Soil Seed Bank of the Alpine Endemic Carnation, Dianthus pavonius Tausch (Piedmont, Italy), a Useful Model for the Study of Host–Pathogen Dynamics
Abstract
:1. Introduction
2. Results
2.1. Germination in the Lab
2.2. Germination of Seeds Sown at the Ground Level
2.3. Long-Term Viability of Seeds Buried in the Soil
2.3.1. Germination of Buried Seeds
2.3.2. Seedlings from Buried Seeds
2.3.3. Viability of Intact Buried Seeds
3. Discussion
Consequences for the Host Population Biology and Host–Pathogen Dynamics
4. Materials and Methods
4.1. Check of Germination in the Lab
4.2. Check of Germination after Seed Sowing at the Ground Level
4.3. Check of Long-Term Viability of Seeds Buried in the Soil
Recovering the Seed Bags Buried in the Soil
- Germinated seed;
- Seedling associated with a seed coat;
- Ungerminated seed (subcategorized as viable or inviable).
4.4. Data Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shang, Z.; Xu, P.; Ren, G.; Long, R. Review of soil seed bank studies—Soil seed bank function in natural ecosystem. Acta Prataculturae Sin. 2009, 18, 175–183. [Google Scholar]
- McGraw, J.B.; Vavrek, M.C. The role of buried viable seeds in arctic and alpine plant communities. In Ecology of Soil Seed Banks; Leck, M.A., Parker, V.T., Simpson, R.L., Eds.; Academic Press: Boston, MA, USA, 1989; pp. 91–105. [Google Scholar]
- Tonsor, S.J.; Kalisz, S.; Fisher, J.; Holtsford, T.P. A life-history based study of population genetic structure: Seed bank to adults in Plantago lanceolata. Evolution 1993, 47, 833–843. [Google Scholar]
- Springthorpe, V.; Penfield, S. Flowering time and seed dormancy control use external coincidence to generate life history strategy. eLife 2015, 4, e05557. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peroni, P.A.; Armstrong, R.T. Density, dispersion, and population genetics of a Silene latifolia seed bank from southwestern Virginia. J. Torrey Bot. Soc. 2001, 128, 400–406. [Google Scholar] [CrossRef]
- Schulz, B.; Durka, W.; Danihelka, J.; Eckstein, R.L. Differential role of a persistent seed bank for genetic variation in early vs. late successional stages. PLoS ONE 2018, 13, e0209840. [Google Scholar] [CrossRef]
- Cain, M.L.; Milligan, B.G.; Strand, A.E. Long-distance dispersal in plant populations. Am. J. Bot. 2000, 87, 1217–1227. [Google Scholar] [CrossRef]
- Theurillat, J.-P.; Guisan, A. Potential impact of climate change on vegetation in the European Alps: A review. Clim. Chang. 2001, 50, 77–109. [Google Scholar] [CrossRef]
- Cole, C.T. Genetic variation in rare and common plants. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 213–237. [Google Scholar] [CrossRef]
- Wen, L.; Dong, S.K.; Li, Y.Y.; Sherman, R.; Shi, J.J.; Liu, D.M.; Wang, Y.L.; Ma, Y.S.; Zhu, L. The effects of biotic and abiotic factors on the spatial heterogeneity of alpine grassland vegetation at a small scale on the Qinghai–Tibet Plateau (QTP), China. Environ. Monit. Assess. 2013, 185, 8051–8064. [Google Scholar] [CrossRef]
- Templeton, A.R.; Levin, D.A. Evolutionary consequences of seed pools. Am. Nat. 1979, 114, 232–249. [Google Scholar] [CrossRef]
- Saatkamp, A.; Poschlod, P.; Venable, L. The functional role of soil seed banks in natural communities. In Seeds: The Ecology of Regeneration in Plant Communities, 3rd ed.; Gallagher, R., Ed.; CABI: Wallingford, UK, 2014; pp. 263–295. [Google Scholar]
- Levin, D.A. The seed bank as a source of genetic novelty in plants. Am. Nat. 1990, 135, 563–572. [Google Scholar] [CrossRef]
- Morgan, A.D.; Koskella, B. Coevolution of host and pathogen. In Genetics and Evolution of Infectious Disease, 2nd ed.; Tibayrenc, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 147–171. [Google Scholar]
