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Abstract: Categorical (either binary or ordinal) quantitative traits are widely observed to measure
count and resistance in plants. Unlike continuous traits, categorical traits often provide less detailed
insights into genetic variation and possess a more complex underlying genetic architecture, which
presents additional challenges for their genome-wide association studies. Meanwhile, methods
designed for binary or continuous phenotypes are commonly used to inappropriately analyze
ordinal traits, which leads to the loss of original phenotype information and the detection power
of quantitative trait nucleotides (QTN). To address these issues, fast multi-locus ridge regression
(FastRR), which was originally designed for continuous traits, is used to directly analyze binary
or ordinal traits in this study. FastRR includes three stages of continuous transformation, variable
reduction, and parameter estimation, and it can computationally handle categorical phenotype data
instead of link functions introduced or methods inappropriately used. A series of simulation studies
demonstrate that, compared with four other continuous or binary or ordinal approaches, including
logistic regression, FarmCPU, FaST-LMM, and POLMM, the FastRR method outperforms in the
detection of small-effect QTN, accuracy of estimated effect, and computation speed. We applied
FastRR to 14 binary or ordinal phenotypes in the Arabidopsis real dataset and identified 479 significant
loci and 76 known genes, at least seven times as many as detected by other algorithms. These findings
underscore the potential of FastRR as a very useful tool for genome-wide association studies and
novel gene mining of binary and ordinal traits.

Keywords: binary or ordinal traits; multi-locus model; mixed linear model; polygenic background
control; ridge regression

1. Introduction

Categorical (either binary or ordinal) quantitative traits are very important and widely
observed to measure count and resistance in plants and crop cultivars. For example, the
presence (1) or absence (0) of rolled leaves, and susceptibility (1) or resistance (0) to pests
are binary phenotypes. The level of leaf serration at 22 ◦C, ranging from 0 (entire lamina)
to 1.5 (sharp/jagged serration) in Arabidopsis thaliana, and the infection type, with scores of
0~4, for leaf rust in wheat, are ordinal phenotypic responses. Ordinal traits are represented
by an ordered series of numeric value (degree of infections, 0, 2, 3, etc.).

Categorical traits, as special cases of quantitative traits, present a discontinuous distri-
bution of phenotypes, and breeding tests show phenotypic features that cannot be readily
explained by simple strict Mendelian inheritance [1]. Many traits with low heritability have
ordered categorical scores, such as susceptibility or resistance to a disease, and they exhibit
less genetic information [2]. Thus, genetic mechanisms of categorical traits are complex,
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involving polygenic background control, environment modification, gene expression, gene–
environment interaction, and gene–gene interaction [3]. Research on categorical traits is
crucial to improving the yield and quality of crops, as well as genetic breeding in plants.

Genome-wide association studies (GWAS), as a hot topic, have generated great interest
and provided numerous well-known tools in recent decades. Among them, PLINK is the
most widely used tool for GWAS analysis as a standard method [4]. However, PLINK does
not account for polygenic backgrounds, which can lead to high false discovery rates, and
it can only handle continuous and binary traits. Mixed linear model (MLM), also called
linear mixed model (LMM), approaches have been widely used to account for sample
relatedness and population structure in GWAS for continuous and binary phenotypes [5–7].
Consequently, the number of MLM-based computational tools for genetic dissection is
rapidly increasing, including EMMA [8], FaST-LMM [9], GEMMA [10], BOLT-LMM [11],
and FastGWA [12], all for continuous traits, and GMMAT [6] and SAIGE [7] via logistic
mixed models for binary traits. In addition, Bayes-GLMM [13] has been proposed to
implement generalized linear mixed models in a Bayesian framework. And it takes a
linear regression model, logistic regression model, and ordered logistic regression model
as likelihood functions of continuous, binary, and ordinal traits, respectively, and can
analyze continuous and categorical data. Meanwhile, POLMM [5] has been proposed via
proportional odds logistic mixed models and it can handle both binary and ordinal traits.
However, PLINK and all the above MLM methods are single-locus GWAS algorithms
that focus on one marker at a time and require multiple-test correction, and Bonferroni
thresholds are overly strict, which may result in the missing of some important small-
effect loci associated with traits, thus reducing the detection power [14]. There have been
significant efforts in the development of single-locus methods to address this issue. For
example, Xu et al. [15] proposed a model-based clustering method for binary traits that
utilizes the dependency structure between single-nucleotide polymorphisms (SNPs) by
grouping them into three clusters and by pre-specifying the prior distribution patterns
of clusters, which better controls the false discovery rate and provides higher power.
However, their method cannot handle situations when the direction of the effect changes
due to population stratification.

Suitable ways to handle multiple SNPs under population stratification and polygenic
background control include multi-locus MLM methodologies that utilize dimension re-
duction through variable selection, such as FarmCPU [16], mrMLM [17], pLARmEB [18],
FASTmrEMMA [19,20], FASTmrMLM [21], and FastRR [22]. All these approaches, while
rapid, are designed for continuous phenotypes. Furthermore, for binary traits, both
EBLASSO-NE and EBLASSO-NEG [23] were proposed based on a logistic regression
model with two different prior distributions in a Bayesian framework. A hierarchical
generalized linear mixed model [24] was proposed and applied to ordinal traits in crop
cultivars. Nevertheless, the three approaches mentioned for categorical phenotypes could
not be applicable to large-scale data due to their low computing efficiency.

Categorical data are often analyzed via generalized linear models (GLM) or gen-
eralized linear mixed models (GLMM) by introducing link functions, which increases
computational cost. Accordingly, current approaches commonly treat the categorical phe-
notype as a continuous trait to inappropriately fit the linear regression or mixed linear
models, which can cause the biased effect estimates due to the violation of the constant
residual variance assumption [5,6,13]. Another approach is to dichotomize the ordinal
phenotype into a binary trait with a cutoff, followed by applying a logistic regression or
logistic mixed-model method. This approach suffers from phenotypic information loss and,
therefore, is less powerful [5,6,13]. In practice, the latter strategy mentioned is commonly
used in humans, and rarely in plants. Plants and crop cultivars tend to use the former
strategy. For example, for leaf rust in wheat, the infection type is an ordinal response with
scores of 0~4. Kaur et al. [25] converted infection type scores to the best linear unbiased
estimates as continuous responses and then applied FarmCPU for further analysis. For
the presence of rolled leaves or the level of serration in Arabidopsis thaliana, Liu et al. [16]
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treated these binary or ordinal traits as continuous data, and then employed the FarmCPU
method. Regardless, as argued previously, neither of these strategies would be appropriate.

