similarly, the VISA2014 system displayed robust performance for the
flat shape but had issues with the rectangular and oxheart shapes.

3.3. Proposal of a New Classification System

A survey with images representing all the fruit shape classes, including five ellipsoid,
two flat, two heart-shaped, four long, three obovoid, two oxheart, one rectangular, and one
round, was distributed among tomato experts for visual classification.

Expert visual classification resulted in a mean accuracy of 0.56 with a standard devia-
tion of 9%. The high standard deviation reflected the variability among experts, confirmed
by the inter-rater reliability test, which yielded a kappa value of —0.03, indicating less
agreement than expected by chance. In contrast, automatic classification achieved a mean
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accuracy of 0.70 with a 4% standard deviation. A statistically significant difference between
expert-based and automatic classification was found (p < 0.001).

The performance metrics revealed that classes such as flat, long, and round had the
highest F1 scores in expert classification (0.81, 0.76, and 0.73, respectively). However, the
oxheart class had the lowest performance metrics, and the rectangular class showed a low
precision but high recall, indicating that fruits belonging to another class, such as ellipsoid
and round, were classified as rectangular. The automatic classification outperformed the
expert-based classification in most classes, except for the long class. Notably, the flat and
round classes performed well in both systems, with F1 scores of 0.92 and 0.87, respectively.
However, the oxheart class only achieved an F1 score of 0.47 (see Table S7).

Based on the observed difficulties in distinguishing ellipsoid and rectangular shapes,
these classes were merged into a single ellipsoid class. Using Recursive Feature Elimination
(RFE), 16 variables were selected and distributed across seven of the eight clusters identified
in the previous K-means Cluster Analysis (Section 3.2). The top five ranked traits in RFE
were “Fruit.Shape.Index.2”, “Internal.Fruit.Shape.Index”, “Distal. Angle.Macro” (20%), and
“Proximal. Angle.Macro” (10% and 20%), which align with the traits identified in ROD2011.

The model accuracy ranged from 0.78 for Decision Trees (DT) to 0.88 for Support
Vector Machines (SVM) (see Figure 4A). Accuracy improved across all models with the new
classification system, demonstrating that removing the rectangular class enhanced overall
classification effectiveness.

A
Accuracy
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0.50
0.25
0.00
S & X S ¢ & S
B . C
Precision Recall F1-score
1.00 1.00+ 1.00
0.75 0.75+ 0.75 Shape
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0.50 0.50" 0.50 B heart
. long
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Figure 4. Values for performance metrics of individual classes in the new classification system
proposed. (A) Accuracy value for each machine-learning algorithm. (B) Precision values. (C) Recall
values. (D) F1 score values. Different colors represent the shape classes. LDA: Linear Discriminant
Analysis; QDA: Quadratic Discriminant Analysis; MLR: Multinomial Logistic Regression; DT: Decision
Trees; RF Random Forests; SVM: Support Vector Machines; ANN: Artificial Neural Networks.

When examining class-specific performance metrics (see Figure 4B-D), some challenges
were encountered by models in classifying different classes. Across various models, certain
classes stood out with high F1 scores, such as the long class in the LDA, QDA, RF, and SVM
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models, and the heart and obovoid classes in the MLR model. Conversely, some classes posed
significant challenges, such as the oxheart class across multiple models and the heart class in
the LDA model. Additionally, specific models struggled with particular classes, like the round
class in the MLR model. Overall, these findings underscore the varied performance of models
in classifying different classes, with some classes being more challenging to classify accurately
than others.

