Selection of Suitable Organic Amendments to Balance Agricultural Economic Benefits and Carbon Sequestration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Measurements
2.3.1. Soil Respiration Rate (R) and Carbon Emission (CE)
2.3.2. Wheat Biomass and Grain Yield
2.3.3. Partial Factor Productivity of N (PFPN) and Nitrogen Agronomic Efficiency (NAE)
2.3.4. Carbon Emission Efficiency (CEE) and Ecosystem Carbon Balance
2.3.5. Soil Organic Carbon and the Storage of Organic Carbon
2.4. Economic Benefits Analysis
2.5. TOPSIS Model
2.6. Statistical Analysis
3. Results
3.1. Soil Respiration Rate, Soil Carbon Emission (CE) under Different Treatments
3.2. SOC Stock and Ecosystem Carbon Balance under Different Treatments
3.3. Yield, Biomass, PFPN, and NAE under Different Treatments
3.4. Economic Benefits
3.5. TOPSIS
4. Discussion
4.1. Soil Carbon Emission under Nitrogen Application and Organic Amendments
4.2. SOCs under Nitrogen Application and Organic Amendments
4.3. Yield under Nitrogen Application and Organic Amendments
4.4. The Balance of Economic and Ecological Benefits under Nitrogen Application and Organic Amendments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jha, R.; Zhang, K.; He, Y.; Mendler-Drienyovszki, N.; Magyar-Tábori, K.; Quinet, M.; Germ, M.; Kreft, I.; Meglič, V.; Ikeda, K.; et al. Global nutritional challenges and opportunities: Buckwheat, a potential bridge between nutrient deficiency and food security. Trends Food Sci. Technol. 2024, 145, 104365. [Google Scholar] [CrossRef]
- Darilek, J.L.; Huang, B.; Wang, Z.; Qi, Y.; Zhao, Y.; Sun, W.; Gu, Z.; Shi, X. Changes in soil fertility parameters and the environmental effects in a rapidly developing region of China. Agric. Ecosyst. Environ. 2009, 129, 286–292. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Bijay, S.; Takele, R. Chapter Five—Improving nitrogen use efficiency and reducing nitrogen surplus through best fertilizer nitrogen management in cereal production: The case of India and China. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2023; Volume 178, pp. 233–294. [Google Scholar]
- Li, C.; Wang, G.; Han, Q.; Sun, J.; Ning, H.; Feng, D. Soil moisture and water-nitrogen synergy dominate the change of soil carbon stock in farmland. Agric. Water Manag. 2023, 287, 108424. [Google Scholar] [CrossRef]
- Khan, M.S.A.; Abbott, L.K.; Solaiman, Z.M.; Mawson, P.R.; Waite, I.S.; Jenkins, S.N. Complementary effect of zoo compost with mineral nitrogen fertilisation increases wheat yield and nutrition in a low-nutrient soil. Pedosphere 2022, 32, 339–347. [Google Scholar] [CrossRef]
- Thakur, B.K.; Sharma, S.; Sharma, A.; Shivani; Singh, K.K.; Pal, P.K. Integration of biochar with nitrogen in acidic soil: A strategy to sequester carbon and improve the yield of stevia via altering soil properties and nutrient recycling. J. Environ. Manag. 2023, 345, 118872. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wang, J.; Wu, D.; Li, C.; Wang, L.; Ji, C.; Zhang, Y.; Ai, Y. Optimizing organic amendment applications to enhance carbon sequestration and economic benefits in an infertile sandy soil. J. Environ. Manag. 2022, 303, 114129. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Bradford, M.A.; Wood, S.A. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 2019, 5, 15–32. [Google Scholar] [CrossRef]
- Ma, Y.; Woolf, D.; Fan, M.; Qiao, L.; Li, R.; Lehmann, J. Global crop production increase by soil organic carbon. Nat. Geosci. 2023, 16, 1159–1165. [Google Scholar] [CrossRef]