Recently, Zhang et al. [22] proposed fast multi-locus ridge regression (FastRR) for
continuous phenotypes, which efficiently handles datasets where the number of markers
significantly exceeds the sample size—a scenario in which most penalization methods
typically struggle. In this paper, we extend FastRR to directly apply to binary and ordinal
traits in genome-wide association studies. The algorithm first converts binary or ordinal
phenotypes into continuous data by correcting for polygenic background and population
structure, rather than using link functions. Then, it screens a small number of potential
candidate loci based on correlation to construct a multi-locus model. Finally, it implements
parameter estimation using deshrinking ridge regression to identify significant loci associ-
ated with the binary or ordinal traits of interest. A series of simulated as well as Arabidopsis
thaliana real data analyses are used to verify the performance of FastRR in categorical
phenotypes. Four other existing continuous/binary/ordinal approaches, including logistic
regression [26], FarmCPU [16], FaST-LMM [9], and POLMM [5], are used for comparison
analysis. Collectively, this work provides the implementation of an alternative GWAS
approach for binary and ordinal phenotypes and ultimately contributes toward identifying
the genetic mechanisms of complex traits in plants and crop cultivars.

2. Materials and Methods
2.1. The Calculation of the Mixed Linear Model

Let yi(i = 1, 2, . . . , n) be the binary or ordinal phenotype value of the ith individual in
a sample of size n from a natural population, and the MLM can be described as follows:

y = Wα + Gβ + u + ε (1)

where y = (y1, y2, · · · , yn)
T is an n × 1 vector of phenotype value. α is a c × 1 fixed effect

vector, including the population structure, principal component, intercept, and so on; W
is the correspondingly designed matrix for α, whose dimension is n × c; G is an n × 1
vector of marker genotypes, β ∼ N

(
0, σ2

β

)
is a random effect of putative QTN, and σ2

β is

variance of putative QTN; u ∼ MVN
(
0, σ2

uK
)

is an n × 1 vector of the polygenic effect,
K is an n × n known kinship matrix, and σ2

u is the variance of polygenic background;
ε ∼ MVN

(
0, σ2In

)
is an n × 1 vector of the residual, In is an n × n identity matrix, and σ2

is residual variance. N and MVN denote a univariate and multivariate normal distribution,
respectively.

As β is treated as a random effect, the variance of y in model (1) is as follows:

Var(y) = σ2
βGGT + σ2

uK + σ2In = σ2
(

λβGGT + λuK + In

)
(2)

where
λβ = σ2

β/σ2, λu = σ2
u/σ2

2.2. Fast Multi-Locus Ridge Regression Algorithm

The FastRR algorithm is a multi-stage flexible approach for GWAS, which simulta-
neously implements detection and estimation for associated loci. We describe it with the
following stages (Figure 1).
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2.2.1. Continuous-Transformed Stage

A transformation matrix is generated using the FASTmrEMMA method [19,20] in
this stage. The key point of solving the model (1) is to estimate two ratios of variance
components, λβ and λu, which cause expensive computational burden. It is noted that
polygenic variance is always larger than zero, while variance of the majority of SNPs is
zero, because these loci are not associated with the trait, which means λβ = 0. Therefore, in
model (1), we delete Gβ, and estimate λ̂u with the reduced model with only the polygenic
background, and replace λu by λ̂u in model (3) [19,20], avoiding the re-estimation of λu for
each single-marker scan, thus

Var(y) = σ2
(

λβGGT + λ̂uK + In

)
= σ2

(
λβGGT + B

)
(3)

where
B = λ̂uK + In

An eigen decomposition of the positive definite matrix B is:

B = QΛQT =
(

QΛ
1
2 QT

)(
QΛ

1
2 QT

)
(4)

in which Q is orthogonal and Λ is a diagonal matrix with positive eigenvalues. Let
C = QΛ− 1

2 QT ; the model (1) is changed to:

yC = WCα + GCβ + εC (5)

where
yC = Cy, WC = CW, GC = CG, εC = Cu + Cε, εC ∼ MVN

(
0, σ2In

)
Through this step in model (5), we transform binary or ordinal into continuous phe-

notype values for subsequent analysis. At the same time, FastRR also fully considers
polygenic background and population structure.
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2.2.2. Variable Reduction Stage

Numerous studies have illustrated that most quantitative traits are controlled by a
small part of genes, including a few genes with large effects and poly genes with small
effects [18,27]. Thus, it is important to dissect all significantly associated loci from a large
number of markers. Here, we perform a variable reduction phase in FastRR to detect a
subset of variables associated with phenotypes, with the aim of reducing the computational
complexity of high-dimensional analysis.

We calculate the correlation coefficient between yC and GC in model (5) for each
marker, and the function cor.test in R returns the p-value of the correlation test. The
threshold of significance was set to a p-value < 0.01 [28] and uncorrelated motifs were
removed. At the next stage, all potential loci are selected to construct a reduced multi-locus
model. Essentially, this correlation step is similar to the single-marker scanning, which
combines with the polygenic background without considering the variance component σ2

β.

2.2.3. Parameter Estimation Stage

In the reduced multi-locus model,

yC = WCα + G∗
Cβ + εC (6)

where yC is the continuous-transformed phenotype vector of quantitative traits, α is the
vector of fixed effects, WC is the corresponding design matrix for α, εC ∼ MVN

(
0, σ2In

)
,

and σ2 is residual variance, all of which are the same as in model (5). β =
(

β1,β2, . . . , βq
)T is

a q × 1 random effect vector of the selected q SNPs from the above step, and βk ∼ N
(
0, φ2),

k = 1, 2, · · · , q, φ2 is variance of potential associated markers; G∗
C is an n × q genotype

matrix of q markers after continuous transformation. Here, the polygenic background is
not considered in model (6), because in the above two steps we have selected all potential
associated QTNs under polygenic background. All parameters in model (6) are estimated
by deshrinking ridge regression (DRR) [29].

The estimated effect and its variance for the DRR for the kth marker are

β̂DRR
k =

(
G∗

C k
TH

−1
G∗

C k

)−1
G∗

C k
TH−1(yC − WCα) (7)

var(β̂DRR
k ) =

(
G∗

C k
TH−1G∗

C k

)−1
σ2 − φ2 , (8)

respectively, where H = φ2

σ2

(
G∗

CG∗
C

T
)
+ In, G∗

C k is the kth column of matrix G∗
C. Therefore,

the Wald test statistic of DRR is

Wk =

(
β̂DRR

k )2

var(β̂DRR
k )

(9)

which follows a Chi-square distribution with one degree of freedom under the null model,
H0 : βk = 0. Bonferroni correction was used and the significance threshold was set to
0.05/q in the analysis [29].