3.4. Performance of New Classification Systems

From the previous variables selected by RFE, a subset of 12 variables was consistently
identified in all datasets. These variables included: “Fruit.Shape.Index.2”, “Distal. Angle.Macro”
(10 and 20%), “Proximal.Angle.Macro” (10 and 20%), “Proximal. Angle.Micro” (5%), “Cir-
cular”, and “Elliptic”, “Proximal.Fruit.Blockiness” (20%), “Distal.Fruit.Blockiness” (5%),
“Rectangular”, and “Internal. Fruit.Shape.Index”. These selected traits aligned with five
of the eight clusters derived through the k-means cluster analysis. The variable clus-
ters are summarized as follows: Cluster 1, characterized by “Fruit Shape Index” (2),
“Distal.Angle.Macro” (10 and 20%), and “Proximal.Angle.Macro” (20%); Cluster 2, rep-
resented by circular and elliptic; Cluster 3, featuring “Proximal. Fruit.Blockiness” (20%);
Cluster 7, which included “rectangular” and “Internal.Fruit.Shape.Index”; and Cluster 8§,
encompassing “Proximal. Angle.Micro” (5%), “Proximal. Angle.Macro” (10%), and “Dis-
tal.Fruit.Blockiness” (5%).

In our study, the mean accuracy values considering the models ranged from 0.69 to
0.85, with standard deviations between 0.01 and 0.03 (Figure 5A). The MLR model applied
to the UPOV dataset showed the lowest accuracy, while the SVM model with the new set
of classes achieved the highest mean accuracy.

No significant differences in mean accuracy were observed across models at a 5% sig-
nificance level, although differences were significant among classification systems (p < 0.01)
(Figure 5B-D). The Wilcoxon-Mann-Whitney test revealed no significant difference in
mean accuracy between the UPOV and IPGRI datasets, both of which displayed the lowest
accuracy. In contrast, the ROD2011 and VISA2014 datasets showed intermediate accuracy
values and no significant difference between them, with the novel classification system
yielding the highest accuracy across all models.

For a broader validation of the novel classification system, the top-performing models
were evaluated using the Nankar dataset. The distribution of tomato fruit shapes in this dataset
revealed a predominance of flat, ellipsoid, and round classes, which together represent 66.9.

The RF model achieved the highest overall accuracy at 87.59%, followed by the SVM
model at 86.90%, and the MLR model at 82.76%. These results align with those presented
in Section 3.3, where the new classification system was proposed, indicating a maximum of
25 misclassified images.

In terms of precision, the RE, SVM, and MLR models scored 0.87, 0.86, and 0.82,
respectively. The recall values were 0.82 for the SVM model, 0.82 for the RF model, and
0.78 for the MLR model. The F1 scores were 0.83, 0.82, and 0.79 for the RF, SVM, and MLR
models, respectively. The lower recall and F1 scores for the MLR model indicate a tendency
to miss true positive cases, resulting in more false negatives and, consequently, a lower
overall performance (see Table 3).

Considering the class-specific metrics, the flat class achieved the highest F1 score across
all models. In contrast, the RF model recorded the lowest F1 score for the oxheart class, with
a value of 0.67. Most of the misclassified oxheart fruits were incorrectly assigned to the heart
class in this model (Figure 6A). The SVM and MLR models mainly failed to detect obovoid
shapes, yielding F1 scores of 0.70 and 0.64, respectively. These misclassified fruits were
predominantly assigned to the ellipsoid class, as illustrated in Figure 6B,C.
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Table 3. Values for performance metrics (accuracy, precision, recall, and F1 score) of individual classes
in Nankar dataset.

