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Abstract: Tropical forests are incredibly diverse in structure and function. Despite, or perhaps because
of, this diversity, tropical biologists often conduct research exclusively in one or perhaps a few forest
types. Rarely do we study the ecotone—the interstitial region between forest types. Ecotones are
hyper-diverse, dynamic systems that control the flow of energy and organisms between adjacent
ecosystems, with their locations determined by species’ physiological limits. In this review, we
describe how studying ecotones can provide key indicators for monitoring the state of Neotropical
forests from organisms to ecosystems. We first describe how ecotones have been studied in the past
and summarize our current understanding of tropical ecotones. Next, we provide three example lines
of research focusing on the ecological and evolutionary dynamics of the ecotone between tropical
dry forests and desert; between tropical dry and rainforests; and between Cerrado and Atlantic
rainforests, with the latter being a particularly well-studied ecotone. Lastly, we outline methods and
tools for studying ecotones that combine remote sensing, new statistical techniques, and field-based
forest dynamics plot data, among others, for understanding these important systems.
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1. Introduction: What Is an Ecotone?

Ecotones can be considered natural laboratories for studying a range of evolutionary
and ecological responses to contemporary global change [1]. They hold a special place in the
history of ecology and evolution. Both Clements and Gleason studied the role of ecotones
in the formation of plant communities at a time when ecology was nascent [2,3], and
J. Huxley [4] demonstrated that hybridization and diversification can occur across ecotones.
Ecotones control the flow of energy and organisms across landscapes and exist across a
range of spatiotemporal scales [5]. The occurrence of an ecotone is generally determined
by species’ physiological limits [6,7], often reflecting changes in environmental conditions
such as edaphic or climatic factors. Because of their inherent spatiotemporal variability,
studying and defining ecotones was historically challenging, requiring detailed and time-
consuming field-based surveys [8,9]. Today, advances in statistical tools and technologies,
like high-resolution satellite and drone-based imagery, present exciting opportunities to
monitor ecotones in new ways and determine the underlying mechanisms driving their
structure, function, and species composition. Arguably, the effects of global change drivers
should be most evident and detected first in ecotones, making ecotones valuable early
warning systems and climate change indicators [10,11].

Ecotone research has been relatively limited in tropical ecosystems, even though the
tropics are experiencing some of the fastest rates of social, environmental, and climate
change. Tropical forests are incredibly diverse, encompassing major climatic and geological
gradients. Despite, or perhaps because of, this diversity, tropical biologists often ignore
ecotones, choosing to study one or a few forest types. Some tropical ecotones, such
as the savanna–forest and grassland–shrubland transitions, have been well-studied [12].
However, there are still major gaps in knowledge, for example, what drives the position
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and structure of the ecotone between dry and humid forests, two of the largest tropical
biomes [13]. Because water availability is likely a key factor determining the transition
between dry and humid forests, this and other ecotones across the Neotropics are especially
vulnerable to future changes in precipitation regimes. In this review, we first briefly
describe how ecotones have been studied worldwide at different spatial and temporal
scales. We provide extra-tropical examples where monitoring ecotones has led to unique
insight. We also emphasize techniques with obvious tropical applications, as well as outline
challenges unique to monitoring ecotones in tropical ecosystems. Second, we review
how ecotones have been studied in the tropics thus far, synthesizing our current level of
understanding of these diverse and dynamic systems and highlighting areas where new
tools and technologies could be applied. We focus on Neotropical examples, but also include
examples from African and Australasian tropics when these seem most relevant to studying
ecotones in tropical America. Lastly, we provide three example lines of research centered
around the ecological and evolutionary dynamics of ecotones: between tropical dry forests
and desert (Mexico); between tropical dry and rainforests (Costa Rica); and between
Cerrado and Atlantic rainforests (Brazil), with the latter being a particularly well-studied
ecotone. While we focus on terrestrial ecotones, equally important are aquatic ecotones (i.e.,
the deep chlorophyll layer) as well as ecotones between terrestrial and aquatic ecosystems
(i.e., the salt marsh-upland forest ecotone) [7], especially as groundwater resources decrease
and tidal regimes change. We hope this review serves as a guide for how future terrestrial
tropical ecologists can expand their work to adjacent ecosystems and habitat types and the
diverse ecotones between them.