- Ruangjanda, S.; Iwai, C.B.; Greff, B.; Chang, S.W.; Ravindran, B. Valorization of spent mushroom substrate in combination with agro-residues to improve the nutrient and phytohormone contents of vermicompost. Environ. Res. 2022, 214, 113771. [Google Scholar] [CrossRef]
- Fuchs, W.; Wang, X.; Gabauer, W.; Ortner, M.; Li, Z. Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China. Renew. Sustain. Energy Rev. 2018, 97, 186–199. [Google Scholar] [CrossRef]
- Patel, M.R.; Panwar, N.L. Biochar from agricultural crop residues: Environmental, production, and life cycle assessment overview. Resour. Conserv. Recycl. Adv. 2023, 19, 200173. [Google Scholar] [CrossRef]
- Nelissen, V.; Saha, B.K.; Ruysschaert, G.; Boeckx, P. Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol. Biochem. 2014, 70, 244–255. [Google Scholar] [CrossRef]
- Oladele, S.O.; Adetunji, A.T. Agro-residue biochar and N fertilizer addition mitigates CO2-C emission and stabilized soil organic carbon pools in a rain-fed agricultural cropland. Int. Soil Water Conserv. Res. 2021, 9, 76–86. [Google Scholar] [CrossRef]
- Shaaban, M.; Wu, Y.; Núñez-Delgado, A.; Kuzyakov, Y.; Peng, Q.-A.; Lin, S.; Hu, R. Enzyme activities and organic matter mineralization in response to application of gypsum, manure and rice straw in saline and sodic soils. Environ. Res. 2023, 224, 115393. [Google Scholar] [CrossRef] [PubMed]
- Siedt, M.; Schäffer, A.; Smith, K.E.C.; Nabel, M.; Roß-Nickoll, M.; van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef]
- Cheng, Z.; Guo, J.; Jin, W.; Liu, Z.; Wang, Q.; Zha, L.; Zhou, Z.; Meng, Y. Responses of SOC, labile SOC fractions, and amino sugars to different organic amendments in a coastal saline-alkali soil. Soil Tillage. Res. 2024, 239, 106051. [Google Scholar] [CrossRef]
- Malone, Z.; Berhe, A.A.; Ryals, R. Impacts of organic matter amendments on urban soil carbon and soil quality: A meta-analysis. J. Clean Prod. 2023, 419, 138148. [Google Scholar] [CrossRef]
- Sonsri, K.; Naruse, H.; Watanabe, A. Mechanisms controlling the stabilization of soil organic matter in agricultural soils as amended with contrasting organic amendments: Insights based on physical fractionation coupled with 13C NMR spectroscopy. Sci. Total Environ. 2022, 825, 153853. [Google Scholar] [CrossRef]
- Canatoy, R.C.; Jeong, S.T.; Cho, S.R.; Galgo, S.J.C.; Kim, P.J. Importance of biochar as a key amendment to convert rice paddy into carbon negative. Sci. Total Environ. 2023, 873, 162331. [Google Scholar] [CrossRef]
- Doblas-Rodrigo, Á.; Gallejones, P.; Artetxe, A.; Merino, P. Role of livestock-derived amendments in soil organic carbon stocks in forage crops. Sci. Total Environ. 2023, 901, 165931. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.; Du, C.; Liu, Y.; Xu, X.; Ejaz, I.; Hu, N.; Zhao, X.; Zhang, Y.; Wang, Z.; et al. Trade-off between soil carbon emission and sequestration for winter wheat under reduced irrigation: The role of soil amendments. Agric. Ecosyst. Environ. 2023, 352, 108535. [Google Scholar] [CrossRef]
- Zhang, X.; Qian, H.; Hua, K.; Chen, H.; Deng, A.; Song, Z.; Zhang, J.; Raheem, A.; Danso, F.; Wang, D.; et al. Organic amendments increase crop yield while mitigating greenhouse gas emissions from the perspective of carbon fees in a soybean-wheat system. Agr. Ecosyst. Environ. 2022, 325, 107736. [Google Scholar] [CrossRef]
- Yi, X.; Ji, L.; Hu, Z.; Yang, X.; Li, H.; Jiang, Y.; He, T.; Yang, Y.; Ni, K.; Ruan, J. Organic amendments improved soil quality and reduced ecological risks of heavy metals in a long-term tea plantation field trial on an Alfisol. Sci. Total Environ. 2022, 838, 156017. [Google Scholar] [CrossRef]