ellipsoid flat heart long obovoid oxheart round
Algorithm
Pr Rec F1 Pr Rec F1 Pr Rec F1 Pr Rec F1 Pr Rec F1 Pr Rec F1 Pr Rec F1
MLR 077 086 081 077 1.00 087 094 091 093 075 086 080 1.00 055 071 070 058 0.64 086 0.67 0.75
RF 093 093 093 077 097 086 097 1.00 099 067 086 075 1.00 065 079 090 075 0.82 0.83 056 0.67
SVM 1.00 0.86 092 0.79 1.00 088 095 1.00 097 058 100 074 100 0.65 0.79 0.73 0.67 0.70 1.00 0.56 0.71
Precision (Pr), recall (Rec), and F1 score (F1). Multinomial Logistic Regression (MLR), Random Forests (RF), and
Support Vector Machines (SVM). Values for accuracy were equal to 0.83, 0.88, and 0.87 for MLR, RE, and SVM
algorithms, respectively.
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Figure 5. Comparison of best-performing models for 5-fold cross-validation. (A) Mean accuracy
and standard deviation for Support Vector Machine (SVM), Random Forest (RF), and Multinomial
Logistic Regression (MLR) models. Dots represent the mean value for each 5-fold cross-validation.
(B-D) Box plot of accuracy for different models. The middle line of the box indicates the median
of the data, while the top and bottom ends of the box indicate the 25th and 75th percentiles. The
whiskers represent the expected variance of the data. Dots show the outliers’ values. Different colors
denote the shape classification systems. The color scale is located to the left of the plots [14,27].
Wilcoxon comparison significance: ns: p > 0.05; *: p < 0.05; **: p < 0.01.
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Figure 6. Confusion matrix summarizing the performance of best-performing models in the Nankar
dataset in the new shape classification system. (A) Random Forest model. (B) Support Vector Machine.
(C) Multinomial Logistic Regression model. The rows represent the true classes, while the columns
represent the predicted classes. The diagonal denotes the labels that were correctly classified.

4. Discussion
4.1. Comparison of Existing Classification Systems and Performance of Machine Learning Models

Fruit shape is one of the most important quality aspects for tomatoes, defining not
only the consumer preference but also relevant aspects of the marketing demand and ex-
portation requirements. A description of an agricultural product’s shape is often necessary
to investigate the heritability of fruit shape descriptors for cultivar descriptions, variety
registration (for intellectual property rights), and the evaluation of consumer decision
performance. Despite these, to date, tomato-shape grading has mainly been based on visual
inspection, which is highly subjective, time-consuming, and labor-intensive [61,62].

Recent studies have shown that combining image-based phenotyping with machine
learning techniques can lead to robust and accurate recognition and classification in various
crops [63—66]. In this study, we utilized fruit shape attribute data obtained from images
of longitudinal cut fruit sections using the Tomato Analyzer application. The TA data,
combined with supervised machine learning algorithms provided a classification approach
that accurately assigned fruits to define the shape classes, surpassing visual inspection made
by the experts. The complete approach was performed on the four available classification
systems and a new system was proposed. By comparing the mean of the models, the best
scheme was defined as a common standard for tomato shape classification, which was
validated on an independent dataset. Therefore, this approach provides a standard for the
classification of tomato fruits and could be replicated for other vegetables.

At present, there exist four principal systems for the classification of fruit shapes in
tomato. Nonetheless, the existing guidelines exhibit inadequacies, leading to a lack of agree-
ment among researchers who use them without well-defined guidelines. Consequently, it is
essential to create a controlled and objective classification system that can gain widespread
acceptance within the research community. Our analysis has revealed that the UPOV and
IPGRI classification systems demonstrate lower overall accuracy values across all models.
Conversely, the ROD2011 and VISA2014 systems are the superior performers. In a com-
parative analysis among the three top-performing models (MLR, SVM, and RF), the UPOV
and IPGRI systems showed no significant divergence but differed from the ROD2011
and VISA2014 systems, which in turn exhibited no discernible differences between each
other. These variations in mean accuracy may be attributed to the fact that the UPOV
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and IPGRI systems rely on visual assessment, which can introduce bias in categorization.
Additionally, these classification systems exhibit inconsistent criteria, categories, and fluc-
tuating terminology regarding fruit shapes. Moreover, some terms used lack consistency
with prevailing ontological standards. Meanwhile, the system proposed by Rodriguez,
Mufios et al. (2011) [26] incorporates the analysis of TA features, which are numeric and ob-
jective data. The work of Visa et al. (2014) [27] builds upon the previous work of Rodriguez,
Murios et al. (2011) [26] but also uses morphometric data for computational classification.