2. Neotropical Ecotones: Our Current State of Understanding

Understanding the eco-evolutionary dynamics of ecotones is essential for determining
the drivers of diversity and function of Neotropical forests, as well as predicting their
responses to ongoing global changes. Over geological time scales and continental spatial
scales, past responses of plants to climate change provide evidence that entire biomes, and
thus the ecotones between them, can migrate, as seen in the expansion of South American
Atlantic forests during the Pleistocene [14]. In other regions, vegetation belts exhibited
altitudinal changes during the same period [15]. While it is easy to imagine an entire biome
shifting in response to major climatic changes, biome shifts are the result of species-level
responses [16]. Some species may decline or disappear, others may become more dominant,
and yet others may diversify in response to novel selection pressures. Because biome
shifts are evident through geological time and at continental scales, many models project
biome shifts as a major outcome of climate change [6,17,18]. In many places this is already
happening, as observed in North American grasslands [19], mangroves [20,21], West
African Sahel [22], tropical moist forests and savannas [23], and elsewhere [24]. Despite
much interest in biomes, especially as an ecological and biogeographical concept [25], the
regions between them have received considerably less attention, a pervasive point we
make here. Biome shifts imply that ecotones are experiencing equally significant shifts
in location, properties, species composition, and population dynamics. In other words,
a biome shift must be accompanied by a concomitant shift in the ecotones surrounding
it. Recent evidence suggests that ecotones are expected to decline worldwide under all
climate change scenarios, but model consensus remains low [26]. Model consensus is low
likely because the factors that determine ecotone properties vary greatly. In temperate
latitudes, the structure and position of treeline, a well-studied ecotone across Europe, is
primarily controlled by thermal deficiency [27]. Conversely, tropical mountainous ecotones
are often associated with a trade-wind inversion [28]. These examples and others highlight
the importance of studying these ecologically significant intermediary systems.

Despite being understudied, a few generalities about ecotones have emerged. First,
ecotones are areas of high species diversity. This is especially true across elevational gradi-
ents where high species richness often occurs between vegetation types. For example, bird
diversity was greatest in ecotonal subalpine habitats in temperate Andes, Chile [29], and
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between tropical and temperate forests in the Sierra Madre Occidental, Mexico [30]. High
species richness in ecotones has been attributed to area, temperature, energy, productivity,
topography, and historical factors [31]. Additionally, ecotones tend to harbor unique species
assemblages. Ecotones can be places where species characteristic of adjacent ecosystems
co-occur [32] alongside species found nowhere else [33]. Importantly, ecotones are corridors
for the movement and migration of organisms [34]. Nutrient cycling [35] and soil microbial
communities [36] are also often distinct in ecotones compared to adjacent habitats. Differing
nutrient dynamics and plant communities may point to underlying feedback processes
that lead to the formation or maintenance of ecotones. Some studies report that ecotones
exhibit increased productivity due to edge effects, though it is noted that natural ecotones
are distinct from anthropogenic edges [37]. Although we focus on natural ecotones, we
recognize that ecotones increasingly form as a result of fragmentation [38,39]. Thus, while
some of these ecotone generalities apply to anthropogenic edges, edges have additional
properties that make them unique cases.

In the Neotropics, most research on ecotones has been conducted on spatial scales
ranging from the ecosystem to landscape and regional scales. Some studies, however, have
focused on individual taxa [40] or organismal responses to the ecotone environment [41].
In addition, most of the research has focused on ecotones in the Amazon, particularly the
forest–savanna ecotone. This body of research emphasizes complex interactions between
vegetation types spanning contemporary responses to climate change, as well as long-term
evolutionary processes shaping the biodiversity and composition of plant communities in
the region. For example, several studies have used an evolutionary approach to analyze
changes in temperature, precipitation patterns, and extreme weather events [12,16,42–45].
These studies provide evidence for the movement of the forest–savanna ecotone at the
expense of forest during drier glacial periods. Other research in this region has focused on
ecological drivers, dynamics, and contemporary impacts of climate change (i.e., [12,46–50]).
This research has analyzed processes that maintain or influence ecotone characteristics
including fire [51], herbivory [48], and soil properties [12]. At large scales, water availability
determines the ecotone location, which is further mediated by local scale fire, herbivory,
and soil properties. There is still debate, however, surrounding the importance of fire-grass
feedback and feedback between shade and fire suppression, as well as how sensitive these
ecotones are to contemporary climate change.

The dominance of Amazonian ecotone research can be attributed to several key fac-
tors. First, this region is a biodiversity hotspot and contains diverse ecotones, including
tropical forest–savanna and tropical dry forest ecotones, rainforest–Andean cloud forest
ecotones, and Cerrado–Atlantic forest ecotones [52]. These ecotones are ecologically sig-
nificant as they exhibit distinct species assemblages and environmental gradients. The
development of ecotones throughout Brazil is facilitated by the presence of soil and mi-
croclimate heterogeneity driven by topography, which enables different vegetation types
to exist in proximity [23,33]. Second, Amazonian ecosystems are highly sensitive to cli-
mate change [53], both in geological and contemporary time scales, making them notable
sites for studying the impacts of disturbances on ecotones. Since the last glacial period,
savannas and dry forests have expanded, contracted, and expanded again, owing to major
climatic shifts [42]. This cycle of biome expansion and contraction along ecotonal regions
may indicate how present and future climate conditions will reshape ecosystems [46].
In response to contemporary drought, for example, rainforests may be replaced by dry
forests or savannas, and cloud forests may move upslope [43,54]. Finally, ecotones in the
Amazon (and elsewhere) play a crucial role in biodiversity conservation because they serve
as corridors for species movement and genetic exchange as species reassortment occurs.
Thus, it has been argued that conservation strategies in this region (and others) should
include ecotones rather than emphasize biomes as homogenous [40,43,55]. The South
Amazon Ecotones Ecological Corridor (Corredor Ecológico dos Ecótonos Sul-Amazônicos),
proposed in 1997 [34], is one such example of conservation efforts specific to ecotones. The
combination of exceptional biodiversity, a high concentration of ecotones across diverse
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biomes, and sensitivity to climate change has positioned the Amazon Basin as a hotspot for
ecotone research.