2.3. Comparison Methods
2.3.1. Logistic Regression

A generalized linear model (GLM) [26] is a generalization of the general linear model,
which can be applied to continuous, binary, and count data. R software (Version 4.2.1)
provides the function glm() for fitting generalized linear models. When the parameter
‘family’ is set to ‘binomial’, it specifies a logistic regression model for a binary trait, which
is equivalent to using ‘--logistic’ in PLINK. Currently, the function glm() has not been
designed for a multinomial distribution family, so we dichotomized the ordinal trait to a
binary phenotype for input by defining 1 or 0 depending on whether the ordinal value
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is more than its mean. Given the issues of computational costs, we constructed a single-
locus model and performed logistic regression for each marker. The function glm() can be
found at https://search.r-project.org/CRAN/refmans/rms/html/Glm.html (accessed on
15 May 2023).

2.3.2. FarmCPU

FarmCPU, which is a multi-locus MLM method, was proposed by Liu et al. [16]. To
completely eliminate the confounding between testing markers and kinship, FarmCPU
divides a multi-locus mixed model into two parts: a fixed-effect model (FEM) and a random
effect model (REM), and uses them iteratively. An FEM features testing markers, one at
a time, and multiple associated markers as covariates to control false positives. These
associated markers are named as pseudo QTNs. To avoid model over-fitting problems in
FEMs, pseudo QTNs are estimated by an REM, where the pseudo QTNs are used to define
kinship. An FEM and REM are used iteratively until no change occurs on the pseudo QTNs.
FarmCPU is designed for continuous data, so we employed it by treating the binary or
ordinal trait as a continuous phenotype for input. The method was implemented by the R
package GAPIT (https://www.zzlab.net/GAPIT/ (accessed on 5 June 2023)).

2.3.3. FaST-LMM

The linear mixed model (LMM) tackles confounders by using measures of genetic
similarity to capture the probabilities that pairs of individuals have causative alleles in
common. For large-scale datasets, the time required to construct a genetic similarity matrix
using all SNPs is too long, and the memory required is too large. To address this issue,
FaST-LMM [9], which is a single-locus model, builds a realized relationship matrix by
partially sampling 200~2000 markers, which improves computational efficiency. However,
this algorithm is used to analyze continuous quantitative traits, not for binary or ordinal
traits. Therefore, we also employed FaST-LMM by treating the binary or ordinal trait as a
continuous phenotype for input. The method was implemented by the R package GAPIT
(https://www.zzlab.net/GAPIT/( accessed on 12 June 2023)).

2.3.4. POLMM

POLMM [5] is a recently designed single-locus GWAS method for the ordinal trait
using a proportional odds logistic mixed model. POLMM performs penalized quasi-
likelihood and average information restricted maximum likelihood algorithms to efficiently
fit the mixed model, and uses saddle-point approximation to calculate the p-value. It can
effectively control the type I error rate. The algorithm was implemented by the POLMM
software package (Version 0.2.3) (https://github.com/WenjianBI/POLMM (accessed on
3 July 2023)).

In summary, among the above four comparison methods, logistic regression is used
for binary traits, FarmCPU and Fast-LMM are designed for continuous traits, POLMM can
handle binary or ordinal traits. The objective of this study is to directly apply the FastRR
algorithm to binary and ordinal traits and to evaluate its performance in the QTN detection
of categorical phenotypes. Bonferroni correction was used in all comparison methods.

2.4. Experimental Materials
2.4.1. Simulation Data

We generated genotypes according to the minor allele frequency (MAF) in the interval
(0.1, 0.5) under Hardy–Weinberg equilibrium. The simulation datasets contained 2000 indi-
viduals with 10,000 genetic variants. The total average and residual variance were both
set at 10.0. On this basis, three simulation experiments were generated from the following
mixed linear models.

For the first simulation experiment, a fixed-position QTN was simulated placed on
SNP 98 with a small effect size of 0.461. For the second simulation experiment, five fixed-
position QTNs were placed on SNP 98, 301, 540, 801, and 1000, with effects of 0.545, 0.862,

https://search.r-project.org/CRAN/refmans/rms/html/Glm.html
https://www.zzlab.net/GAPIT/
https://www.zzlab.net/GAPIT/(
https://github.com/WenjianBI/POLMM
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0.860, 1.079, and 1.209, respectively. For the third simulation experiment, we randomly
selected 10 QTNs with an MAF > 0.3, and the total heritability of 10 QTNs was less than
19%, among which the maximum was 3.16% and the minimum was 0.523%. Additionally,
three scenarios for each simulation experiment were considered in a mixed linear model
due to the varying degree of polygenic backgrounds among different species, including
two times the polygenic background (2 k), five times the polygenic background (5 k), and
ten times the polygenic background (10 k).

To investigate the performance of different distribution and hierarchical levels for
each of the above 9 combinations, we also considered the representative combinations
between three types of phenotypic distribution and hierarchical level number: a normal
distribution with five hierarchical levels ranging from 1 to 5 (Figure S1A,D,G), a uniform
distribution with five hierarchical levels ranging from 1 to 5 (Figure S1B,E,H), and a
binomial distribution with two hierarchical levels, that is, binary phenotype data with
values of 0 and 1 (Figure S1C,F,I). Each of the total 27 simulation scenarios was repeated
100 times. All analyses were conducted on 96 CPU cores of Intel Xeon Platinum 8168 M
processor at 2.70 GHz and 314 GB RAM.

The statistical power for each QTN detected (power) was defined as the proportion
of samples over the Bonferroni threshold to the total number for the 100 replications. The
average estimated effect (mean) was defined as the mean value of the effect estimated for
100 replications of the QTN for a fixed location. MSE represented the mean squared error,
which is the average of the sum of squares of the differences between the estimated effect
and the true value, and can be used to evaluate the accuracy of effect estimates. A smaller
MSE value indicates a more accurate estimation of the algorithm, and, conversely, a larger
MSE value indicates a lower accuracy. The Receiver Operating Characteristic (ROC) curve
shows the statistical power under different Type I errors, which is an important index for
evaluating the performance of a model. The heritability for each locus (r2) was defined as
the ratio of genotypic variance for each QTN to phenotypic variance.

2.4.2. Arabidopsis Data

To evaluate the performance of FastRR for categorical phenotypes, we reanalyzed the
genetic datasets of Arabidopsis published by Atwell et al. [30]. A total of 199 Arabidopsis lines
and 216,130 SNPs were obtained from https://www.arabidopsis.org/ (accessed on 16 May
2024). Among 107 traits, we analyzed 14 binary or ordinal traits (Figure 2), including
10 binary traits: avrPphB (presence or absence of avrPphB), avrRpm1 (presence or absence
of avrRpm1), avrRpt2 (presence or absence of avrRpt2), avrB (presence or absence of avrB),
Anthocyanin 10, 16, and 22 (presence or absence of anthocyanin at 10 ◦C, 16 ◦C, 22 ◦C),
Leaf roll 10, 16, and 22 (presence of rolled leaves at 10 ◦C, 16 ◦C, 22 ◦C); and four ordinal
traits: Leaf serr 10, 16, and 22 (level of leaf serration at 10 ◦C, 16 ◦C, 22 ◦C, five hierarchical
levels ranging from 0 to 1.5); Silique 22 (silique length at 22 ◦C, ten hierarchical levels).