4.2. Challenges in Class-Specific Classification

The classification of fruits and vegetables poses a great challenge due to their inherent
diversity and complexity, resulting in inter- and intra-class variations [67]. The analysis of
the SolNet dataset, which is representative of tomato germplasm, revealed the capability of
certain Tomato Analyzer traits to distinguish patterns among shape classes. The PCs and
k-means cluster analyses suggested the potential for dimensionality reduction, grouping
the 41 analyzed traits into eight clusters. The RFE analysis resulted in distinct rankings for
traits across classification systems. Nevertheless, the “Fruit Shape Index”, which relates the
height and width of fruits and gives a general idea of the shape, consistently emerged as
the most significant trait in shape variation explanation. Across all systems 12 main traits
were selected, which reflected five of the previously identified clusters. These findings
align with Rodriguez, Mufios et al. (2011) [26], who identified the “Fruit Shape Index” as
the main feature defining grading fruit morphology.

As accuracy is the most widely used metric for classifiers [68], we focus on this esti-
mator as the selection criterion. Noteworthy LDA, QDA, and DT consistently emerged as
the worst-performing models across all classification systems. Conversely, MLR, RF, and
SVM showed superior performance. Notably, the ANN model showed an outstanding
performance on the training dataset, but its accuracy significantly dropped on the test
dataset. In addition, challenges were encountered in accurately classifying certain shapes.
In particular, slightly flattened and obovate shapes in the IPGRI and UPOV systems, respec-
tively, and the oxheart class showed the lowest overall F1 scores in ROD2011, VISA2014,
and the new systems across all models.

Discrepancies among models and challenges in class-specific classification may be
partly due to the sensitivity of algorithms to class imbalance and overlap in datasets [69,70].
This hypothesis is supported by the high correspondence between higher error rates and
lower overall predictive performance with the under-represented classes, emphasizing
the critical importance of addressing class imbalances. Various approaches, such as over-
sampling, undersampling, boosting, bagging, and repeated random sub-sampling, can be
used to address data imbalances, each with its limitations [71]. Additionally, the size of the
dataset has a significant impact on the model’s performance. Traditional machine learning
models, such as SVM, have been seen to have more classification advantages on small
datasets than deep learning models [72]. This underscores the importance of considering
the dataset as well as model characteristics when dealing with imbalanced data scenarios.

4.3. Proposal of a New Classification System

A comparative analysis between visual and automated tomato shape classification
showed that the automated method, taking into account the SVM algorithm and the
ROD2011 system consistently outperformed the visual method. Performance metrics
revealed challenges in classifying certain shapes, particularly the oxheart and rectangular
classes, highlighting the need for further refinement. In the survey, experts often classified
the rectangular and ellipsoid fruits interchangeably, leading to an increase in false positives
and decreased precision. Genetic studies have shown that similar genes control the fruit
shape of rectangular and ellipsoid fruits [4,62,73,74]. This evidence encouraged us to merge
the two classes into a single category named ellipsoid.

A novel classification system was developed based on the ROD2011 fruit classification
and the merging of rectangular and ellipsoid classes. The best-performing machine learning
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models, MLR, RF, and SVM, were evaluated across all five datasets including the new
system. The new classification system resulted in higher mean accuracy values for all
models, and the SVM model achieved the highest accuracy, reaching 88% and 87% on two
independent datasets of SolNet and Nankar, respectively. Based on the comparative findings
between existing classification systems and the results observed in this study, we believe
that this system will serve as a common standard for tomato fruit shape classification. This
novel approach not only improves the accuracy of tomato cultivar delineation but also
promotes consensus among researchers.

5. Conclusions

This research outlines a comprehensive approach to developing an automated and
objective fruit shape classification system for tomatoes using advanced technologies like
computer vision and machine learning. Evaluating seven supervised learning algorithms
and four classification systems, SVM emerged as the most effective model, surpassing
visual classification by experts with varying agreement levels. By refining Rodriguez,
Muiios et al.’s (2011) [26] system and eliminating the redundant rectangular class, our
approach achieved an approximately 88% accuracy, validated on an independent dataset
for reliability. This positions our method as a standard for tomato fruit shape classification,
significantly advancing automated horticultural practices. It represents a substantial con-
tribution to investigations into fruit morphology, as well as the accurate description and
registration of crop varieties. Future research may extend this approach to other crops and
refine necessary model aspects, such as the management of unbalanced data, to enhance
accuracy and adaptability.
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