Another hotspot of ecotone research in Neotropical forests occurs in the Andes. Here,
research has similarly focused on reconstructing vegetation during past ice ages includ-
ing forest–savanna dynamics and floristic composition in tropical montane forests and
ecotones [15,46]. These studies highlight the probable uphill shift of modern montane
forests, showcasing the sensitivity and ecological significance of tropical ecotones in the
Americas. These areas are crucial reservoirs of biodiversity in the face of ongoing global
changes [33,49]. Other research has shown that Cerrado and Chaco ecotones between An-
dean and Atlantic forests acted as refugia, impacting movement; gene flow; and, ultimately,
the evolution of passerines [56]. Collectively, these authors have noted that species do
not respond similarly. Therefore, species-level responses are an important component of
understanding the complexities of species adaptations and the subsequent reassortment of
entire communities and biomes along the ecotone interface.

The study of Neotropical ecotones in other regions is represented by either isolated
case studies [49,57,58] or a focus on ecotones created by anthropogenic disturbances such as
forest–pasture edges [55,59]. We argue that the unique properties of ecotones and their role
in mediating biome shifts make them attractive systems for asking both fundamental and
applied ecological and evolutionary questions, especially in the context of global change.
In the next section, we highlight a few understudied areas.

First, very few studies have explored the role of plant functional traits in ecotones.
One study describes tree wood density for species occurring in the forest–savanna eco-
tone of north central Roraima in northern Brazil [60,61]. Wood density influences growth,
survival, and life history strategies, and it is important for calculating biomass and car-
bon estimates [62]. The Farias et al. [60,61] studies demonstrate an important feature of
studying ecotones—to understand ecotone structure and dynamics, it is important to also
evaluate adjacent habitats as reference points. In other words, it is often insufficient to
study an ecotone in isolation from its adjacent habitats. A trait-based approach is also
useful for understanding the mechanisms that maintain ecotone form and function. For
example, across a New Zealand bog–forest ecotone, a trait-based approach revealed little
differentiation across habitat types, suggesting that although species composition may vary
between an ecotone and its adjacent habitats, plant form and function may not [63]. There
is too little evidence to determine whether ecotones are functionally distinct or similar to
adjacent habitats. Thus, trait-based approaches should focus on whether certain conditions
lead to distinct (e.g., abrupt changes), gradual, or no measurable differences in ecotone
properties relative to their adjacent habitats. Functional traits can also be used to determine
how ecotone species cope with environmental gradients, varying competition, and climate
change. For example, ecotone specialists may have a unique combination of traits that
make them especially vulnerable to changes in environmental conditions—conditions
found only within the ecotone. One approach for testing the degree to which ecotone
species are vulnerable or resistant to change would be to compare traits of species which
are characteristic of adjacent habitats, but which also co-occur in the ecotone.

Seedling dynamics offer another promising area of research for understanding ecotone
dynamics. In the Neotropics, few studies have focused on ecotone seedling dynamics,
though one study quantified seedling establishment, survival rates, and responses to envi-
ronmental conditions at the treeline ecotone between upper montane tropical forests and
alpine ecosystems [64]. Importantly, they showed a strong limitation for tree establishment
in the páramo, maintaining treeline, but high rates of survival at the edge of the forest,
which could lead to slow forest expansion as climate regimes shift. Studying seedling
dynamics in other ecotones could serve as an early detection system for predicting future
forest composition because seedlings are an important stage for niche differentiation [65].
An ecotone understory species composition that greatly differs from canopy or adult species
composition, for example, may foreshadow major shifts in forest composition and function.
The abiotic and biotic drivers of seedling recruitment have been used to predict treeline
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dynamics under climate change in temperate ecotones [66]. In the tropics, the vulner-
ability of seedlings to drought and the importance of the seedling stage for successful
regeneration have been emphasized [67]. These studies demonstrate that understanding
seedling responses to drought can inform forest regeneration and restoration. This may
be especially important in ecotones. For example, in the forest–savanna ecotone of Ghana,
tree seedling recruitment varied, and tree cover variation had species-specific effects on
tree seedling recruitment, which was related to root storage [68]. Of course, studying the
seedling layer requires considering other processes such as succession, herbivory, dispersal,
and disturbances like fire [12].

Finally, there is a notable gap in research on species interactions within ecotones. This
is true globally but could be an especially interesting line of research in tropical forests. The
lack of research on ecological interactions within ecotones is surprising because ecotones
are often contact zones between congeneric species [62], locations where species from
distinct assemblages co-exist, and ecotones can even emerge as a direct result of species
interactions [69]. As a result, ecotones are compelling models for studying competition,
facilitation, and dispersal [70,71]. Studying competitive dynamics in ecotones could provide
insight into species coexistence and species interactions at the edges of their ecological
niches, especially under the added physiological stress caused by the distinct environmental
conditions that characterize ecotones [71]. Other interactions such as pollination and seed
dispersal could reveal biotic factors that favor or hinder plant distributions [41,72,73].
Williams et al. [72] demonstrated that local species richness of small, ground-dwelling
mammals was explained by forest structure across a gradient from tropical rainforests to dry,
sclerophyllous forests and woodlands. These mammals likely play a role in maintaining
forest structure through dispersal. Trophic networks in ecotones may also reveal novel
species interactions. For example, the higher species diversity of hummingbirds and
plants in northwestern Mexico resulted in a more specialized network, but with lower
nestedness and connectedness, indicating that ecotone species may be more vulnerable to
disturbances [30]. In the next section, we outline key regions where addressing these and
other questions could be especially fruitful.