We excluded individuals with missing phenotypes, non-polymorphic SNPs, and
SNPs with an MAF less than 0.10. Then, we calculated the population structure using the
ADMIXTURE software (Version 1.3.0) [31], selected the best population structure matrix
according to its cross-validation (CV) error (Figure S2), and inserted it into model (1),
treated as a fixed-effect design matrix for each binary or ordinal quantitative trait.

The number of significant loci detected, the number of confirmed genes identified, and
the computing time were used to compare the performance of each method. Bonferroni
correction was used and the threshold was set to 0.05/m, where m is the number of markers
involved in the real data analysis.

For each significant locus, the Arabidopsis Information Resource (TAIR, https://www.
arabidopsis.org (accessed on 16 May 2024)) was used to mine known genes located in
the vicinity of 20 kilobases (kb), and known genes have been previously confirmed to be
associated with the traits of interest in the literature.

https://www.arabidopsis.org/
https://www.arabidopsis.org
https://www.arabidopsis.org
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Figure 2. The phenotypic distribution of fourteen binary or ordinal traits in the Arabidopsis real
dataset. (A–J) for ten binary traits (avrPphB, avrRpm1, avrRpt2, avrB, Anthocyanin 10, 16, and 22,
Leaf roll 10, 16, and 22); (K–N) for four ordinal traits (Leaf serr 10, 16, 22, and Silique 22).

3. Results
3.1. Simulation Studies
3.1.1. Statistical Power for QTN Detection

In the first simulation experiment, the QTN located at the 98th SNP was simulated and
its heritability is detailed in Table S1, with a small effect of 0.461. For ordinal phenotypes
with five hierarchical levels generated from a normal distribution, it could be seen that the
statistical power of FastRR was significantly higher than four other methods (Figure 3A,
Table S1). For example, under the polygenic background of 2 k, POLMM, FaST-LMM, and
FarmCPU had similar power, at 52%, 51%, and 49%, respectively, but this was significantly
lower than FastRR, which had 88% power. Logistic regression had the lowest power at 25%
(Figure 3A, Table S1). Under the polygenic backgrounds of 5 k and 10 k, FastRR had the
highest power among all five methods at 58% and 28%, respectively (Figure 3A, Table S1).
With the increasing influence of the polygenic background, the statistical power of all
algorithms decreased, while FastRR always performed better (Figure 3A, Table S1). As
shown in Figure 3B,C, and Table S1, a similar trend was observed for a uniform distribution
with five hierarchical levels and a binomial distribution with two hierarchical levels.

In the second simulation experiment, five QTNs with a heritability of 0.526~6.401%
were simulated at fixed positions (Table S2). As shown in Figure S3 and Table S2, the results
revealed that FastRR had the highest statistical power over four other algorithms under
different polygenic backgrounds. For example, for a normal distribution, FastRR achieved
power of 98%, 86%, and 52% under 2 k, 5 k, and 10 k, respectively (Figure S3A,D,G and
Table S2). In contrast, FarmCPU, POLMM, and FaST-LMM had a power of 84%, 82%, and
76% under 2 k, while logistic regression achieved only 39% (Figure S3A,D,G, Table S2). The
power of FastRR was similar to that of the uniform distribution and binomial distribution.
For the uniform distribution (Figure S3B,E,H and Table S2), FastRR had values of 95%,
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73%, and 35% under 2 k, 5 k, and 10 k, respectively; and 85%, 50%, and 28% under a
binomial distribution (Figure S3C,F,I and Table S2), respectively. In particular, for the
detection of small-effect loci with a heritability of less than 5% and effect values less
than 1, FastRR performed with significantly higher power compared to four other methods.
For instance, under the binomial distribution, the power of FastRR for the 98th marker
(QTN1, r2 = 0.526~1.280%, true effect = 0.545) was at least twice that of the other methods
(Figure S3C,F,I and Table S2).
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5 hierarchical levels, and (C) a binomial distribution with 2 hierarchical levels.

In the third simulation experiment, 10 random-position QTNs of small effects were
simulated with a total heritability of less than 19% and a heritability of 0.523~3.16% for
each QTN. It can be seen from Figure S4 that the FastRR algorithm performed with the
highest power over four other approaches for the detection of small-effect QTNs. For 2 k of
ordinal simulated data, the power of FastRR exceeded 90%, followed by FarmCPU, which
was slightly lower than 90%; nevertheless, the power of POLMM, FaST-LMM, and logistic
regression were all below 85% (Figure S4A,B). Note that under the binomial distribution,
FastRR significantly outperformed the other algorithms by more than 10% of power at 2 k
and 5 k (Figure S4C). In addition, the power of all methods decreased by varying degrees
as the influence of the polygenic background increased, but FastRR corrected for polygenic
background was minimally affected by fluctuations in polygenic background (Figure S4)
and its power was relatively stable.

3.1.2. ROC Curves at Different Levels of Significance

To compare detection power across different significance thresholds, we plotted ROC
curves for five methods in simulation experiments 1 and 2 (Figures 4 and S5). ROC curves
show that FastRR consistently outperforms other methods at various significance levels
and maintains excellent detection power at low Type I error levels. In particular, Fas-
tRR demonstrated significant advantages in identifying small-effect QTN loci: in the first
simulation experiment, the average statistical power of FastRR at significance levels rang-
ing from 10−6 to 10−2 under the 2 k was found to be at least 48% greater than that of
the second-best method under the normal distribution (Figure 4A), at least 38% greater
under the uniform distribution (Figure 4B), and at least 42% greater under the binomial
distribution (Figure 4C). In the second simulation experiment, focusing on the small-effect
loci QTN1 (r2 = 0.526~1.280%, true effect = 0.545, Table S2), FastRR showed a significant
advantage again, with its power being approximately 40% higher than the second-best
method under all three distributions, further confirming its ability to detect small-effect
QTNs (Figure S5A).
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each row represents 2 (A–C), 5 (D–F), and 10 (G–I) times the polygenic background, respectively.

In addition, the detection ability of all methods was increasing along with the effect
growth (Figure S5A–E). For example, for QTN4 (r2 = 2.105%~5.121%, true effect = 1.079,
Table S2), all five methods achieved efficiencies greater than 85% when the significance
level exceeded 10−7 under 2 k (Figure S5D). Similarly, for QTN5 (r2 = 2.631~6.401%, true
effect = 1.209, Table S2), nearly all methods achieved 100% efficacy under 2 k, as evidenced
by overlapping ROC curves (Figure S5E).