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Thornton, S.F.; Fenton, O.; Malina, G.; Szara, E. Restoration of soil quality using biochar and brown coal waste: A review. Sci. Total Environ. 2020, 722, 137852. [Google Scholar] [CrossRef] [PubMed]
- Mwaura, G.G.; Kiboi, M.N.; Mugwe, J.N.; Nicolay, G.; Bett, E.K.; Muriuki, A.; Musafiri, C.M.; Ngetich, F.K. Economic evaluation and socioeconomic drivers influencing farmers’ perceptions on benefits of using organic inputs technologies in Upper Eastern Kenya. Environ. Chall. 2021, 5, 100282. [Google Scholar] [CrossRef]
- Raimondo, M.; Di Rauso Simeone, G.; Coppola, G.P.; Zaccardelli, M.; Caracciolo, F.; Rao, M.A. Economic benefits and soil improvement: Impacts of vermicompost use in spinach production through industrial symbiosis. J. Agric. Food Res. 2023, 14, 100845. [Google Scholar] [CrossRef]
- Zhai, L.; Wang, Z.; Zhai, Y.; Zhang, L.; Zheng, M.; Yao, H.; Lv, L.; Shen, H.; Zhang, J.; Yao, Y.; et al. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil Tillage. Res. 2022, 217, 105287. [Google Scholar] [CrossRef]
- Liu, J.; Si, Z.; Wu, L.; Chen, J.; Gao, Y.; Duan, A. Using stable isotopes to quantify root water uptake under a new planting pattern of high-low seed beds cultivation in winter wheat. Soil Tillage. Res. 2021, 205, 104816. [Google Scholar] [CrossRef]
- Su, Y.; Yu, M.; Xi, H.; Lv, J.; Ma, Z.; Kou, C.; Shen, A. Soil microbial community shifts with long-term of different straw return in wheat-corn rotation system. Sci. Rep. 2020, 10, 6360. [Google Scholar] [CrossRef]
- Li, J.-Y.; Chen, P.; Li, Z.-G.; Li, L.-Y.; Zhang, R.-Q.; Hu, W.; Liu, Y. Soil aggregate-associated organic carbon mineralization and its driving factors in rhizosphere soil. Soil Biol. Biochem. 2023, 186, 109182. [Google Scholar] [CrossRef]
- Zhang, Q.; Men, X.; Hui, C.; Ge, F.; Ouyang, F. Wheat yield losses from pests and pathogens in China. Agric. Ecosyst. Environ. 2022, 326, 107821. [Google Scholar] [CrossRef]
- Chen, J.; Wang, G.; Hamani, A.K.M.; Amin, A.S.; Sun, W.; Zhang, Y.; Liu, Z.; Gao, Y. Optimization of Nitrogen Fertilizer Application with Climate-Smart Agriculture in the North China Plain. Water 2021, 13, 3415. [Google Scholar] [CrossRef]
- Shen, X.; Wang, G.; Tilahun Zeleke, K.; Si, Z.; Chen, J.; Gao, Y. Crop Water Production Functions for Winter Wheat with Drip Fertigation in the North China Plain. Agronomy 2020, 10, 876. [Google Scholar] [CrossRef]
- Herbst, M.; Pohlig, P.; Graf, A.; Weihermüller, L.; Schmidt, M.; Vanderborght, J.; Vereecken, H. Quantification of water stress induced within-field variability of carbon dioxide fluxes in a sugar beet stand. Agric. For. Meteorol. 2021, 297, 108242. [Google Scholar] [CrossRef]
- Lv, D.; Liu, Y.; Wang, X.; Wang, X.; Feng, H.; Guo, X.; Li, C. Characteristics of soil CO2 emission and ecosystem carbon balance in wheat-maize rotation field with 4-year consecutive application of two lignite-derived humic acids. Chemosphere 2022, 309, 136654. [Google Scholar] [CrossRef] [PubMed]
- Si, Z.; Liu, J.; Wu, L.; Li, S.; Wang, G.; Yu, J.; Gao, Y.; Duan, A. A high-yield and high-efficiency cultivation pattern of winter wheat in North China Plain: High-low seedbed cultivation. Field Crop. Res. 2023, 300, 109010. [Google Scholar] [CrossRef]