3. Interesting Ecotones and Promising Research Questions
3.1. Mexico’s Pacific Dry Forests as a Biogeographical Bridge between Rainforests and Deserts

The antiquity of western Mexican dry forests (>20 million years before present) [74],
and their unique position between wet forests and deserts, make them a prime location for
studying the role of ecotones in biogeographical processes (Figure 1). This long history and
ecological interface suggest dry forests may have served as a crucial biogeographical bridge
for plant and animal migrations. For example, the fossil record hints at an evolutionary
route from tropical wet forests, through dry forests, to North American deserts [75,76].
Studying Mexican dry forests could thus reveal biogeographical origins of floristic re-
gions (e.g., [77,78]), vegetation shifts over geological timescales (e.g., [74]), adaptation
mechanisms to drought and aridity [79], and potential migration pathways [76]. This
information could be crucial for understanding the resilience of plant and animal commu-
nities experiencing contemporary climate change (like extreme heatwaves and freezes) in
this region.
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Figure 1. The distribution of neotropical dry (brown) and rainforests (green) suggests that ecotones
should occur acrossthousands of kilometers across Mexico, Costa Rica, Colombia, Bolivia, Brazil, and
smaller regions throughout. Ecoregion classifications were based on Olson et al. [80] for tropical and
subtropical dry and moist broadleaf forests.

In addition, across vast stretches of the Americas, Africa, and southern Asia, a com-
pelling pattern emerges: as rainfall decreases and becomes more seasonal, the prevalence
of evergreen rainforests gives way to deciduous dry forests, woodlands, and ultimately
deserts [81,82]. This climatic gradient suggests deciduousness evolved as a water-saving
adaptation to seasonal drought [83]. Furthermore, leaf shedding during harsh conditions is
considered a pre-adaptation to freezing temperatures, facilitating the migration of some
plant lineages to colder climates (e.g., Acer, Celtis, Magnolia, Prunus, Quercus, Rosa, and
Salix), possibly contributing to the development of temperate deciduous forests [84]. Others
argue that these pre-adaptations played only a minor role in the evolution of temperate
deciduous forests [85,86]. That freezing temperatures constrain the northern limits of dry
forest distribution [87,88] also casts doubt on the extent to which tropical deciduousness
facilitated northward expansion into colder regions. Even though temperate deciduousness
and tropical deciduousness likely have quite distinct evolutionary histories and involve
physiologically distinct processes, the emphasis on phenology from a temperate lens (the
‘temperate phenology paradigm’, [89]) limits our current understanding of tropical decidu-
ousness. Thus, studying dry forests as an ecotone between rainforests and deserts could be
used to understand evolutionary drivers of deciduousness and biogeographic patterns of
phenology across large climatic gradients. Future research could emphasize phylogenetic
relationships or divergence times between sister taxa and their leaf habits in tropical dry
forests of northwestern Mexico and temperate or arid regions. Doing so may shed light on
the timing and drivers of diversification, the selective pressures that shaped deciduousness,
and the role deciduousness played in shaping biogeographical formations.
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3.2. Cerrado and Atlantic Rainforest in Brazil: Linking Contemporary to Geological Change

Ecotonal regions between savannas and forests play a crucial role in biodiversity con-
servation. They span extensive areas at the intersections of significant biomes in South
America, Africa, and Oceania, and they are home to a diverse array of species. One of
the most emblematic ecotones in the Neotropics is the ecotone between Cerrado and At-
lantic rainforests where vegetation elements of both systems co-occur. Predictive models
showed that during the Last Glacial Maximum, the suitable areas of forests increased in
this region due to a colder and more humid climate, whereas Middle Holocene forest
cover likely diminished in area, before expanding once more as warmer and more humid
conditions resumed [53]. Even though this is likely the most studied tropical ecotone,
a few major gaps in knowledge persist. For example, the use of different bioindicators
(isotopic, palynological, and phytolithic analysis) may help build more biologically realistic
predictions for understanding expansion and contraction cycles of ecotones in response
to climate change [53]. In addition, understanding local-scale ecotone processes is still
limited, and questions regarding their properties remain unanswered [33]. There is still
debate whether ecotones are distinct vegetation types or a transition between vegetation
types. Souza et al. [33] found that ecotones between Cerrado and forests were distinct
floristic units with a high number of unique species. Floristic and phylogenetic clustering
further indicated that these ecotone environments are distinct vegetation types compared
to core areas. This raises important questions about the characteristics and properties of
ecotones and their ecological and evolutionary roles. Future work is needed to determine
the conditions under which ecotones support habitat specialists rather than a mix of species
from adjacent habitats.