These results indicate that FastRR not only has excellent detection of large-effect QTNs,
but also has distinct advantages in identifying small-effect QTNs.

3.1.3. Accuracy for Estimated QTN Effects

The mean and MSE were used to measure the accuracy of an estimated QTN effect, and
SD was used to evaluate the stability of an estimated QTN effect. We evaluated the accuracy
for the fixed positions, including the first and second simulation experiments, across all
five methods, as listed in Tables S1 and S2. In the first simulation experiment, POLMM and
logistic regression methods exhibited the closest mean estimates to true values, followed by
FastRR, FarmCPU, and FaST-LMM (Table S1). In terms of MSE, POLMM, FarmCPU, and
FaST-LMM had the lowest values, followed by FastRR and logistic regression (Table S1).
Regarding the stability, FastRR demonstrated SD values comparable to other methods,
indicating good stability (Table S1). In the second simulation experiment, the accuracy and
stability of QTN effect estimates were found to be comparable to those observed in the first
simulation experiment (Table S2). These results indicate that FastRR has a robust effect
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estimation capability. Nevertheless, further improvements are warranted to improve the
accuracy of the effect estimate when compared to the other methods.

3.1.4. Computing Time

We compared the average computing time of 100 iterations in three simulation exper-
iments using five methods, and found that the computing time of FastRR was relatively
fast and stable (Figure 5). In the first simulation experiment, FastRR was comparable in
speed to POLMM and FarmCPU, all of which were finished within 75 s. Logistic regression
took slightly longer than the above three methods, followed by FaST-LMM, which took
318.865 s, at least three times longer than FastRR (Figure 5A–C). The result in the second
simulation experiment showed a similar pattern, with FastRR and POLMM again showing
the fastest computational speeds, all completed within 75 s. FarmCPU took slightly longer,
while the logistic regression and FaST-LMM methods both took over 100 s, with FaST-LMM
nearly five times longer than FastRR (Figure 5D–F). In the third simulation experiment, the
average computational speed of FastRR exhibited consistent performance across different
polygenic backgrounds and distributions, with a time of less than 90 s, significantly lower
than that of FarmCPU and FaST-LMM (Figure 5G–I).
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3.2. Analysis of Arabidopsis Dataset
3.2.1. Significant Loci Associated with Binary or Ordinal Traits

For the number of significant loci after Bonferroni correction, FastRR was significantly
better than the other methods (Table 1). Specifically, for 11 out of 14 traits, including
avrPphB, avrRpt2, avrB, Anthocyanin 10, 16, and 22, Leaf roll 16 and 22, Leaf serr 10 and 16,
and Silique 22, it could be shown that FastRR detected more significant loci than the other
methods (Table 1). FastRR identified a total of 479 significant loci associated with 14 traits,
followed by FarmCPU, POLMM, and FaST-LMM with 36, 15, and 14 loci, respectively,
and logistic regression did not detect any significant loci (Table 1). Notably, we found
that the multi-locus approach performed better in detecting small-effect loci with low
heritability compared to the single-locus approach. As shown in Table S3, the multi-locus
method FastRR detected significant loci associated with known genes, with heritability
ranging from 0.9% to 6.1%, and only two loci were higher than 5%; the multi-locus method
FarmCPU had four loci with heritability lower than 5% and six loci with heritability higher
than 5%. In contrast, the single-focus method FaST-LMM detected heritability of significant
loci associated with known genes that were all above 5%. In general, FastRR demonstrates
superiority in detecting small-effect loci with low heritability.

Table 1. A comparison of the number of significant loci/known genes detected by five methods for
fourteen binary or ordinal traits in the Arabidopsis real dataset.

Trait Hierarchical
Level Number

Optimal K
Value a

Method

FastRR Logistic Regression FarmCPU FaST-LMM POLMM

avrPphB 2 3 61/12 0 0 7/3 6/3
avrRpm1 2 2 71/9 0 0 2/1 3/2
avrRpt2 2 3 64/9 0 8/5 3/2 2/2

avrB 2 3 66/8 0 8/3 2/2 4/2
Anthocyanin 10 2 5 26/8 0 7/1 0 0
Anthocyanin 16 2 6 40/2 0 0 0 0
Anthocyanin 22 2 5 6/0 0 1/0 0 0

Leaf roll 10 2 5 28/4 0 0 0 0
Leaf roll 16 2 6 20/3 0 0 0 0
Leaf roll 22 2 4 18/1 0 0 0 0
Leaf serr 10 5 4 18/3 0 0 0 0
Leaf serr 16 5 6 20/9 0 3/0 0 0
Leaf serr 22 5 4 15/5 0 1/0 0 0
Silique 22 10 3 26/3 0 8/1 0 0

total 479/76 0 36/10 14/8 15/9
a: The optimal K value corresponding to the population structure matrix for each trait. Bold represents the largest
number of significant loci or known genes among the five methods.

3.2.2. Known Genes around Significant Loci

By retrieving the known genes on the TAIR website (https://www.arabidopsis.org/
(accessed on 16 May 2024)), FastRR detected a total of 76 known genes near the significant
loci, which is 7 times more than the second ranked FarmCPU (Figure 6, Tables 2 and S3).
FarmCPU detected a total of 10 known genes; POLMM and FaST-LMM detected 9 and
8 known genes, respectively; at the same time, logistic regression did not detect any
known genes.

The FastRR algorithm detected multiple gene clusters for the same trait (Tables 2 and S3).
For example, for trait avrRpm1, it was able to detect adjacent genes AT3G59700, AT3G59730,
AT3G59740, and AT3G59750 located at the SNP on chromosome 3 at 22,058,868 bp; for trait
Leaf serr 22, it was able to detect adjacent genes AT2G19620, AT2G19690, and AT2G19730
located at SNPs on chromosome 2 at 8,504,630 bp; for trait avrPphB, the adjacent genes
AT3G26450, AT3G26460, and AT3G26470 were detected for the SNP located at 9,700,429 bp
on chromosome 3. Overall, FastRR revealed the capability to detect clusters of genes
controlling target traits simultaneously.

https://www.arabidopsis.org/
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Similarly, as shown in Figure 6, Tables 2 and S3, known genes detected by FastRR
can be simultaneously identified by other methods. For example, for trait avrPphB, genes
AT1G12210, AT1G12220, and AT1G12240, which are adjacent to SNPs located at 4,144,558 bp
and 4,150,466 bp on chromosome 1, were also detected simultaneously by FaST-LMM and
POLMM. For trait avrRpt2, the gene AT4G26120, which is adjacent to SNPs located at
13,224,573 bp and 13,225,030 bp on chromosome 4, were also detected simultaneously by
FarmCPU, POLMM, and FaST-LMM (Tables 2 and S3). This indicates that FastRR is more
reliable in mining genes.