- Cai, Z.C.; Qin, S.W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China. Geoderma 2006, 136, 708–715. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, C.; Zhang, P.; Jia, Z. Long-term effects of plastic mulching on soil structure, organic carbon and yield of rainfed maize. Agri. Water Manag. 2023, 287, 108447. [Google Scholar] [CrossRef]
- Liu, J.; Si, Z.; Wu, L.; Shen, X.; Gao, Y.; Duan, A. High-low seedbed cultivation drives the efficient utilization of key production resources and the improvement of wheat productivity in the North China Plain. Agri. Water Manag. 2023, 285, 108357. [Google Scholar] [CrossRef]
- Rane, N.L.; Achari, A.; Choudhary, S.P.; Mallick, S.K.; Pande, C.B.; Srivastava, A.; Moharir, K.N. A decision framework for potential dam site selection using GIS, MIF and TOPSIS in Ulhas river basin, India. J. Clean. Prod. 2023, 423, 138890. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Enguang, N.; Khan, A.; Feng, Y.; Yang, G.; Wang, H. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Total Environ. 2020, 741, 140488. [Google Scholar] [CrossRef]
- Fagodiya, R.K.; Pathak, H.; Bhatia, A.; Jain, N.; Kumar, A.; Malyan, S.K. Global warming impacts of nitrogen use in agriculture: An assessment for India since 1960. Carbon Manag. 2020, 11, 291–301. [Google Scholar] [CrossRef]
- Li, L.-J.; You, M.-Y.; Shi, H.-A.; Ding, X.-L.; Qiao, Y.-F.; Han, X.-Z. Soil CO2 emissions from a cultivated Mollisol: Effects of organic amendments, soil temperature, and moisture. Eur. J. Soil Biol. 2013, 55, 83–90. [Google Scholar] [CrossRef]
- Wang, L.; Yang, K.; Gao, C.; Zhu, L. Effect and mechanism of biochar on CO2 and N2O emissions under different nitrogen fertilization gradient from an acidic soil. Sci. Total Environ. 2020, 747, 141265. [Google Scholar] [CrossRef] [PubMed]
- Si, Z.; Zain, M.; Mehmood, F.; Wang, G.; Gao, Y.; Duan, A. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agri. Water Manag. 2020, 231, 106002. [Google Scholar] [CrossRef]
- Sainju, U.M.; Ghimire, R.; Dangi, S. Soil carbon dioxide and methane emissions and carbon balance with crop rotation and nitrogen fertilization. Sci. Total Environ. 2021, 775, 145902. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.; Zhang, Y.; Shi, Y. Finding the fertilization optimization to balance grain yield and soil greenhouse gas emissions under water-saving irrigation. Soil Tillage Res. 2021, 214, 105167. [Google Scholar] [CrossRef]
- Bicharanloo, B.; Bagheri Shirvan, M.; Keitel, C.; Dijkstra, F.A. Rhizodeposition mediates the effect of nitrogen and phosphorous availability on microbial carbon use efficiency and turnover rate. Soil Biol. Biochem. 2020, 142, 107705. [Google Scholar] [CrossRef]
- Zhang, S.; Fang, Y.; Luo, Y.; Li, Y.; Ge, T.; Wang, Y.; Wang, H.; Yu, B.; Song, X.; Chen, J.; et al. Linking soil carbon availability, microbial community composition and enzyme activities to organic carbon mineralization of a bamboo forest soil amended with pyrogenic and fresh organic matter. Sci. Total Environ. 2021, 801, 149717. [Google Scholar] [CrossRef]
- Sawada, K.; Inagaki, Y.; Toyota, K. Priming effects induced by C and N additions in relation to microbial biomass turnover in Japanese forest soils. Appl. Soil Ecol. 2021, 162, 103884. [Google Scholar] [CrossRef]
- Soria, R.; Rodríguez-Berbel, N.; Sánchez-Cañete, E.P.; Villafuerte, A.B.; Ortega, R.; Miralles, I. Organic amendments from recycled waste promote short-term carbon sequestration of restored soils in drylands. J. Environ. Manag. 2023, 327, 116873. [Google Scholar] [CrossRef]