3.3. Tropical Dry Forests and Rainforests: Ecological and Evolutionary Cousins

In the example of Mexico, we positioned the tropical dry forest biome as a large-scale
ecotone between two other biomes, the Sonoran Desert and humid forests. In this final
example, we describe the finer-scale ecotone that occurs at the boundary between tropical
dry forests and rainforests. Ecotones between tropical dry forests and rainforests once
occurred throughout the Pacific slopes of the Sierra Madre in Mexico and throughout
the Cordillera Centroamericana [80] (see Figure 1). Today, most of this ecotone is badly
degraded, making detecting this ecotone difficult. However, there are a few regions where
this ecotone is largely intact—the Sierra de Manantlán Biosphere Reserve in central Mex-
ico [90]; the southern slope of the Sierra Madre del Sur in Oaxaca [91]; and the Área de
Conservación Guanacaste in northwestern Costa Rica [13,58] (Table 1). The Bolivian Chiq-
uitano dry forest is also a notable ecotone, situated between the rainforests of the Amazon
and the deciduous Gran Chaco [92,93]. The dry forest–rainforest ecotone is biologically
important as a corridor for dry season migration [94–96] as well as for upslope migration
due to climate change [97]. This movement of biota reiterates the importance of conserving
ecotones as corridors for continued species reassortment. Because dry forest species are
inherently drought tolerant [98,99], they may outcompete and eventually displace rainfor-
est species, leading to an upslope expansion of the dry forest biome. However, this idea
overlooks the possible built-in drought tolerance of rainforest species [100], the inability of
wind-dispersed dry forest species to disperse upslope, against downslope tradewinds [101]
or other interactions [70]. For example, if deciduousness evolved from rainforest species
per theory [84], some rainforest species likely have a built-in capacity to withstand shifts in
precipitation and temperature [100]. These possible responses make the ecotone between
tropical dry forests and rainforests an especially interesting region for studying complex
interactions between physiological tolerances and competition, especially as related to leaf
habit. For example, dry forest species may outcompete rainforest species through stronger
leaf shedding or more plastic phenological responses. Alternatively, rainforest species with
deciduous strategies (facultative, brevi-deciduous, etc.) may adjust leaf shedding enough
to keep pace with climate shifts. Mapping leaf habit in dry forest–rainforest ecotones and
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adjacent ecosystems can enhance our understanding of plant evolution and adaptation and
inform strategies for conserving these biodiverse ecosystems.

Table 1. Candidate regions for studying tropical dry forest–rainforest ecotones.

Country Region Relevant Studies

Mexico Sierra de Manantlán Biosphere Reserve, central Mexico; the
southern slope of the Sierra Madre del Sur in Oaxaca [90,91]

Costa Rica Área de Conservación Guanacaste, northwestern Costa Rica [13,58,97]

Colombia La Sierra Nevada de Santa Marta; Cauca-Patía Basin;
Magdalena River Basin [102–104]

Bolivia Santa Cruz, Bolivia [93,105]

Brazil Caatinga-Cerrado-Atlantic ranforest ecotones,
northeastern Brazil [23,33]

4. How to Study Ecotones
4.1. Scale

Ecological systems exhibit variability across spatial, temporal, and biological scales,
making scale a central problem in ecology [106,107]. Perhaps no other ecological system
is as fundamentally tied to scale as ecotones [8]. Because ecotones can occur across a
range of spatiotemporal scales, studying and comparing ecotones in a standardized way is
challenging but presents an opportunity to design interdisciplinary approaches that could
serve as a model for other systems (Figure 2). Simulation models are one such approach.
Simulations connect life history traits, like dispersal, to broad-scale patterns of species
abundances, diversity, and distributions across ecotones [108]. Other modeling approaches,
like spatially explicit dynamical models, landscape spatial pattern analyses, and metapopu-
lation models, can examine biotic and abiotic drivers that determine ecotone emergence,
including how species, like ecosystem engineers, influence ecotone formation [69]. These
approaches help to identify thresholds and scales at which different processes operate.
Field-based approaches can also examine patterns and processes across scales and are
particularly well suited for disentangling species–environment relationships. For example,
field-based approaches can determine the interaction between landscape-scale geomorpho-
logical processes and local scale edaphic variation on species distributions [109], or the
interaction between landscape-scale mesoclimate and local scale processes, like fire, on
ecotone properties [57] (Table 2). Because life history strategies help organisms adapt to
their environment based on their performance at different spatiotemporal scales, there are
evolutionary implications of studying scale in ecological studies [107]. This makes ecotones
model systems for the holistic study of organismal to ecosystem ecology and evolution.

Table 2. Scale-related relevant topics for studying ecotones.

Scale Focus Example Studies and Key Findings

Stand Impact of microhabitat on species
composition

The transition zone between tropical moist and dry forests
significantly influenced epiphyte composition (vascular and

non-vascular), but microsite conditions affected only
non-vascular epiphytes [110].