Notably, FastRR can detect pleiotropic genes. For example, on chromosome 1, SNPs
at 26,159,219 bp and 26,192,702 bp for the known gene AT1G69588 were significantly as-
sociated with Leaf serr 22 and Leaf roll 10, respectively (Tables 2 and S3). Known genes
AT3G59700, AT3G59730, AT3G59740, and AT3G59750 are located near the SNP on chro-
mosome 3 at 22,058,868 bp and are associated with avrB and avrRpm1 (Tables 2 and S3).
Known genes AT3G06980 and AT3G07040 are located near the SNPs on chromosome 3
at 2,181,673 bp and 2,225,659 bp, respectively, which are also associated with avrB and
avrRpm1 (Tables 2 and S3). These findings demonstrate the ability of FastRR to detect
pleiotropic genes.

Table 2. Known genes around significant loci identified by five approaches for fourteen binary or
ordinal traits in the Arabidopsis real dataset.

Trait Known Gene Gene Symbol Chr QTN Position Method p-Value

avrPphB

AT1G12210 RFL1
RFL1

1 4,144,558~4,150,466 1, 4, 5 3.10 × 10−39~1.67 × 10−5
AT1G12220 RPS5
AT1G12240 VIN2
AT3G05360 RLP30 3 1,522,038 1 1.32 × 10−4

AT3G26450
AT3G26460
AT3G26470

3 9,700,429 1 8.30 × 10−5

AT3G28450 BIR2 3 10,662,541 1 4.50 × 10−6

AT3G26470 3 9,603,932 1 9.64 × 10−6

AT4G08480 MEKK2 4 5,412,236 1 1.31 × 10−4

AT4G23680 F9D16.150 4 12,348,175 1 6.70 × 10−5

AT5G52640 HSP83 5 21,355,939 1 3.52 × 10−5

avrRpm1

AT1G62660 VI1 1 23,220,671 1 5.93 × 10−5

AT1G32070 NSI 1 11,531,340 1 1.37 × 10−6

AT2G38240 F16M14.17 2 16,080,224 1 1.33 × 10−5

AT3G06980 3 2,224,686 1, 5 1.33 × 10−7~1.05 × 10−4

AT3G07040 RPM1 3 2,225,659~2,230,186 1, 4, 5 3.80 × 10−9~7.61 × 10−6

AT3G59700 LECRK1

3 22,058,868 1 3.08 × 10−4AT3G59730 LECRK-V.6
AT3G59740 LECRK-V.7
AT3G59750 LECRK-V.8

avrRpt2

ATIG27950 LTPG1 1 9,728,388 3 2.36 × 10−8

AT3G50450 HR1 3 18,705,188 1 1.33 × 10−4

AT4G10490 DLO2 4 6,474,413 1 2.07 × 10−6

AT4G10500 DLO1 4 6,474,413 1 2.07 × 10−6

AT4G14400 ACD6 4 8,276,863 1 2.89 × 10−4

AT4G12020 WRKY19 4 7,216,346 3 2.58 × 10−8

AT4G12010 F16J13.80 4 7,216,346 3 2.58 × 10−8

AT4G26090 RPS2 4 13,224,915~13,225,030 1, 3, 4, 5 6.62 × 10−34~2.53 × 10−7

AT4G26120 F20B18.230 4 13,224,573~13,225,030 1, 3, 4, 5 2.55 × 10−14~4.70 × 10−9

AT4G32551 RON2
4 15,711,776 1 1.26 × 10−5

AT4G32570 TIFY8
AT4G35580 CBNAC 4 16,896,369 1 4.46 × 10−6
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Table 2. Cont.

Trait Known Gene Gene Symbol Chr QTN Position Method p-Value

avrB

AT1G17250 RLP3 1 5,906,765 1 1.31 × 10−4

AT1G32070 NSI 1 11,531,340 1 7.55 × 10−7

AT2G46400 WRKY46 2 19,033,370 3 8.62 × 10−14

AT2G46380 F11C10.7 2 19,033,370 3 8.62 × 10−14

AT3G06980 3 2,181,673~2,224,686 1, 5 2.11 × 10−9~2.78 × 10−6

AT3G59700 LECRK1

3 22,058,868 1 2.75 × 10−4AT3G59730 LECRK-V.6
AT3G59740 LECRK-V.7
AT3G59750 LECRK-V.8
AT3G07030 3 2,227,823 4 4.08 × 10−9