- Lin, X.; Wang, N.; Li, F.; Yan, B.; Pan, J.; Jiang, S.; Peng, H.; Chen, A.; Wu, G.; Zhang, J.; et al. Evaluation of the synergistic effects of biochar and biogas residue on CO2 and CH4 emission, functional genes, and enzyme activity during straw composting. Bioresour. Technol. 2022, 360, 127608. [Google Scholar] [CrossRef]
- Sousa-Souto, L.; Santos, D.C.d.J.; Ambrogi, B.G.; Santos, M.J.C.d.; Guerra, M.B.B.; Pereira-Filho, E.R. Increased CO2 emission and organic matter decomposition by leaf-cutting ant nests in a coastal environment. Soil Biol. Biochem. 2012, 44, 21–25. [Google Scholar] [CrossRef]
- Gao, B.; Li, Y.; Zheng, N.; Liu, C.; Ren, H.; Yao, H. Interactive effects of microplastics, biochar, and earthworms on CO2 and N2O emissions and microbial functional genes in vegetable-growing soil. Environ. Res. 2022, 213, 113728. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yang, S.; He, Q.; Chen, Y.; Zheng, F.; Zhou, H.; Hou, C.; Du, B.; Jiang, S.; Li, H. Improving benzo(a)pyrene biodegradation in soil with wheat straw-derived biochar amendment: Performance, microbial quantity, CO2 emission, and soil properties. J. Anal. Appl. Pyrolysis 2021, 156, 105132. [Google Scholar] [CrossRef]
- Ameloot, N.; De Neve, S.; Jegajeevagan, K.; Yildiz, G.; Buchan, D.; Funkuin, Y.N.; Prins, W.; Bouckaert, L.; Sleutel, S. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol. Biochem. 2013, 57, 401–410. [Google Scholar] [CrossRef]
- Zhang, X.-b.; Wu, L.-h.; Sun, N.; Ding, X.-s.; Li, J.-w.; Wang, B.-r.; Li, D.-c. Soil CO2 and N2O Emissions in Maize Growing Season Under Different Fertilizer Regimes in an Upland Red Soil Region of South China. J. Integr. Agric. 2014, 13, 604–614. [Google Scholar] [CrossRef]
- Frimpong, K.A.; Abban-Baidoo, E.; Marschner, B. Can combined compost and biochar application improve the quality of a highly weathered coastal savanna soil? Heliyon 2021, 7, e07089. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zhou, X.; He, Y.; Liu, R.; Yao, Y.; Zhou, G.; Chen, H.; Zhou, L.; Fu, Y.; Bai, S.H. Co-application of biochar and organic amendments on soil greenhouse gas emissions: A meta-analysis. Sci. Total Environ. 2023, 897, 166171. [Google Scholar] [CrossRef]
- Luo, L.; Yu, J.; Zhu, L.; Gikas, P.; He, Y.; Xiao, Y.; Deng, S.; Zhang, Y.; Zhang, S.; Zhou, W.; et al. Nitrogen addition may promote soil organic carbon storage and CO2 emission but reduce dissolved organic carbon in Zoige peatland. J. Environ. Manag. 2022, 324, 116376. [Google Scholar] [CrossRef]
- Srivastava, P.; Singh, P.K.; Singh, R.; Bhadouria, R.; Singh, D.K.; Singh, S.; Afreen, T.; Tripathi, S.; Singh, P.; Singh, H.; et al. Relative availability of inorganic N-pools shifts under land use change: An unexplored variable in soil carbon dynamics. Ecol. Indic. 2016, 64, 228–236. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, X.; Xin, X.; Yang, W.; Zhu, A.; Yang, J.; Li, M. Soil organic carbon and nitrogen fractions as affected by straw and nitrogen management on the North China Plain. Agric. Ecosyst. Environ. 2023, 342, 108248. [Google Scholar] [CrossRef]
- Tang, S.; Liu, T.; Hu, R.; Xu, X.; Wu, Y.; Meng, L.; Hattori, S.; Tawaraya, K.; Cheng, W. Twelve-year conversion of rice paddy to wetland does not alter SOC content but decreases C decomposition and N mineralization in Japan. J. Environ. Manag. 2024, 354, 120319. [Google Scholar] [CrossRef]
- Bragazza, L.; Buttler, A.; Habermacher, J.; Brancaleoni, L.; Gerdol, R.; Fritze, H.; Hanajík, P.; Laiho, R.; Johnson, D. High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Glob. Change Biol. 2012, 18, 1163–1172. [Google Scholar] [CrossRef]