- Karasov, T.L.; Horton, M.W.; Bergelson, J. Genomic variability as a driver of plant-pathogen coevolution? Curr. Opin. Plant Biol. 2014, 18, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Jousimo, J.; Tack, A.J.; Ovaskainen, O.; Mononen, T.; Susi, H.; Tollenaere, C.; Laine, A.L. Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 2014, 344, 1289–1293. [Google Scholar] [CrossRef]
- Buckingham, L.J.; Ashby, B. Coevolutionary theory of hosts and parasites. J. Evol. Biol. 2022, 35, 205–224. [Google Scholar] [CrossRef]
- Clay, K.; Kover, P.X. The Red Queen Hypothesis and the plant/pathogen interactions. Annu. Rev. Phytopathol. 1996, 34, 29–50. [Google Scholar] [CrossRef] [PubMed]
- Honnay, O.; Bossuyt, B.; Jacquemyn, H.; Shimono, A.; Uchiyama, K. Can a seed bank maintain the genetic variation in the above ground plant population? Oikos 2007, 117, 1–5. [Google Scholar] [CrossRef]
- Thomson, K.; Grime, J.P. Seasonal variation in the seed bank of herbaceous species in ten contrasting habitats. J. Ecol. 1979, 67, 893–921. [Google Scholar] [CrossRef]
- Bruns, E.L.; Antonovics, J.; Hood, M.E. Is there a disease-free halo at species range limits? The codistribution of anther-smut disease and its host species. J. Ecol. 2019, 107, 1–11. [Google Scholar] [CrossRef]
- Bruns, E.L.; Hood, M.; Antonovics, J. Rate of resistance evolution and polymorphism in long- and short-lived hosts. Evolution 2015, 69, 551–560. [Google Scholar] [CrossRef]
- Hood, M.E.; Mena-Alí, J.I.; Gibson, A.K.; Oxelman, B.; Giraud, T.; Yockteng, R.; Arroyo, M.T.K.; Conti, F.; Pedersen, A.B.; Gladieux, P.; et al. Distribution of the anther-smut pathogen Microbotryum on species of the Caryophyllaceae. New Phytol. 2010, 187, 217–229. [Google Scholar] [CrossRef]
- Antonovics, J.; Abbate, J.L.; Bruns, E.L.; Fields, P.D.; Forrester, N.J.; Gilbert, K.J.; Hood, M.E.; Park, T.; Taylor, D.R. Effect of the anther-smut fungus Microbotryum on the juvenile growth of its host Silene latifolia. Am. J. Bot. 2018, 105, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Bruns, E.L.; Antonovics, J.; Carasso, V.; Hood, M. Transmission, and temporal dynamics of anther-smut disease (Microbotryum) on alpine carnation (Dianthus pavonius). J. Ecol. 2017, 105, 1413–1424. [Google Scholar] [CrossRef]
- Bruns, E.L.; Miller, I.; Hood, M.E.; Carasso, V.; Antonovics, J. The role of infectious disease in the evolution of females: Evidence from anther-smut disease on a gynodioecious alpine carnation. Evolution 2019, 73, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Caser, M.; Demasi, S.; Mozzanini, E.; Chiavazza, M.P.; Scariot, V. Germination performances of 14 wildflowers screened for shaping urban landscapes in mountain areas. Sustainability 2022, 14, 2641. [Google Scholar] [CrossRef]
- Martin, A.C. The comparative internal morphology of seeds. Am. Midl. Nat. 1946, 36, 560–561. [Google Scholar] [CrossRef]
- Leather, G.R.; Sung, S.J.; Hale, M.G. The wounding response of dormant barnyardgrass (Echinochloa crus-galli) seeds. Weed Sci. 1992, 40, 200–203. [Google Scholar] [CrossRef]
- Vanderlook, F.; Van de Moer, D.; Van Assche, J.A. Environmental signals for seed germination reflect habitat adaptations in four temperate Caryophyllaceae. Funct. Ecol. 2008, 22, 470–478. [Google Scholar] [CrossRef]
- Society for Ecological Restoration, International Network for Seed Based Restoration and Royal Botanic Gardens Kew. Seed Information Database (SID). 2023. Available online: https://ser-sid.org/ (accessed on 1 February 2023).