Plant trait variation

Functional trait diversity showed a mosaicity pattern in the
ecotone, indicating that the spatial heterogeneity of

functional traits within transition zones played a crucial role
in defining the ecological dynamics of

bog-forest ecotones [63].
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Table 2. Cont.

Scale Focus Example Studies and Key Findings

Landscape Soil carbon dynamics
Microbial activity and nutrient availability were key drivers

of soil carbon dynamics in a forest–savanna ecotone in
Ghana [111].

Edge effects on plant recruitment

The negative edge effect on seedling recruitment in a forest
and grassland ecotone was attributed to reduced seed
availability, unfavorable post-dispersal conditions for

germination, and seedling establishment [112].

Environmental filters

Plant community trait values shifted in response to soil and
light variation. Low soil nutrients and water in the

coniferous zone were major constraints for most lowland
rainforest species with acquisitive traits [113].

Region

Disturbance

Tropical forests and savannas worldwide may represent
alternative stable states, with their resilience universally

varying based on precipitation. Tree cover responded
non-linearly to changes in precipitation [114].

Speciation

Quaternary climate variations influenced population
divergence including genetic differentiation due to forest
contraction and biome separation between Amazonia and

Atlantic Forests. These climate-driven divergences,
occurring in recent times, also explained speciation and

evolutionary radiation over longer timescales [115].
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Figure 2. Conceptual diagram describing techniques for examining different questions across spatial
and temporal scales in ecotones (modified from [10]).

4.2. Remote Sensing and Sensor Networks

Mapping species distributions and community composition within ecotones is a
necessary first step for developing hypotheses about the underlying mechanisms and
processes that drive ecotone structure and function. Doing so also enables interpretations
of changes in spatial patterns and predictions of future shifts in response to ongoing
climate and other change drivers. For this reason, remote sensing is a powerful tool
for studying ecotones [116]. The application of remote sensing to the study of ecotones
is usually combined with techniques for detecting areas of sharp transitions, or rates of
change of some variable of interest (i.e., NDVI, the Normalized Difference Vegetation Index)
across pixels. Studies also use remote sensing for land cover classification or clustering of
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vegetation types, typically identifying the ecotone as a distinct group. These techniques
work well across abrupt changes in vegetation structure, for example across treeline [117]
or across forest and savanna [118], but how well these methods work across forested areas,
where changes are less evident, should be tested more broadly. Remote sensing imagery
has been available for the past four decades, though the spatial and temporal resolution of
earlier products may be too coarse for detecting ecotones. As a result, remote sensing is best
used to monitor recent changes. In environments undergoing rapid land transformation,
such as many tropical regions, remote sensing can be a useful tool for detecting these recent
changes [119].

One study [58] leveraged seasonal phenological differences detected through remote
sensing to monitor the ecotone for twenty years across a forested elevational gradient
from tropical dry to rainforests in northwestern Costa Rica. In this study, the authors
used spatial synchrony, or correlated temporal fluctuations, to classify forest types based
on temporal phenological signatures. They showed the ecotone location is mediated by
topography and precipitation seasonality; the ecotone is more dendritic along the tropical
dry forest boundary; and while there was some evidence of ecotone upslope migration over
the twenty-year period, inter-annual phenological responses were an important driver of
ecotone dynamics. This study and others demonstrate the promise and challenges of using
remote sensing to detect ecotones [120,121]. Specifically, spatial and temporal changes in
ecotone properties detectable through satellite imagery reflect complex processes including
phenological variation in addition to changes in (canopy) species composition.

Remote sensing techniques also tend to overlook fine-scale vegetation changes or indi-
vidual tree responses, limiting their ability to assess local dynamics within ecotones [119].
However, the continued development of low-cost hyperspectral sensing and LiDAR-
equipped drones are promising approaches for disentangling complex processes at finer
spatial or temporal scales, thereby detecting subtler changes in ecotone forest structure
and composition. Near-surface remote sensing and wireless sensor networks also enable
the study of local to landscape-level processes, for example, using terrestrial backpack
LiDAR [122]. Sensor networks could be deployed to monitor ecotone microclimates to
address whether climate regimes are shifting faster in ecotones compared to their adjacent
habitat types. Sensor networks distributed across different biomes, like the Terrestrial
Ecosystem Research Network in Australia, encompassing tropical rainforests, wet and
dry sclerophyllous forests, grasslands, and semi-arid habitats [123], are ideal locations for
studying ecotones given the existing infrastructure, biophysical modeling, and ongoing
monitoring in distinct habitat types. Together, these examples underscore the importance
of ground-based research [57,124,125], even as technological advances enable studying
processes across spatiotemporal scales.

4.3. Vegetation Dynamics Plot Networks

Despite the rise of technological advances in ecology [126], permanent plots remain
necessary for understanding vegetation dynamics and for disentangling the mechanisms
driving organismal to ecosystem-level changes (Figure 2). Long-term research enabled
by permanent plot networks produces detailed records of tree growth, recruitment, and
mortality, including the timing and cause of death of individual trees [125,127]. Long-
term vegetation dynamics plot data would be especially useful for understanding ecotone
dynamics. In particular, plot data could reveal interacting drivers of ecotone species
composition changes in response to shifting climate regimes or identify plant populations
that may be receding or expanding their distributions into neighboring habitats. A key
benefit of permanent plot networks (like ForestGEO [128]) is the standardized methodology
that facilitates comparisons across spatial and temporal scales. For example, Sterck et al. [93]
used a network of 220 one-hectare plots across Bolivia encompassing a large precipitation
gradient. While not explicitly focused on ecotones, this gradient includes dry forests at
the transition between Amazonian evergreen rainforests in the north and the Gran Chaco
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thorn scrub in the south. This network, and others like it, enables research focusing on
ecotone dynamics.