- Liu, H.Y.; Huang, N.; Zhao, C.M.; Li, J.H. Responses of carbon cycling and soil organic carbon content to nitrogen addition in grasslands globally. Soil Biol. Biochem. 2023, 186, 109164. [Google Scholar] [CrossRef]
- Li, J.-f.; Zhong, F.-f. Nitrogen release and re-adsorption dynamics on crop straw residue during straw decomposition in an Alfisol. J. Integr. Agric. 2021, 20, 248–259. [Google Scholar] [CrossRef]
- Moore, C.E.; Meacham-Hensold, K.; Lemonnier, P.; Slattery, R.A.; Benjamin, C.; Bernacchi, C.J.; Lawson, T.; Cavanagh, A.P. The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. J. Exp. Bot. 2021, 72, 2822–2844. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Y.; Ge, T.; Zhao, M.; Ge, J.; Han, G. Nitrogen fertilization enhances organic carbon accumulation in topsoil mainly by improving photosynthetic C assimilation in a salt marsh. J. Environ. Manag. 2024, 351, 119862. [Google Scholar] [CrossRef]
- Malik, A.A.; Martiny, J.B.H.; Brodie, E.L.; Martiny, A.C.; Treseder, K.K.; Allison, S.D. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020, 14, 1–9. [Google Scholar] [CrossRef]
- Li, X.; Zhu, W.; Xu, F.; Du, J.; Tian, X.; Shi, J.; Wei, G. Organic amendments affect soil organic carbon sequestration and fractions in fields with long-term contrasting nitrogen applications. Agric. Ecosyst. Environ. 2021, 322, 107643. [Google Scholar] [CrossRef]
- Chen, H.; Hao, Y.; Ma, Y.; Wang, C.; Liu, M.; Mehmood, I.; Fan, M.; Plante, A.F. Maize straw-based organic amendments and nitrogen fertilizer effects on soil and aggregate-associated carbon and nitrogen. Geoderma 2024, 443, 116820. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Frey, S.D.; Grandy, A.S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 2016, 7, 13630. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, H.; Shar, A.G.; Liu, J.; Chen, Y.; Chu, S.; Tian, X. Enhancing organic and inorganic carbon sequestration in calcareous soil by the combination of wheat straw and wood ash and/or lime. PLoS ONE 2018, 13, e0205361. [Google Scholar] [CrossRef]
- Xue, Q.; Zhu, Z.; Musick, J.T.; Stewart, B.A.; Dusek, D.A. Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. J. Plant Physiol. 2006, 163, 154–164. [Google Scholar] [CrossRef]
- Kwoczynski, Z.; Burdová, H.; Al Souki, K.S.; Čmelík, J. Extracted rapeseed meal biochar combined with digestate as a soil amendment: Effect on lettuce (Lactuca sativa L.) biomass yield and concentration of bioavailable element fraction in the soil. Sci. Hortic. 2024, 329, 113041. [Google Scholar] [CrossRef]
- Guo, S.; Pan, J.; Zhai, L.; Khoshnevisan, B.; Wu, S.; Wang, H.; Yang, B.; Liu, H.; Lei, B. The reactive nitrogen loss and GHG emissions from a maize system after a long-term livestock manure incorporation in the North China Plain. Sci. Total Environ. 2020, 720, 137558. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhang, W.; Liu, X.; Wang, Q.; Liu, B.; Mei, X. Grain yield and water productivity of winter wheat controlled by irrigation regime and manure substitution in the North China Plain. Agric. Water Manag. 2024, 295, 108731. [Google Scholar] [CrossRef]
- Lu, J.; Hu, T.; Geng, C.; Cui, X.; Fan, J.; Zhang, F. Response of yield, yield components and water-nitrogen use efficiency of winter wheat to different drip fertigation regimes in Northwest China. Agric. Water Manag. 2021, 255, 107034. [Google Scholar] [CrossRef]