- Kołodziejek, J.; Atykowsky, J.; Wala, M. An experimental comparison of germination ecology and its implication for conservation of selected rare and endangered Dianthus species (Caryophyllaceae). Botany 2018, 96, 319–328. [Google Scholar] [CrossRef]
- Lantieri, A.; Salmeri, C.; Guglielmo, A.; Pavone, P. Seed germination in the Sicilian subspecies of Dianthus rupicola Biv. (Caryophyllaceae). Plant Biosyst. 2012, 146, 906–909. [Google Scholar] [CrossRef]
- Cogoni, D.; Bacchetta, G.; Fenu, G. The effectiveness of plant conservation measures: The Dianthus morisianus reintroduction. Oryx 2013, 47, 203–206. [Google Scholar] [CrossRef]
- Kalin Arroyo, M.T.; Cavieres, L.A.; Castor, C.; Humaña, A.M. Persistent Soil Seed Bank and Standing Vegetation at a High Alpine Site in the Central Chilean Andes. Oecologia 1999, 119, 126–132. [Google Scholar] [PubMed]
- Schwienbacher, E.; Marcante, S.; Erschbamer, B. Alpine species seed longevity in the soil in relation to seed size and shape—A 5-year burial experiment in the Central Alps. Flora 2010, 205, 19–25. [Google Scholar] [CrossRef]
- He, M.; Xin, C.; Baskin, C.C.; Li, J.; Zhao, Y.; An, H.; Sheng, X.; Zhao, L.; Zhao, Y.; Ma, M. Different response of transient and persistent seed bank of alpine wetland to grazing disturbance on the Tibetan Plateau. Plant Soil 2021, 459, 93–107. [Google Scholar] [CrossRef]
- Ungar, I.A. A significant seed bank for Spergularia marina (Caryophyllaceae). Ohio J. Sci. 1988, 88, 200–202. [Google Scholar]
- Cerabolini, B.; Ceriani, R.; Caccianiga, M.; Andreis, R.; Raimondi, B. Seed size, shape, and persistence in soil: A test on Italian flora from Alps to Mediterranean coasts. Seed Sci. Res. 2003, 13, 75–85. [Google Scholar] [CrossRef]
- Thompson, K.; Ceriani, R.M.; Bakker, J.P.; Bekker, R.M. Are seed dormancy and persistence in soil related? Seed Sci. Res. 2003, 13, 97–100. [Google Scholar] [CrossRef]
- Gioria, M.; Pyšek, P.; Baskin, C.C.; Carta, A. Phylogenetic relatedness mediates persistence and density of soil seed banks. J. Ecol. 2020, 108, 2121–2131. [Google Scholar] [CrossRef]
- Tellier, A.; Brown, J. The Influence of Perenniality and Seed Banks on Polymorphism in Plant-Parasite Interactions. Am. Nat. 2009, 174, 769–779. [Google Scholar] [CrossRef]
- Bakker, J.P. Seed dispersal and seed bank. In Nature Management by Grazing and Cutting: On the Ecological Significance of Grazing and Cutting Regimes Applied to Restore Former Species-Rich Grassland Communities in The Netherlands; Springer: Dordrecht, The Netherlands, 1989; pp. 317–333. [Google Scholar]
- Bakker, J.P.; Poschlod, P.; Strykstra, R.J.; Bekker, R.M.; Thompson, K. Seed banks and seed dispersal: Important topics in restoration ecology. Acta Bot. Neerl. 1996, 45, 461–490. [Google Scholar] [CrossRef]
- Thompson, K. Functional Ecology of Soil Seed Banks. In Seeds. The Ecology of Regeneration in Plant Communities; Fenner, M., Ed.; CABI: Wallingford, UK, 2000; pp. 215–235. [Google Scholar]