Permanent plots are also useful for understanding how abiotic factors determine
the establishment and maintenance of ecotones. Ecotone theory largely predicts that the
high species turnover found in ecotones across environmental gradients is associated with
changes in abiotic variables. Thus, discrete ecotones along environmental gradients should
be associated with pronounced environmental discontinuities (e.g., soil parent materials,
abrupt topographic changes) or associated with a history of contrasting disturbances. To test
this theory, quantitative studies of species composition should be replicated across spatial
scales, as achieved by Martin et al. [57] in the Cordillera Central, Dominican Republic.
Here, the authors used vegetation sampling at the plot scale and gradient analyses at
the landscape scale to determine if vegetation change was gradual or discrete across an
elevational gradient. They reported that fire at local scales drove the discreteness of the
ecotone, but that mesoclimate drove fire occurrence patterns.

Forest dynamics plots can also be used to address questions about the underlying
conditions driving tree recruitment and mortality, as well as how these are shaped by biotic
factors in addition to abiotic ones. In subtropical and tropical forests of Yunnan, Southwest
China, Lin and Cao [129] observed that abiotic conditions at forest edges notably affect the
distribution and behavior of soil seed banks and understory vegetation, highlighting how
ecotone characteristics can determine species dynamics. Furthermore, biotic factors such as
interspecies competition among seedlings may outweigh the influence of abiotic factors
like temperature within ecotones [130]. Biotic factors like soil microbial communities may
also play an important role in ecotone dynamics and climate change responses. Networks
like GlobalFungi [131] provide useful resources for the inclusion of soil microbes into
forest dynamics monitoring and other long-term plot networks established within and
across ecotones.

4.4. Dispersal

In addition to biotic interactions like competition, seed dispersal likely contributes
to high species turnover and shapes community structure within ecotones. Yu et al. [132]
reported that rodent-mediated seed dispersal significantly influenced tree species compo-
sition and recruitment dynamics in a pine–oak ecotone between subtropical and warm-
temperate regions in central China. Plant dispersal is a key component of establishment
and, in the context of climate change, an important component of species migration [133].
Thus, studying dispersal is an important component of understanding potential future
shifts in ecotones. Agent-based simulation models, for example, can demonstrate how
different types of plant dispersal (i.e., wind, long distance, gravity, or others) lead to differ-
ent spatial patterns of species moving into new habitats (or not) and, at larger scales, of
ecotones advancing across an environmental gradient [134]. Wind dispersal is one such
example that will likely lead to unique spatial patterns of species movement [135]. This is
especially true where lowland dry forests intersect with upland rainforests along the Pacific
slopes of Mexico and Central America. Here, the upslope migration of wind-dispersed
dry forest species may be constrained by wind patterns. The dominant wind direction is
downslope [136], against the presumed direction of upslope climate tracking. Detailed
mechanistic wind dispersal models [137] could be used to study complex interactions
between atmospheric conditions and plant traits (like dispersal mode) that influence the
spatial pattern of seed dispersal across ecotones.

Finally, in an eco-evolutionary context, demographic population dynamics, gene flow,
and local adaptation are inherently tied to dispersal [138,139] and should also be considered
when studying climate-induced ecotonal species movement or movement of the entire
ecotone (see Table 2). Stochastic patch occupancy models could determine the interplay
between ecological and evolutionary dynamics as related to dispersal [140]. Moreover,
it has recently been suggested that the evolution of dispersal may be determined by
landscape structure and spatial variation; these two factors appear to have more influence
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over dispersal than emigration strategies [141]. This finding points to the importance of
landscape pattern on dispersal in different types of ecotones, as well as to the dispersal
constraint that species may face when moving from fractal landscapes (gradual ecotones) to
mosaic landscapes (transition zones with sharp-edged patches). Ecotones are thus excellent
places for studying metapopulation dynamics and complex eco-evolutionary feedback.
Ecotones could also serve as systems for bridging the gap between theoretical predictions
on the evolution of dispersal and empirical data (as outlined by [142,143]).

4.5. Physiological Responses to Temperature and Drought

Because species’ physiological limits determine ecotone locations [46], studying plant
ecophysiology in the ecotone is key for understanding responses to ongoing and future
climate change. Drought is one of the most severe stressors for species and ecosystems
worldwide, requiring rapid assessment of drought tolerance [144]. An improved mechanis-
tic understanding of drought responses will enhance the accuracy of models predicting
drought-induced forest mortality. Such knowledge is also valuable for land management,
guiding choices about which tree species to plant and optimal tree population density [145].
This is especially relevant in ecotones where many plant species may exist at their hydraulic
safety margins, enabling tests of predictions from future drought scenarios.