- Rieger, S.; Richner, W.; Streit, B.; Frossard, E.; Liedgens, M. Growth, yield, and yield components of winter wheat and the effects of tillage intensity, preceding crops, and N fertilisation. Eur. J. Agron. 2008, 28, 405–411. [Google Scholar] [CrossRef]
- Koppensteiner, L.J.; Kaul, H.-P.; Piepho, H.-P.; Barta, N.; Euteneuer, P.; Bernas, J.; Klimek-Kopyra, A.; Gronauer, A.; Neugschwandtner, R.W. Yield and yield components of facultative wheat are affected by sowing time, nitrogen fertilization and environment. Eur. J. Agron. 2022, 140, 126591. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Hu, N.; Li, W.; Qin, W.; Li, J.; Gao, Y.; Liu, Y.; Sun, Z.; Yu, K.; et al. Spike growth affects spike fertility through the number of florets with green anthers before floret abortion in wheat. Field Crop. Res. 2021, 260, 108007. [Google Scholar] [CrossRef]
- Gill, J.S.; Sale, P.W.G.; Tang, C. Amelioration of dense sodic subsoil using organic amendments increases wheat yield more than using gypsum in a high rainfall zone of southern Australia. Field Crop. Res. 2008, 107, 265–275. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, J.; Zhu, Y. Evaluating impacts of climate change on net ecosystem productivity (NEP) of global different forest types based on an individual tree-based model FORCCHN and remote sensing. Glob. Planet. Chang. 2019, 182, 103010. [Google Scholar] [CrossRef]
- An, N.; Lu, N.; Wang, M.; Chen, Y.; Wu, F.; Fu, B. Plant size traits are key contributors in the spatial variation of net primary productivity across terrestrial biomes in China. Sci. Total Environ. 2024, 923, 171412. [Google Scholar] [CrossRef]
- Zeeshan, M.; Wenjun, Z.; Chuansheng, W.; Yan, L.; Azeez, P.A.; Qinghai, S.; Yuntong, L.; Yiping, Z.; Zhiyun, L.; Liqing, S. Soil heterotrophic respiration in response to rising temperature and moisture along an altitudinal gradient in a subtropical forest ecosystem, Southwest China. Sci. Total Environ. 2022, 816, 151643. [Google Scholar] [CrossRef]
- Mehmood, F.; Wang, G.; Abubakar, S.A.; Zain, M.; Rahman, S.U.; Gao, Y.; Duan, A. Optimizing irrigation management sustained grain yield, crop water productivity, and mitigated greenhouse gas emissions from the winter wheat field in North China Plain. Agric. Water Manag. 2023, 290, 108599. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, J.; Xiong, H. Effect of deficit irrigation on soil CO2 and N2O emissions and winter wheat yield. J. Clean. Prod. 2021, 279, 123718. [Google Scholar] [CrossRef]
Treatments | Exchangeable Potassium | Available Phosphorus | Total Nitrogen | Soil Organic Carbon |
---|---|---|---|---|
mg kg−1 | mg kg−1 | mg g−1 | g kg−1 | |
N0 | 287.07 | 23.61 | 0.79 | 8.89 |
N240 | 364.76 | 21.11 | 1.04 | 11.32 |
Nitrogen | Organic Amendments | 2021–2022 | 2022–2023 |
---|---|---|---|
N0 | Manure/(kg ha−1) | 2453.7 | 3797.5 |
Mushroom residue/(kg ha−1) | 196.3 | 303.8 | |
Biochar/(kg ha−1) | 1665 | 2576.9 | |
N240 | Manure/(kg ha−1) | 4842.4 | 5708.5 |
Mushroom residue/(kg ha−1) | 387.4 | 456.7 | |
Biochar/(kg ha−1) | 3286 | 3873.7 |
Components | Unit | Price | Input Value |
---|---|---|---|
CNY Unit−1 | Unit ha−1 | ||
Labor | hour | 20 | 225 |
Winter seed | kg | 7 | 15 |
N fertilizer | kg | 2.9 | 240 |
P fertilizer | kg | 1.2 | 120 |
K fertilizer | kg | 3.8 | 105 |
Manure | kg | 0.5 | 9334.6 |
Fungi residue | kg | 0.2 | 1680.2 |
Biochar | kg | 0.5 | 5700.8 |
Insecticide | kg | 150.0 | 1.1 |
Herbicides | kg | 550.0 | 0.6 |
Fungicides | kg | 820.0 | 1.4 |
Machinery | kg | 2100.0 | 1.0 |
Grain | kg | 2.9 | 225.0 |