AT3G07040 RPM1 3 2,227,823 1, 3, 4, 5 7.21 × 10−41~1.58 × 10−5

Anthocyanin
10

AT3G02130 RPK2 3 365,429~368,145 1, 3 9.21 × 10−8~1.94 × 10−4

AT1G06220 MEE5 1 1,921,764 1 4.78 × 10−4

AT1G06350 ADS4 1 1,921,764 1 1.03 × 10−4

AT2G47700 RFI2 2 19,561,188 1 1.94 × 10−4

AT3G27690 DEG13 3 10,240,471 1 8.21 × 10−5

AT3G44110 ATJ3 3 15,883,329 1 9.64 × 10−5

AT3G46610 3 17,151,835 1 2.60 × 10−4

AT3G49260 IQD21 3 18,257,704 1 5.11 × 10−5

Anthocyanin
16

AT4G15910 DI21 4 9,044,964 1 6.53 × 10−5

AT1G10120 CIB4 1 3,310,433 1 8.62 × 10−5

Leaf roll 10

AT1G69588 CLE45 1 26,192,702 1 1.56 × 10−4

AT2G21970 Sep2 2 9,349,684 1 6.91 × 10−5

AT4G38860 SAUR16 4 18,146,349 1 2.66 × 10−4

AT4G39130 T22F8.30 4 18,211,438 1 2.25 × 10−4

Leaf roll 16
AT2G02820 MYB88 2 794,422 1 3.43 × 10−5

AT1G29860 WRKY71 1 10,442,076 1 1.08 × 10−4

AT2G42200 SPL9 2 17,529,095 1 2.43 × 10−5

Leaf roll 22 AT1G51500 ABCG12 1 19,092,267 1 1.09 × 10−4

Leaf serr 10
AT4G18870 F13C5.40

4 10,330,949 1 4.32 × 10−5
AT4G18880 HSF A4A
AT5G03310 SAUR44 5 809,032 1 2.32 × 10−4

Leaf serr 16

AT1G29420 SAUR61
1 10,298,618 1 1.67 × 10−4AT1G29430 SAUR62

AT1G29460 SAUR65
AT1G29640 F15D2.20 1 10,301,221 1 1.50 × 10−4

AT1G51760 IAR3
1 19,198,124 1 5.76 × 10−5

AT1G51780 ILL5
AT2G01420 PIN4 2 180,480 1 7.40 × 10−5

AT4G11880 AGL14 4 7,137,798 1 1.83 × 10−4

AT4G16150 CAMTA5 4 9,154,429 1 2.64 × 10−4

Leaf serr 22

AT1G14350 FLP 1 4,923,296 1 1.82 × 10−4

AT1G69588 CLE45 1 26,159,219 1 2.46 × 10−4

AT2G19620 NDL3
2 8,504,630 1 1.60 × 10−4AT2G19690 F6F22.28

AT2G19730 EL28Z

Silique 22

AT4G36020 CSP1 4 17,057,521 1 7.87 × 10−5

AT1G65500 F5I14.4 1 24,373,119 1 6.57 × 10−4

AT1G77080 MAF1 1 28,946,359 3
3 4.08 × 10−8

AT3G02130 RPK2 3 399,288 1 4.01 × 10−4

Note: Only the results of 13 traits, except for Anthocyanin 22, were listed in the table because no known genes
were found for Anthocyanin 22. GWAS methods are indicated as 1 (FastRR), 2 (logistic regression), 3 (FarmCPU),
4 (FaST-LMM), and 5 (POLMM).
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3.2.3. Computing Time

For all traits, FastRR was computationally much faster than all the other methods
(Table 3). The average computing time of FastRR was about 60 s; logistic regression,
FarmCPU, FaST-LMM, and POLMM all took at least three times as long as FastRR. Among
them, logistic regression was more computationally intensive than other methods, taking
more than 10 times as long as FastRR. For example, for the trait avrRpt2, FastRR took about
60 s to run, while the other four methods took more than 200 s, and logistic regression
took as long as 874.381 s (Table 3). Obviously, FastRR has a significant advantage in
computational speed.

Table 3. A comparison of computation times (in seconds) for five methods applied to fourteen binary
and ordinal traits in the Arabidopsis real dataset.

Trait Hierarchical
Level Number

Method

FastRR Logistic Regression FarmCPU FaST-LMM POLMM

avrPphB 2 56.694 820.554 580.096 184.906 639.752
avrRpm1 2 60.543 777.928 569.730 193.724 577.811
avrRpt2 2 60.361 874.381 382.826 207.916 661.600

avrB 2 61.786 819.524 308.278 276.553 571.332
Anthocyanin 10 2 63.490 966.688 170.400 337.322 602.908
Anthocyanin 16 2 63.124 968.497 170.031 345.887 562.880
Anthocyanin 22 2 63.483 966.562 187.875 353.152 712.398

Leaf roll 10 2 63.700 981.194 190.665 357.159 594.057
Leaf roll 16 2 64.672 981.164 184.358 368.970 534.023
Leaf roll 22 2 63.868 962.953 187.759 397.664 584.306
Leaf serr 10 5 64.083 976.726 176.467 359.268 781.890
Leaf serr 16 5 63.196 959.743 175.202 373.683 917.177
Leaf serr 22 5 66.011 992.060 177.251 352.197 569.712
Silique 22 10 62.799 786.014 376.251 304.925 603.166

Note: Bold represents the fastest computing time among the five methods.
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4. Discussion
4.1. Advantages of FastRR over Current Methods

Most analyses of binary or ordinal traits rely on logistic or polychotomous logistic
models that employ link functions to convert probabilistic models into linear models, which
increases the computational expense. And methods designed for binary or continuous
traits are commonly used to inappropriately analyze ordinal phenotypes, which suffer from
information loss. However, FastRR offers a distinct advantage as it does not require the use
of link functions; meanwhile, it could not lose useful information. This allows for direct
application to binary or ordinal phenotype data. By correcting for polygenic background
and population structure, and employing matrix transformation, FastRR converts these
binary or ordinal traits into continuous traits instead of link functions (Equations (3)–(5)).
Consequently, this approach avoids the computational complexity caused by link functions
as well as the information loss caused by inappropriate methods.

For ordinal traits, we compared FastRR with two commonly used strategies: one
is treating the ordinal phenotype as a continuous trait and then using FarmCPU and
FaST-LMM. The other is dichotomizing the ordinal phenotype and then using logistic
regression. The former violates the nature of the ordinal phenotype, and the latter could
lose useful phenotypic information and statistical power [5,6,13]. We also compared FastRR
with an ordinal method of POLMM. Both simulation studies of five hierarchical levels
(Figures 3A,B and S3A,B,D,E,G,H, and Tables S1 and S2) and real data analysis of five and
ten hierarchical levels (Tables 1, 2 and S3) revealed that FastRR avoided the above strategies
and employed a continuous-transformed stage in model (5), indicating the strong power to
detect QTN and mine genes associated with the ordinal traits of interest.

For binary traits, we directly compared FastRR with binary methods, including logistic
regression and POLMM. Meanwhile, we also compared FastRR with an inappropriate
strategy of treating the binary phenotype as a continuous trait and then using FarmCPU and
FaST-LMM. Through simulation studies of the binomial distribution (Figures 3C and S3C,F,I,
Tables S1 and S2) and real data analysis of two hierarchical levels (Tables 1, 2 and S3), it
can be seen that FastRR is still reliable and valid for binary phenotype.

4.2. Extensive Applicability of the FastRR Method

Although the phenotype data were assumed to follow a normal distribution in
model (1), the results of the simulation experiments comprehensively validated the ex-
tensive applicability of FastRR. First of all, phenotype data with varying distributions
and hierarchical levels were selected for generating binary or ordinal traits, including the
normal, uniform, and binomial distribution, with numbers of hierarchical level of 2 and 5.
In addition, three sets of simulation studies were conducted to examine different QTNs
and their heritability settings, including a single fixed-position QTN with a heritability
of 0.407~1.12%, multiple fixed-position QTNs with a heritability of 0.526~6.401%, and
multiple random-position QTNs with a total heritability of 7.85~18.96%. Finally, each
simulation incorporated varying degrees of polygenic backgrounds with 2, 5, and 10 times
the polygenic background (Figure S1, Tables S1 and S2). A total of 27 simulation scenarios
were conducted. For Arabidopsis real data, 14 representative quantitative traits were also
selected, including ten binary traits and four ordinal traits, and their hierarchical level
number is 2, 5, and 10 (Figure 2, Table 1). These settings and selections fully demonstrated
the wide range of applications of FastRR, demonstrating its robust detection capabilities
across a variety of distributions beyond normal, including binary, multi-categorical, and
other continuous distributions.