- Thomson, K.; Bakker, J.P.; Bekker, R.M. The Soil Seed Banks of North West Europe: Methodology, Density, and Longevity; Cambridge University Press: Cambridge, UK, 1997; p. 276. [Google Scholar]
- DeMalach, N.; Kigel, J.; Sternbert, M. Contrasting dynamics of seed banks and standing vegetation of annuals and perennials along a rainfall gradient. Perspect. Plant Ecol. Evol. Syst. 2023, 58, 125718. [Google Scholar] [CrossRef]
- Maskova, T.; Poschlod, P. Soil seed bank persistence across time and burial depth in calcareous grassland habitats. Front. Plant Sci. 2022, 12, 790867. [Google Scholar] [CrossRef] [PubMed]
- Aeschimann, D.; Lauber, K.; Moser, D.M.; Theurillat, J.P. Flora Alpina. Atlante delle 4500 Piante Vascolari delle Alpi; Haupt Bern. Edizione italiana; Zanichelli editore:: Bologna, Italy, 2004; Volume 3, pp. 303–313. [Google Scholar]
Test of Model Effects—Type III | |||
---|---|---|---|
Source | Wald Chi-Square | df | p-Value |
(Intercept) | 45.514 | 1 | <0.0001 |
Year | 60.362 | 1 | <0.0001 |
Plot | 0.370 | 3 | 0.946 |
Plot × year | 4.054 | 3 | 0.256 |
Plot | Altitude (m a.s.l.) | Plot Location | Plot Morphology | Dominant Species |
---|---|---|---|---|
A | 1969 m | 44°11′27″ N 7°41′24″ E | Mountain slope | Vaccinium myrtillus, Nardus stricta, Dianthus pavonius |
B | 1962 m | 44°11′27″ N 7°41′23″ E | Mountain slope | Juniperus communis, Nardus stricta |
C | 1963 m | 44°11′23″ N 7°41′17″ E | Flat alpine grassland | Nardus stricta, Euphrasia minima |
D | 1968 m | 44°11′24″ N 7°41′17″ E | Hilltop on debris | Rhododendron ferrugineum, Euphrasia minima, Nardus stricta |
Artificial plot | 1961 m | 44°11′23″ N 7°41′18″ E | Plant nursery in the Alpine Botanical Station | No vegetation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carasso, V.; Bruns, E.L.; Antonovics, J.; Hood, M.E. Soil Seed Bank of the Alpine Endemic Carnation, Dianthus pavonius Tausch (Piedmont, Italy), a Useful Model for the Study of Host–Pathogen Dynamics. Plants 2024, 13, 2432. https://doi.org/10.3390/plants13172432
Carasso V, Bruns EL, Antonovics J, Hood ME. Soil Seed Bank of the Alpine Endemic Carnation, Dianthus pavonius Tausch (Piedmont, Italy), a Useful Model for the Study of Host–Pathogen Dynamics. Plants. 2024; 13(17):2432. https://doi.org/10.3390/plants13172432
Chicago/Turabian StyleCarasso, Valentina, Emily L. Bruns, Janis Antonovics, and Michael E. Hood. 2024. "Soil Seed Bank of the Alpine Endemic Carnation, Dianthus pavonius Tausch (Piedmont, Italy), a Useful Model for the Study of Host–Pathogen Dynamics" Plants 13, no. 17: 2432. https://doi.org/10.3390/plants13172432
APA StyleCarasso, V., Bruns, E. L., Antonovics, J., & Hood, M. E. (2024). Soil Seed Bank of the Alpine Endemic Carnation, Dianthus pavonius Tausch (Piedmont, Italy), a Useful Model for the Study of Host–Pathogen Dynamics. Plants, 13(17), 2432. https://doi.org/10.3390/plants13172432