Growing Season | Treatments | Input Values of Consumable Items | Output Values of Grain Yield/CNY ha−1 | Output/Input | Net Income/CNY ha−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
/CNY ha−1 | |||||||||||||
Seed | Irrigation | Fertilizer | Labor | Pesticide | Machinery | Organic Amendment | Total | ||||||
2021–2022 | N0 | Straw | 1575 | 487 | 1667 | 4200 | 1697 | 2025 | 0 | 11,651 | 7521 | 0.7 | −4130 |
Manure | 1575 | 487 | 1667 | 4200 | 1697 | 2025 | 2454 | 14,105 | 7522 | 0.5 | −6583 | ||
Mushroom residue | 1575 | 487 | 1667 | 4200 | 1697 | 2025 | 196 | 11,848 | 6945 | 0.6 | −4903 | ||
Biochar | 1575 | 487 | 1667 | 4200 | 1697 | 2025 | 1665 | 13,316 | 8524 | 0.6 | −4792 | ||
N240 | Straw | 1575 | 487 | 3180 | 4200 | 1697 | 2025 | 0 | 13,164 | 25,902 | 2.0 | 12,738 | |
Manure | 1575 | 487 | 3180 | 4200 | 1697 | 2025 | 4842 | 18,007 | 25,980 | 1.4 | 7973 | ||
Mushroom residue | 1575 | 487 | 3180 | 4200 | 1697 | 2025 | 387 | 13,552 | 26,449 | 2.0 | 12,897 | ||
Biochar | 1575 | 487 | 3180 | 4200 | 1697 | 2025 | 3286 | 16,450 | 29,285 | 1.8 | 12,834 | ||
2022–2023 | N0 | Straw | 1575 | 487 | 1695 | 4800 | 1697 | 2175 | 0 | 12,429 | 6461 | 0.5 | −5967 |
Manure | 1575 | 487 | 1695 | 4800 | 1697 | 2175 | 3798 | 16,226 | 6559 | 0.4 | −9667 | ||
Mushroom residue | 1575 | 487 | 1695 | 4800 | 1697 | 2175 | 304 | 12,733 | 5969 | 0.5 | −6763 | ||
Biochar | 1575 | 487 | 1695 | 4800 | 1697 | 2175 | 2577 | 15,006 | 6718 | 0.5 | −8287 | ||
N240 | Straw | 1575 | 487 | 3437 | 4800 | 1697 | 2175 | 0 | 14,171 | 23,085 | 1.6 | 8914 | |
Manure | 1575 | 487 | 3437 | 4800 | 1697 | 2175 | 5709 | 19,879 | 23,425 | 1.2 | 3546 | ||
Mushroom residue | 1575 | 487 | 3437 | 4800 | 1697 | 2175 | 457 | 14,628 | 24,975 | 1.7 | 10,347 | ||
Biochar | 1575 | 487 | 3437 | 4800 | 1697 | 2175 | 3874 | 18,045 | 24,241 | 1.3 | 6196 |
Nitrogen | Organic Amendment | 2021–2022 | 2022–2023 | ||||||
---|---|---|---|---|---|---|---|---|---|
D+ | D− | GI | Rank | D+ | D− | GI | Rank | ||
N0 | Straw | 0.129 | 0.061 | 0.321 | 5 | 0.154 | 0.029 | 0.159 | 5 |
Manure | 0.147 | 0.037 | 0.199 | 8 | 0.169 | 0.015 | 0.081 | 8 | |
Fungi residue | 0.143 | 0.040 | 0.221 | 7 | 0.162 | 0.022 | 0.122 | 6 | |
Biochar | 0.134 | 0.048 | 0.265 | 6 | 0.166 | 0.019 | 0.104 | 7 | |
N240 | Straw | 0.042 | 0.202 | 0.827 | 2 | 0.031 | 0.154 | 0.835 | 3 |
Manure | 0.040 | 0.183 | 0.819 | 3 | 0.050 | 0.138 | 0.733 | 4 | |
Fungi residue | 0.032 | 0.201 | 0.864 | 1 | 0.019 | 0.167 | 0.896 | 2 | |
Biochar | 0.050 | 0.222 | 0.815 | 4 | 0.018 | 0.167 | 0.902 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Liu, J.; Ma, S.; Wu, X.; Fu, Y.; Gao, Y. Selection of Suitable Organic Amendments to Balance Agricultural Economic Benefits and Carbon Sequestration. Plants 2024, 13, 2428. https://doi.org/10.3390/plants13172428
Cao H, Liu J, Ma S, Wu X, Fu Y, Gao Y. Selection of Suitable Organic Amendments to Balance Agricultural Economic Benefits and Carbon Sequestration. Plants. 2024; 13(17):2428. https://doi.org/10.3390/plants13172428
Chicago/Turabian StyleCao, Hui, Junming Liu, Shoutian Ma, Xiaolei Wu, Yuanyuan Fu, and Yang Gao. 2024. "Selection of Suitable Organic Amendments to Balance Agricultural Economic Benefits and Carbon Sequestration" Plants 13, no. 17: 2428. https://doi.org/10.3390/plants13172428
APA StyleCao, H., Liu, J., Ma, S., Wu, X., Fu, Y., & Gao, Y. (2024). Selection of Suitable Organic Amendments to Balance Agricultural Economic Benefits and Carbon Sequestration. Plants, 13(17), 2428. https://doi.org/10.3390/plants13172428