4.3. Prospects of the FastRR Method

FastRR has identified a series of true QTNs in simulation studies (Figures 3, S3 and S4;
Tables S1 and S2) and known genes in real data analysis (Figure 6, Tables 2 and S3). More-
over, the QTNs or genes identified by multiple methods are deemed as reliable QTNs
or genes [14]. As shown in Figure 6 and Tables 2 and S3, more known genes detected by
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FastRR can be simultaneously identified by other methods, indicating it is more reliable in
mining genes.

As a multi-locus method that utilizes dimension reduction through variable selection,
we compared FastRR with another multi-locus method, FarmCPU, andthree single-locus
methods, including logistic regression, FaST-LMM, and POLMM. The results revealed that
the multi-locus model considers the potential relationships between neighboring loci and
explains the genetic basis of complex quantitative traits in plants better than the single-
locus model, which is consistent with the previous literature [14]. The FastRR method, for
example, shows excellent performance. Compared to FaST-LMM and POLMM, it increases
power by at least 35% under 2 k in the first simulation experiment (Figure 3A, Table S1).
Moreover, detecting small-effect loci with low heritability has been an issue in the analysis
of complex categorical quantitative traits. The results reveal that for true QTN with a heri-
tability of less than 6.401% and an effect of less than 1, FastRR demonstrates significantly
superior power compared to other methods (Figures 4 and S5, and Tables S1 and S2). For
instance, in the second simulation experiment, the power for QTN1, which has the lowest
heritability, exceeded that of other methods by at least 14% in comparison to the other
four QTNs, with the advantage becoming more pronounced as the genetic background
increased (Figure S3D–F, Table S2). Furthermore, in the real data, the heritability of signifi-
cant loci detected by FastRR associated with known genes was consistently less than 5% in
all cases (Tables 2 and S3). In addition, FastRR, as a multi-stage algorithm, reduces the di-
mensionality of the raw large-scale data by variable reduction stage, and then performs the
multi-locus analysis, which sharply improves the computational efficiency [22]. Regarding
Arabidopsis real data analysis, FastRR was the fastest algorithm among all five methods
(Table 3). Meanwhile, we also evaluated another three multi-locus approaches, including
EBLASSO-NEG and EBLASSO-NE [23] for binary traits, and the method of Feng et al. [24]
for ordinal traits. Unfortunately, none of these results have been implemented due to their
low computational efficiency for large-scale data. In general, multi-locus models using
variable reduction in the FastRR algorithm can be used to detect the potential relationships
between neighboring loci and to mine the small-effect loci or genes with sharply rapid
computation, which can be expanded to the analysis of large-scale data and multiple phe-
notypes. It is beneficial to allow each individual phenotype’s model to share information
that can lead to better results and increased power [32]. This will be our future research.

5. Conclusions

In this study, the recently proposed FastRR algorithm for continuous traits was directly
applied to binary and ordinal traits for genome-wide association studies. It converts the
binary or ordinal trait to a continuous phenotype by polygenic background correction
and special matrix transformation, instead of link functions introduced or methods in-
appropriately used. Compared with four other continuous/categorical data approaches,
FastRR has been verified to have valid and superior performance in terms of QTN detection
power, accuracy and computation in a series of simulation experiments involving different
QTN settings, heritability, phenotypic distributions, hierarchical levels, and polygenic
backgrounds. This superiority is particularly evident in the detection of small-effect loci,
where FastRR excelled. In Arabidopsis real data analysis, FastRR identified 479 significant
loci and 76 known genes associated with ten binary and four ordinal traits. In summary,
FastRR provides an efficient GWAS tool for continuous, binary, and ordinal phenotypes.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants13172520/s1, Figure S1: various phenotypic distributions
and hierarchical levels in three simulation experiments. From left to right, each column illustrates a
different distribution. From top to bottom, each row represents the first (A–C), second (D–F), and third
(G–I) simulation experiment, respectively. Figure S2: the relationship between CV error and K values
for group structure of 14 binary or ordinal traits in the Arabidopsis real dataset. Figure S3: statistical
power for 5 fixed-position QTNs detected by five methods in the second simulation experiment.
From left to right, each column illustrates a different distribution. From top to bottom, each row
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represents 2 (A–C), 5 (D–F), and 10 (G–I) times the polygenic background, respectively. Figure S4:
statistical power for 10 random-position QTNs detected by five methods in the third simulation
experiment under (A) normal distribution with 5 hierarchical levels, (B) uniform distribution with
5 hierarchical levels, and (C) binomial distribution with 2 hierarchical levels. Figure S5: ROC curves
for five fixed-position QTNs (A:QTN1; B:QTN2; C:QTN3; D:QTN4; E:QTN5) for five methods in
the second simulation experiment. Each figure is given from left to right; each column illustrates
a different distribution. From top to bottom, each row represents 2, 5, and 10 times the polygenic
background, respectively. Table S1: statistical power, and accuracy in the detection of QTN using five
methods in the first simulation experiment. Table S2: statistical power, and accuracy in the detection
of QTN using five methods in the second simulation experiment. Table S3: significant QTNs and their
known genes detected using five methods for 14 binary or ordinal traits in the Arabidopsis real dataset.
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Abbreviations

Bayes-GLMM, generalized linear mixed model in a Bayesian framework; BOLT-LMM, fast
Bayesian mixed-model association; DRR, deshrinking ridge regression; EBLASSO-NEG, empirical
Bayesian LASSO with normal, exponential, and gamma hierarchical prior; EBLASSO-NE, empirical
Bayesian LASSO with normal and exponential hierarchical priors; EMMA, efficient mixed-model
association; FastRR, fast multi-locus ridge regression; FaST-LMM, factored spectrally transformed
linear mixed model; FarmCPU, fixed and random model circulating probability unification; FASTm-
rEMMA, fast multi-locus random-SNP-effect EMMA; FASTmrMLM, fast mrMLM; FastGWA, MLM-
based GWA analysis; FEM, fixed-effect model; GEMMA, genome-wide efficient mixed linear model
association; GLM, generalized linear model; GLMM, generalized linear mixed model; GMMAT,
generalized mixed-model association test; GWAS, genome-wide association studies; LASSO, least
absolute shrinkage and selection operator; MAF, minor allele frequency; MLM, mixed linear model;
mrMLM, multi-locus random-SNP-effect MLM; MSE, mean squared error; pLARmEB, polygenic-
background-control-based least angle regression plus empirical Bayes; POLMM, proportional odds
logistic mixed model; QTN, quantitative trait nucleotide; REM, random effect model; ROC, receiver
operating characteristic; SAIGE, scalable and accurate implementation of generalized mixed model;
SNP, single-nucleotide polymorphism; TAIR, the Arabidopsis Information Resource.
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