Leaf water potential at turgor loss point (TLP), or wilting, effectively predicts drought
responses across biomes [144]. This makes TLP a candidate trait for measuring across
ecotone species. However, assessments of plant ecophysiology (or any other trait) of
ecotone species necessitate the measurement of the same traits in adjacent vegetation types
to contextualize species performance across a range of environments. Moreover, monitoring
the impact of extreme events, such as drought or fire, can reveal species-specific responses.
For example, different species exhibited different physiological responses to an extreme
drought in northern Arizona’s forest–woodland ecotone [146]. Similar approaches in the
tropics could reveal long-lasting changes in species dominance within ecotones, as well as
how these changes may cascade to impact adjacent habitats and other trophic interactions.

Further, the role that phenotypic plasticity and trait variation play in plant responses
to temperature and drought stress can easily be studied in ecotones, providing additional
insights into the resilience and adaptability of plant species. Plants may exhibit a greater
range of intra- and inter-specific trait variation in ecotones due to more variable conditions,
though this has not been well studied [147]. Quantifying relationships between physiologi-
cal trait variation and environmental variation within ecotones and their adjacent habitats
will further advance our understanding of species distributions and species ranges across
environmental gradients and the filters driving community assembly.

While in situ measurement of physiological traits in ecotones and their adjacent
habitats is an important component of testing climate-change-related hypotheses, a compre-
hensive, interdisciplinary approach is more likely to reveal complex interactions between
climate, plant physiological responses, and habitat dynamics. Greenhouse experiments, for
example, could better reveal the drivers of species survival or mortality. Apgaua et al. [148]
exposed seedlings of three Eucalyptus species from different habitats (wet forest, savanna,
and forest–savanna ecotone) to drought, elevated temperature, and a combination of el-
evated temperature and CO2 concentration. In drought conditions, savanna seedlings
survived longer than their forest and ecotone counterparts. The ecotone species had a
heightened sensitivity to elevated temperatures compared to forest and savanna species. To
cope with this sensitivity, the ecotone species increased their stomatal conductance to cool
down leaves. Given that these ecotone species are already close to their moisture threshold,
rising temperatures could elevate their water usage, potentially accelerating mortality dur-
ing severe drought [148]. Experiments like this one, in combination with the measurement
of physiological traits, could be used to predict plant responses to climate change.
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4.6. Environmental DNA Metabarcoding

Environmental DNA (eDNA) metabarcoding is a cutting-edge technique for study-
ing landscape genetics because it is a non-invasive and efficient method for monitoring
biodiversity (including vascular plants communities) through the sampling of soil, water,
or air [149,150]. Because this technique promises to improve the scale of data collection
while reducing effort and investment of resources and time, it is especially useful for
studying communities of organisms that are difficult to tell apart using conventional meth-
ods, such as fungi or bacteria in soil samples. For instance, metabarcoding was used to
characterize ectomycorrhizal fungal communities associated with different tree hosts in a
boreal–temperate ecotone [151]. By analyzing DNA sequences from fungal-colonized root
tips, they were able to identify changes in fungal community composition in response to
warming and precipitation experiments.

EDNA metabarcoding could be valuable for tracking genetic flow across ecotones and
neighboring habitats, providing insights into how species adapt and potentially diverge
while still exchanging genes. In addition, ecotones are often hybrid zones where pairs of
closely related species co-occur, providing opportunities for gene flow and speciation [152]
(Table 2). If ecotones contain unique and endemic species and alleles, it could support the
idea that these areas are significant in the process of speciation. Under this hypothesis,
ecotonal regions would likely host a majority of newly evolved species (neoendemics) that
have not yet expanded their geographical ranges [1]. Nuclear eDNA methods may permit
estimates of population allele frequencies and abundances [153] within ecotones, revealing
the evolutionary processes that have helped to make ecotones biologically distinct systems
of high importance to biodiversity maintenance [33].

5. Conclusions

Neotropical ecotones, such as those between tropical dry and rainforests experiencing
ongoing climate and other anthropogenic disturbances, warrant urgent study. These eco-
tones act as biodiversity reservoirs, concentrating a diverse biota from adjacent ecosystems
within a relatively small area. Given their role in speciation, ecotones might be consid-
ered the true cradles of biodiversity [1]. However, as biomes shift due to climate change,
ecotones will experience similar or greater changes in species composition and other prop-
erties. Their inherent variability makes predicting the outcomes of climate change drivers
on ecotones challenging with traditional models or tools. Therefore, interdisciplinary
approaches are necessary for studying ecotones. Remote sensing, simulations, and other
modeling approaches should be integrated with field-based research, ecophysiological
measurements, and genetic data. Furthermore, studying ecotones alongside their adjoining
ecosystems is essential for understanding ecotone formation and function, as well as for
determining the extent to which ecotones can serve as early indicators of the impacts of
global change. Ecotones are model systems for addressing ecological and evolutionary
questions across hierarchical spatial, temporal, and biological scales. We hope this review
provides a roadmap for such research to integrate long-term monitoring and prediction
with a focus on biodiversity and speciation and ecotone responses to global change.
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